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Abstract

Secondary bacterial infection, often caused by Streptococcus pneumoniae (Spn), is
one of the most frequent and severe complications of influenza A virus (IAV)-induced
pneumonia. Phenotyping of the pulmonary immune cell landscape after IAV infection
revealed a substantial depletion of the tissue-resident alveolar macrophage (TR-AM)
population at day 7, which was associated with increased susceptibility to Spn
outgrowth. To elucidate the molecular mechanisms underlying TR-AM depletion, and
to define putative targets for treatment, we combined single-cell transcriptomics and
cell-specific PCR profiling in an unbiased manner, using in vivo models of IAV infection
and IAV/Spn co-infection. The TNF superfamily 14 (TNFSF14) ligand-receptor axis
was revealed as the driving force behind post-influenza TR-AM death during the early
infection phase, enabling the transition to pneumococcal pneumonia, while
intrapulmonary transfer of genetically modified TR-AMs and antibody-mediated
neutralization of specific pathway components alleviated disease severity. With a
mainly neutrophilic expression and a high abundance in the bronchoalveolar fluid
(BALF) of patients with severe virus-induced ARDS, TNFSF14 emerged as a key
determinant of virus-driven lung injury. Targeting the TNFSF14-mediated intercellular
communication network in the virus-infected lung can, therefore, improve host defense,
minimizing the risk of subsequent bacterial pneumonia, and ameliorating disease

outcome.
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Introduction

Bacterial pneumonia, often caused by Spn, is one of the most common complications
of primary IAV infection, increasing the risk of death, intensive care unit (ICU)
admission, and requirement for mechanical ventilation (1). While strengthening host
defense offers a potential alternative to antibiotics amid globally rising resistance,
progress is limited by poor understanding of the immune mechanisms behind severe
influenza and the transition to post-viral bacterial pneumonia. Among these, virus-
induced depletion of the TR-AM pool is considered a key factor in promoting secondary
bacterial pneumonia, alongside epithelial damage, influx of pro-inflammatory cells, and
impaired mechanical clearance (2, 3). TR-AM numbers remain relatively unchanged
during homeostasis, with the main function of the cells being surfactant clearance and
containment of minor infections (4). This tolerogenic programming, however, can be
overridden by abundant viral presence, leading to a pro-inflammatory phenotypic
switch, including extensive cytokine release and phagocytosis of viral particles and
apoptotic cells (4, 5). TR-AM loss, often observed after severe infection and
notoriously known as the "TR-AM disappearance reaction” (6, 7), dramatically
increases IAV-associated mortality (8, 9), the specific pathomechanisms behind it
remain, however, elusive.

The TNFSF involves a variety of structurally homologous ligands with multiple
functions during development, homeostasis, and tissue response to injury (10).
TNFSF14 or LIGHT [homologous to lymphotoxins, exhibits inducible expression and
competes with Herpes Simplex Virus (HSV) glycoprotein D for herpes virus entry
mediator (HVEM), a receptor expressed by T-lymphocytes] is widely expressed on
cells of the hematopoietic compartment (11, 12). In the lung, TNFSF14 has been
associated with airway remodeling in asthma, idiopathic pulmonary fibrosis, systemic

sclerosis models (13, 14), and more recently, with disease severity in covid-19 (15,
4
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16). Still, little is known regarding the pathomechanistic role of TNFSF14 in virus-
induced pneumonia.

TNFSF14 binds to three different receptors; type | transmembrane lymphotoxin beta
receptor (LTbR), HVEM, also known as TNF receptor superfamily 14 (TNFRSF14),
and decoy receptor 3 (DcR3), which is only found in primates (10). TNFSF14 receptors
have a broad distribution on immune, stromal, and parenchymal cells (17), and
orchestrate distinct intracellular pathways. The outcome of TNFSF14 crosslinking to
its receptors, therefore, heavily relies on disease context and microenvironmental cues
(10). Here, we sought to investigate the molecular mechanisms of post-influenza TR-
AM loss and its consequences for host defense in a model of IAV and IAV/Spn
infection, aiming at identifying any putative targets for immune-based pneumonia

