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The phenotype of mice deficient in
PTG suggests that the PTG gene is a
candidate gene for type 2 diabetes and
insulin resistance in humans. Howev-
er, previous studies have indicated that
PTG gene polymorphism does not
contribute to insulin resistance or glu-
cose intolerance (16, 17). Given that
GM gene polymorphism has been asso-
ciated with insulin resistance in some
human populations (18–20), it will be
important to reexamine the possible
relation between the PTG gene and
insulin resistance in humans.
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The etiologies of inflammatory bowel
diseases (IBD) are not known but are
thought to involve a genetic predispo-
sition toward exaggerated inflamma-
tory responses to enteric flora. Effec-
tive treatments for IBD are therefore
predicated on the regulation of
inflammatory responses in the intes-
tine. Most current therapeutic agents
for IBD, including 5-ASA, prednisone,
and anti–TNF antibody are directed at
the reduction of proinflammatory

molecules. Recently, a number of neg-
ative regulatory molecules (e.g., IL-10,
TGF-β, CTL antigen-4 [CTLA-4], Fas,
suppressor of cytokine signaling
[SOCS] proteins, A20, and Src homol-
ogy protein-1 [SHP-1]), which either
bind to effector immune cells and
inhibit their activation (e.g., IL-10,
TGF-β, and CTLA-4), induce pro-
grammed cell death (e.g., Fas), or regu-
late intracellular signaling pathways
(e.g., SOCS proteins, SHP-1, and A20),
have been identified. These negative
regulatory molecules may provide
novel therapeutic targets for the treat-
ment of IBD.

IL-10, Stat3, and IBD
Among these negative regulators of in-
flammation, IL-10 inhibits multiple
cell types, including macrophages (1,
2). The physiological importance of 
IL-10 is highlighted by the sponta-
neous development of bowel inflam-
mation in IL-10–deficient (IL-10–/–)
mice (3, 4). The inflamed mucosa of 
IL-10–/– mice contains elevated num-
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bers of myeloid cells, IFN-γ–producing
CD4+ T cells, and high levels of proin-
flammatory cytokines such as IL-1, 
IL-12, IL-6, and TNF (4). Antibody-
induced depletion of IFN-γ or IL-12
abrogates or prevents, respectively,
spontaneous inflammation in IL-10–/–

mice (4). Furthermore, RAG-2–/– mice
reconstituted with IL-10–/– CD4+ T cells
develop bowel inflammation while
RAG-2–/– IL-10–/– double-mutant mice
do not. Therefore, Th1 biased CD4+ T
cells appear to be pathogenic in IL-10–/–

mice (4). Finally, IL-10–/– mice do not
develop disease when raised in gnoto-
biotic conditions but do develop IBD
when transferred to conventional facil-
ities, indicating a role for enteric flora
in the pathology of this IBD model (4,
5). Taken together, these data suggest
that CD4+ T cell production of IL-10
prevents the development of a CD4+ T
cell–mediated, IL-12–driven, Th1-type
inflammation in the intestine that is
initiated by the presence of microbes in
the gut lumen.

The mechanism(s) by which IL-10
signals inhibit immune cell activa-
tion is poorly understood. IL-10
binds to a recently described IL-10
receptor (IL-10R) complex that is
composed of at least two subunits,
IL-10Rα and IL-10Rβ — also known
as CRFB4 or CRF2-4 (2). IL-10R sig-
naling in macrophages requires the
kinase Jak-1 and the transcription
factor Stat3 (2). The essential role of
Stat3 in mediating IL-10 signals in
myeloid cells was demonstrated by
the targeted deletion of Stat3 in
myeloid cells (LysMCre/Stat3flox– mice)
that rendered neutrophils and
macrophages unresponsive to IL-10
(6). This myeloid unresponsiveness
to IL-10 resulted in the development
of a polarized Th1-type immune
response and chronic enterocolitis
(6). Thus, the specific inability of
myeloid cells to respond to IL-10
through Stat3 signals appears to
recapitulate spontaneous inflamma-
tion seen in IL-10–/– mice.

Cytokines and IBD in myeloid
Stat3–deficient mice
In this issue of the JCI Kobayashi et al.
(7) perform multiple genetic manipu-
lations of the LysMCre/Stat3flox– mouse
to elucidate the sequential innate and
adaptive immune processes that lead
to the development of this Th1-type
IBD. First, they address the questions
of whether IFN-β, TNF, or IL-12p40
contribute to the enterocolitis and Th1
profile of LysMCre/Stat3flox– mice by
interbreeding those mice to Stat1–/–,
TNF–/–, and IL-12p40–/– mice, respec-
tively. These experiments show that
Stat1 and TNF are dispensable, where-
as IL-12p40 is required for enhanced
Th1 responses and enterocolitis in
LysMCre/Stat3flox– mice. The deletion of
IL-12p40 ablates both IL-12 and IL-23,
a proinflammatory cytokine that
shares the IL-12p40 subunit (8, 9), so it
is not clear whether the lack of IL-12,
IL-23, or both results in the ameliora-
tion of enterocolitis in IL-12p40–/– ×
LysMCre/Stat3flox– mice. Kobayashi et al.
also find that disease is prevented in
RAG-2–/– × LysMCre/Stat3flox– mice,
despite high levels of IL-12p40, demon-
strating a requirement for adaptive
lymphocytes in this model of IBD.