treatment options.
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Results

Severe AV infection increases susceptibility to secondary pneumococcal
infection

To elucidate the pathomechanisms behind TR-AM death after severe 1AV infection and
its effect on the establishment of secondary bacterial pneumonia, we established a
robust co-infection model (Figure 1A). Disease severity after viral, bacterial, or co-
infection was shown to vary in a pathogen- and infection dose-dependent manner.
Orotratracheal (0.t.) infection of C57BL/6 wild-type (wt) mice with 500 foci-forming units
(ffu) IAV A/PR/8/34 decreased mouse survival by 50% 14 days after infection, whereas
intranasal infection with 2000 colony-forming units (cfu) Spn Serotype 3 (PN36
NCTC7978) did not affect survival (Figure 1B) or weight loss (Figure 1C). However,
IAV infection seven days prior to pneumococcal infection caused massive leukocyte
infiltration (Figure 1, D-G) and a 100% lethal outcome (Figure 1B). Upon use of lower
IAV and Spn doses (250ffu/20cfu on day 7 post-IAV infection, pi), average survival was
calculated at 37.5% (Figure 1B). Despite the low infection doses, bacterial load in the
BALF of previously IAV-infected mice was remarkably high 48h after pneumococcal
infection, whereas PBS-pretreated mice completely cleared the infection (Figure 1H),
suggesting an IAV-associated impaired immune response against invading Spn. We,
therefore, characterized the leukocyte landscape of the IAV-infected lung, as distinct
immune cell populations and their interactions can differentially affect post-influenza
bacterial clearance (3, 18, 19). Flow cytometry profiling of BALF leukocytes (gating
strategy depicted in Supplemental Figure 1A) revealed cell-specific kinetics over the
infection course (Figure 11). Of note, BALF TR-AM numbers, which started significantly
declining on day 3 pi, were almost completely depleted between 7-11 days pi (Figure
1J). Similar results were shown for lung-tissue leukocytes (gating strategy in

Supplemental Figure 1B), which could not be acquired through BAL due to their sessile
6
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nature (Supplemental Figure 2A) (20) or extra-alveolar location (Supplemental Figure
2, B-M). Upon co-infection, BALF bacterial outgrowth was observed 24h after
pneumococcal infection (Figure 1K), coinciding with the period of maximum TR-AM
depletion, despite the abundant presence of bone marrow-derived macrophages
(BMDM). TR-AMs presented higher Spn phagocytosis capacity (Figure 1L) and no
inferiority in killing capacity to the infection-driven pro-inflammatory BMDM (Figure
1M), highlighting the importance of TR-AM preservation for maintaining intact host
defense. To address this, we sought to identify the molecular underpinnings of post-

influenza TR-AM death.

Post-influenza TR-AM death involves the activation of caspase-8

Direct viral infection can lead to epithelial cell apoptosis in IAV-induced pneumonia (21,
22), posing the question whether this also drives post-IAV TR-AM depletion. Flow
cytometry analysis revealed only a small number of IAV-infected TR-AMs (quantified
by virus hemagglutinin (HA) expression) with no significant increase over the infection
course (Figure 2A). The majority of HA-negative cells had been depleted by day 7 pi
(Figure 2A), implying the involvement of a different mechanism with a much higher
impact. In accordance with that, when naive TR-AMs were ex vivo treated with virus-
and cell-free BALF from IAV-infected mice (iBALF) from day 7 pi (day of maximum
depletion), we observed a significant decrease in TR-AM survival (Figure 2B) and an
increase in caspase-3/7 (Figure 2C) and caspase-8 activity (Figure 2D). Transcriptome
analysis of flow-sorted HA-negative TR-AMs on days 3 and 7 pi based on a cell-death
gene array revealed an upregulation of multiple apoptosis-related genes, such as Bax,
Cd40lg, and Cflar, and necrosis-related genes, including Bmf, Commd4, Defbl, and
Parpl (Figure 2E and Supplemental Material, Cell death arrays wt data). Fold changes

of upregulated genes did not differ significantly from baseline, as cell death is mainly
7
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regulated on a (post-)translational level (23). Concomitant flow cytometry analysis,
however, revealed a remarkable increase in apoptotic TR-AMs over the infection
course (Figure 2F, gating strategy in Supplemental Figure 3A). As a result, we raised
the question whether apoptosis inhibition would improve TR-AM survival. Following
pre-incubation with a non-toxic concentration (Supplemental Figure 3, B-C) of 50uM of
a specific caspase-3 (Z-DEVD-FMK) or caspase-8 inhibitor (Z-IETD-FMK), naive TR-
AMs were treated with iBALF. Whereas caspase-3 inhibition only showed a negligible
protective effect, TR-AM death was completely abrogated in the caspase-8 inhibition
group (Figure 2G). When mice were treated with daily subcutaneous (s.c.) injections
of the caspase-8 inhibitor (schematic of experimental layout in Figure 2H), an
attenuated weight loss was observed up to day 7 pi (Figure 2I). Caspase-8 inhibition
fully protected the TR-AM pool on day 3 pi (Figure 2J), without affecting viral titers
(Figure 2K), and significantly mitigated TR-AM loss on day 7 pi (Figure 2L). Caspase-
8 is a known orchestrator of cell death, typically activated upon the crosslinking of a
soluble ligand to a death receptor (24), which, together with the primarily virus-

independent TR-AM apoptosis, hinted at a soluble ligand as a driver of TR-AM death.

IAV pneumonia sensitizes TR-AMs to TNFSF14 ligation

Death-inducing members of the TNFSF have been associated with promoting alveolar
epithelial cell death and driving post-IAV lung injury (18, 25, 26). As such, we
hypothesized that a TNFSF member could be involved in post-IAV TR-AM death and
analyzed gene expression patterns of receptors and ligands belonging to the TNFSF
signaling network in flow-sorted, HA-negative, TR-AMs from mock-infected and
infected mice on days 3 and 7 pi. TNFRSF14, a receptor for TNFSF14, showed a
significant upregulation at both time points (Figure 3A and Supplemental material, TNF

signaling arrays wt data). TNFRSF14 demonstrated a significant increase in mRNA
8
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and cell surface protein expression levels over the infection course and after ex vivo
TR-AM stimulation with IBALF (Figure 3, B-D). LTbR, the competitor receptor for
TNFSF14, presented no changes in transcriptional regulation, yet a distinct increase
in protein expression (Figure 3, B-C, and E). On day 3 pi, the majority of TR-AMs
stained positive for TNFSF14 receptors (Supplemental Figure 4A). Regarding TNFSF
ligand expression, we confirmed previous reports on IAV-induced upregulation of
Tnfsf10 in lung macrophages (25, 26), whereas Tnfsf15 and Tnfsf14 were moderately
increased (Figure 3F and Supplemental material, TNF signaling arrays wt data).
Overall, severe IAV infection was linked to a total TNFSF14 increase in the mouse
lung, as shown by IHC (Figure 3G), gPCR (Figure 3H), and ELISA (Figure 3I). In
accordance with that, we observed a significant increase in soluble TNFSF14 in the
BALF of patients with influenza or COVID-19 acute respiratory distress syndrome
(ARDS), compared to control patients who underwent routine bronchoscopy for
diagnostic purposes and revealed normal BALF cellularity (Figure 3J). Based on the
distinct kinetics of the two TNFSF14 receptors, we aimed at dissecting any differential
roles in post-influenza TR-AM fate. Anti-LTbR TR-AM pre-treatment significantly
attenuated the increase in caspase-3/7 activity after iBALF treatment, as opposed to
the anti-TNFRSF14 and isotype control groups (Figure 3K). Similar results were
observed when we treated naive wt, Tnfrsf14--, and Ltbr’- TR-AMs with iBALF (Figure
3L), indicating a potential protective effect against soluble death-inducing ligands in
the absence of LTbR. In accordance with that, IAV-infected Ltbr’- mice demonstrated
a less dramatic drop in TR-AM numbers, compared to wt and Tnfrsf147- mice (Figure
3M), as well as an overall attenuated weight loss on days 7 and 8 pi (Figure 3N). The
distinct effects of the two receptors on TR-AM survival and the upregulation of the

common TNFSF14 ligand in IAV-infected lungs led us to examine TNFSF14 closer.
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TNFSF14 drives the depletion of the TR-AM pool in IAV-induced pneumonia

To test whether TNFSF14 only induced apoptosis in a subpopulation of TR-AMSs,
TNFSF14 receptor expression on TR-AM surface was combined with apoptosis
staining (annexin V/7-aminoactinomycin, 7-AAD) at different time points after infection.
TNFSF14 receptor-expressing cells comprised approximately 80% of apoptotic TR-
AMs on day 3 pi (Supplemental Figure 4B). When we compared TR-AMs regarding
apoptosis induction based on TNFSF14 receptor expression, TNFSF14 receptor-
positive TR-AMs presented significantly higher apoptosis rates on days 3 and 8 pi,
compared to LTbR'TNFRSF14 cells (Figure 4A). To test whether TNFSF14 could
directly induce TR-AM death, we treated naive murine (Figure 4B) and human BALF
TR-AMs (Figure 4C) with different concentrations of recombinant TNFSF14
(rTNFSF14) for 24h. Treatment with 500ng/ml rTNFSF14 led to an average of 25-35%
decrease in TR-AM survival compared to the control PBS/BSA group (Figure 4, B-C)
and an increase in caspase-3/7 activity, which was even more pronounced when the
same setup was performed with day 3 TR-AMs (Figure 4D). Unlike TR-AMs, epithelial
cells, which present a basolateral LTbR and a non-preferential, cytoplasmic
TNFRSF14 expression pattern (Supplemental Figure 4, D-G), and are also exposed to
homotrimeric, active (27), TNFSF14 in the BALF (Supplemental Figure 4, H-1), did not
succumb to TNFSF14-induced apoptosis (Supplemental Figure 4C), mirroring the
diverse roles of TNFSF14 signaling, based on cell type and receptor availability.