LPS, TLR4, and IBD in myeloid
Stat3–deficient mice
The first and perhaps critical step in ini-
tiating immune responses is typically
the engagement of host Toll-like recep-
tor (TLR) molecules by conserved
pathogen associated molecular prod-
ucts (PAMPs) (10). TLR ligation by
PAMPs induces the activation of NF-κB
and other transcription factors result-
ing in the production of multiple
proinflammatory molecules. Recently,
it has been appreciated that TLRs also
influence the nature of the immune
response, in particular T cell skewing
toward a Th1 or Th2 profile. Myeloid
cells, which are exquisitely sensitive to
TLR ligands and produce significant
IL-12p40, are therefore poised to play
key roles in the initiation and possibly
the Th1/Th2 skewing of inflammatory
responses. The potency of myeloid cell
TLR responses also warrants their effec-
tive negative regulation to prevent
pathological inflammation. Kobayashi
et al. (7) address the potential role 
of TLRs in the IL-12–driven IBD of 

The Journal of Clinical Investigation | May 2003 | Volume 111 | Number 9 1285

Figure 1
Model illustrating the roles of the Toll-like receptor (TLR) and Stat3 in IBD. Myeloid cells
respond to LPS-mediated TLR stimulation. Normally, inflammation is controlled by IL-10,
which stimulates myeloid cell Stat3 activation to suppress TLR-induced IL-12/IL-23 produc-
tion (a). Kobayashi et al. (7) demonstrate that in LysMCre/Stat3flox– mice, IL-10 does not effec-
tively suppress IL-12/IL-23 production. IL-12/IL-23 release activates lymphocytes, causing an
exaggerated bias toward Th1-type inflammation (b).
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LysMCre/Stat3flox– mice by interbreeding
with TLR4–/– mice. They show that
TLR4–/– × LysMCre/Stat3flox– mice display
dramatically reduced intestinal inflam-
mation compared to LysMCre/Stat3flox–

mice. This disease amelioration is con-
sistent with the requirement for
microbe or microbial products in the
pathology of IBD in IL-10–/– mice (4, 5).

A model for the role of IL-10, TLR4,
and Stat3 in IBD
This work suggests a potential model
(Figure 1) for the sequential activation
and negative regulation of innate and
adaptive immune cells during intestin-
al inflammation: LPS, perhaps from
the intestinal lumen, induces the pro-
duction of IL-12/IL-23 by myeloid
cells, which drives a Th1-type inflam-
matory process in the lymphocyte pop-
ulation. The model suggests that
inflammation would normally be con-
trolled by myeloid or lymphocyte-
derived IL-10 acting through Stat3 in
myeloid cells to block further produc-
tion of IL-12/IL-23. This suppressive
IL-10 signal may be particularly impor-
tant in the gut, where immune cells are
continuously in close contact with LPS
and other microbial PAMPs. In LysMCre/
Stat3flox– mice, IL-10 does not effective-
ly suppress IL-12/IL-23 production by
myeloid cells, resulting in the expan-
sion and Th1 bias of CD4+ T cells. This
study by Kobayashi et al. (7) clearly
places TLR-induced myeloid IL-12/
IL-23 production as an important tar-
get of IL-10-induced, Stat3-mediated
anti-inflammatory effects. Additional-
ly, this study points to important
unanswered questions regarding the

anti-inflammatory effects of IL-10
including: How is IL-10 receptor expres-
sion regulated in myeloid cells? How
does IL-10 activation of Stat3 regulate
TLR-induced expression of IL-12p40?

The experimental evidence above
and other data suggest that IL-10
might be a promising target for allevi-
ating inflammation in human
patients with IBD. Specifically, the evi-
dence for the potential therapeutic use
of IL-10 includes the fact that IL-10
suppresses the production of inflam-
matory cytokines by multiple immune
cell types; continuous IL-10 treatment
can prevent or ameliorate disease in
several mouse models of IBD; IL-10–/–

mice develop IBD; and small trials of
treatment with IL-10 in patients with
ulcerative colitis showed reduced
cytokine levels and improved histolog-
ical scores (4, 11). It is therefore vexing
that recent clinical trials found no ben-
eficial effect of IL-10 in the treatment
of Crohn disease (12, 13). It may be
that the nature of the IBD being treat-
ed, the timing of IL-10 administration,
the route of drug delivery, or the spe-
cific cell types being targeted by IL-10
will affect the outcome of the therapy
(14). Additionally, IL-10 may be more
effective when used in consort with
other novel or established treatments
for IBD. It is clear that further experi-
mental dissection, like that performed
by Kobayashi et al. (7), of the cell types
and/or factors that mediate the anti-
inflammatory effects of IL-10 in the
intestinal mucosa are warranted.
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