O.t. application of rTNFSF14 to IAV-infected mice (schematics in Figure 4E) led to a
significant increase in the number of annexin V* TR-AMs (Figure 4F) and further
reduced the already diminished BALF and lavaged-lung-tissue TR-AM numbers on day
3 pi (Figure 4, G-H), compared to PBS-treated, IAV-infected controls. No differences
could be detected in the numbers of other leukocyte populations, based on rTNFSF14

treatment (Supplemental Figure 5, A-E). Concomitantly, TR-AM loss was completely
10
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abrogated in the BALF and lavaged lung tissue of Tnfsf14/- mice (Figure 5, A-B). This
result could not be reproduced in Tnfsf10”/- mice (Supplemental Figure 5F), despite
TNFSF10 being one of the pro-apoptotic ligands highly expressed in the BALF after
IAV infection (25, 26), suggesting a ligand-specific induction of TR-AM apoptosis.
Flow-sorted Tnfsfl4/- TR-AMs showed lower induction of apoptosis, necrosis, and
autophagy-related genes (Figure 5, C-D, Supplemental Figure 5, G-J, Supplemental
material, Cell death arrays Tnfsf14 ko data) on days 3 and 7 pi, compared to wt mice.
Unlike wt iBALF, caspase-3/7 activity was not increased upon TR-AM treatment with
Tnfsf14-- iBALF (Figure 5E). No differences could be detected in viral titers on day 3
pi (peak of viral replication in this model (28), Supplemental Figure 5K) or in the amount
of epithelial (EpcAM+), endothelial (CD31+), and mesenchymal cells (MC,
Supplemental Figure 5, L-N). With the exception of neutrophils, which presented higher
numbers in Tnfsf147- mice on day 3 pi but not at later time points (Supplemental Figure
50), no differences could be shown for other BALF leukocyte populations
(Supplemental Figure 5, P-S). This data suggested that TNFSF14-associated cell
death was confined to the TR-AM compartment. Alongside, absence of the ligand
resulted in decreased weight loss, hinting at a beneficial effect of TNFSF14 blockade
(Figure 5F). Aiming at a therapeutic approach, we used a neutralizing anti-TNFSF14
antibody (11) and observed higher BALF and lung tissue TR-AM numbers on day 7 pi
(Figure 5, G-H), an attenuated weight loss in the anti-TNFSF14 group (Figure 5I), and
confirmed lower caspase-3 activity in TR-AMs after ex vivo iBALF treatment (Figure

5J), highlighting TNFSF14 as the driver of post-influenza TR-AM death.

TNFSF14 is released by neutrophils during the acute IAV infection phase
To identify the cellular source of TNFSF14 during IAV pneumonia, we analyzed

expression of the transmembrane form of TNFSF14 on leukocytes (CD45* cells),
11
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epithelial cells, MC, and endothelial cells in the lungs of mock- and IAV-infected mice
on day 7 pi. TNFSF14 expression was significantly increased in epithelial cells and
leukocytes (Figure 6A). This was in accordance with our IHC data, which revealed a
prominent signal increase within the leukocyte-infiltrated interstitium and alveolar
space on day 7 pi (Figure 6B). Soluble TNFSF14 was detected in the serum of infected
mice as early as day 3 pi, further suggesting that blood-derived immune cells
contributed to the increase in TNFSF14 levels within the lung (Figure 6C). Single cell
(sc)RNA-Seq analysis of pre-gated CD45+ cells from whole lung digests on days 3
and 7 pi revealed a total of 14 immune cell clusters on day 3 pi, including TR-AMs,
BMDM, interstitial macrophages (IM), B and T cells, conventional dendritic cells
(cDCs), plasmacytoid DCs (pDCs), monocyte-derived DCs (moDCs), NK cells, three
monocyte clusters with different gene signatures: monocytes 1 (Ccr2, Ly6a2, F13al,
Mgstl, Aldh2), monocytes 2 (Tgfbl, Sirpblc, Otulinl, Plcg2, Zfp710), and monocytes
3 (Eno3, Cd300e, Agpat4, Rbpms, Slcl2a2), and two neutrophil clusters: neutrophils
1 (ler5, ler3, Smox, Gm8995, Ccrl2) and neutrophils 2 (Picalm, Jund, Hmgb2,
Mapllc3b, Slc2a3). Eleven clusters were identified on day 7 pi, including TR-AMs,
BMDM, IM, B cells, CD4+, CD8+, proliferating T cells, pDCs, cDCs, NK cells, and
neutrophils (Figure 6, D-E). On both time points, neutrophils were revealed as the main
leukocyte population expressing Tnfsf14, with a minor contribution from NK and T cells.
Ltbr gene expression was higher than Tnfrsfl4 in all monocyte/macrophage
populations, including TR-AMs (Figure 6, D-E). gPCR analysis revealed an
upregulation of Tnfsfl4 in neutrophils isolated from peripheral blood on day 2 pi,
(Figure 6F), recapitulated in BALF neutrophils of patients with IAV ARDS (Figure 6G).
Flow cytometry analysis confirmed neutrophils as the main TNFSF14-expressing
leukocyte population on day 3 pi, with no ligand expression on bone marrow-derived

neutrophils from non-infected mice (Figure 6H). Both soluble and transmembrane
12
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TNFSF14 were revealed to contribute to TR-AM apoptosis, as iBALF treatment of day
3 TR-AMs led to a significant increase in caspase3-/7 activity, comparable to the
increase induced by TR-AM co-culture with day 3 neutrophils, even at the presence of
a metalloproteinase inhibitor preventing TNFSF14 shedding (Supplemental Figure 6A)
(29). We then tested whether neutrophil depletion via i.p. administration of an anti-
Ly6G antibody (30) would improve post-influenza TR-AM survival. Following
successful neutrophil depletion (Supplemental Figure 6, B-E), mice demonstrated an
attenuated weight loss up to day 7 pi (Supplemental Figure 6F), which was in
accordance with previously published data (31, 32). Neutrophil-depleted mice
presented lower TNFSF14 levels (Figure 6, I-J), compared to the isotype-treated
group, with higher BALF and lung-tissue TR-AM numbers on day 7 pi (Figure 6, K-L).
No significant differences in other BALF immune cells could be observed
(Supplemental Figure 6, G-K), demonstrating the depletion specificity of the anti-Ly6G

antibody.

Outcome of post-influenza pneumococcal pneumonia is improved by targeting
the TNFSF14 ligand-receptor axis

Having established that TR-AM loss was driven by the TNFSF14-LTbR axis in severe
IAV infection, we tested whether TR-AM preservation would improve co-infection
outcome (Figure 1, A-D). Indeed, Tnfsf147- mice showed significantly improved survival
and reduced weight loss (Figure 7, A-B), and reduced BALF pneumococcal burden on
day 9 pi/48h post-Spn (Figure 7, C-D), whereas no difference could be shown for
spleen bacterial burden (Supplemental Figure 7A). Despite a massive neutrophil influx
in both groups (Supplemental Figure 7B), Tnfsf14”- mice maintained TR-AMs (Figure
7E). No significant differences could be observed in the phagocytosis capacity and the

percentage of phagocytic TR-AMs on day 7 pi, the time point of pneumococcal infection
13
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(Supplemental Figure 7, C-D). Based on the lack of difference in overall phagocytic
capacity, we concluded that the improved bacterial clearance in Tnfsf14/ mice was
mainly attributed to the higher number of surviving TR-AMs. Treatment with the
neutralizing anti-TNFSF14 antibody led to a similar improvement in survival and weight
loss (Figure 7, F-G), supporting the hypothesis that post-influenza TR-AM
maintenance was key to survive secondary pneumococcal infection. Finally, we
performed orthotopic transfer of wt, Tnfrsf147-, or Ltbr”- TR-AMs in co-infected mice
(schematics in Figure 7H). Pneumococcal superinfection proved lethal in mice that
received no cells or Tnfrsf14/- TR-AMs, whereas transfer of Ltbr’- TR-AMs rescued
75% of mice (Figure 7I). Transfer of wt TR-AMs only slightly increased survival,
indicating that transferred wt TR-AMs experienced TNFSF14-dependent apoptosis
after transfer on day 3 pi. Ltbr”- TR-AMs additionally showed a superior phagocytosis
capacity for Spn compared to wt TR-AMs when infected ex vivo (Figure 7J), which may
have additionally contributed to the improved survival observed in the Ltbr/”- TR-AM
recipient group. Based on these results, we conclude that targeting the TNFSF14
signaling axis could revert TR-AM death in the aftermath of severe I1AV-induced lung

injury and thus prevent the transition to secondary bacterial pneumonia (Figure 7K).
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Discussion

Lower respiratory tract infections (LRTIs) are a leading global cause of death, with IAV
infection playing a major role due to a variety of potential complications, most notably
secondary bacterial infections, which greatly increase the risk of respiratory failure and
ICU admission, and overall mortality (21, 33, 34). With no causative pharmacological
treatment for pneumonia-related lung injury, research has focused on understanding
the mechanisms behind severe IAV pneumonia and the transition to post-influenza
secondary infection. Proposed mechanisms include bacterial dissemination due to
IAV-associated epithelial cell death, fibrin deposition, impaired mechanical clearance,
microbial dysbiosis, and interferon-driven suppression of phagocyte function (2, 35,
36). As the lungs' first line of defense, IAV-induced TR-AM depletion is a critical step
in compromising host immunity. Patient and animal studies have demonstrated that
severe viral infections drive TR-AM depletion and niche replenishment by BMDM, with
the depletion phase aligning with peak susceptibility to bacterial infection (3, 37-39),
yet the involved pathways remain poorly understood. Here, we identified TNFSF14 as
a driver of TR-AM loss during IAV pneumonia.

In the first week post-infection, TR-AM numbers progressively declined, while other
leukocytes gradually entered the alveoli in response to viral infection. TR-AM fate after
acute infection is dictated by cell death-inducing mechanisms, impaired self-renewal
capacity, and loss of pro-survival signals from the injured neighboring epithelium (6,
7). The extent of TR-AM depletion and the intensity of the inflammatory response
shape the composition and (re)programming of lung-resident cells after infection (40).
Our own previous data indicates that partial TR-AM loss enables the recruitment of
circulating BMDM, which are essential for post-viral repair through their transitioning
into pro-homeostatic phenotypes (41). Co-existence of newly recruited BMDM and

surviving original TR-AMs is the outcome of a balanced immune response, which
15
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culminates in BMDM-orchestrated tissue repair and return to homeostasis, assisted by
the tolerogenic functions of TR-AMs, aimed at restricting epithelial damage (42, 43).
Infection severity determines the extent of TR-AM depletion, with a dramatic loss upon
severe |AV pneumonia, as demonstrated in our model. Recruitment of pro-
inflammatory immune cells and chemokine abundance contribute to viral clearance,
but can also escalate to a dysbalanced immune response (44). The highly pro-
inflammatory programming of BMDM can aggravate local injury and promote aberrant
lung remodeling (18, 28), while dysregulated neutrophil migration and activation
positively correlate with disease severity and poor patient outcomes (45, 46). Following
TR-AM depletion, early recruitment of professional phagocytes such as BMDM and
neutrophils failed to control bacterial spread, leading to dramatic bacterial outgrowth
within 24h of Spn infection. This aligns with prior studies demonstrating high
susceptibility to secondary pneumococcal infection 5-7 days after IAV infection,
coinciding with the TR-AM depletion phase (3). IFN-y, which is profusely released in
the alveoli as part of the antiviral response, heavily impairs TR-AM antibacterial
properties, as it downregulates the macrophage receptor with collagenous structure
scavenger receptor (MARCO) on TR-AM surface, one of the key elements in TR-AM
antibacterial response (47, 48). Defective chemokine production by macrophages, as
observed in severe IAV infection and sepsis models, further aggravates disease
outcome (49, 50). The near-complete TR-AM loss within a microenvironment of
exuberant death-inducing signals in our model highlights an additional important step
towards the establishment of lethal post-viral pneumococcal pneumonia. Though a
considerable advantage in terms of antibacterial properties has been described for
infection-experienced BMDM and newly originating, BMDM-derived, TR-AMs after IAV
infection (19), pneumococcal infection in that model was performed weeks after the

initial viral hit, as opposed to the window of increased host vulnerability during the acute
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infection phase described in our study. At this point, TR-AMs showed superior
phagocytic capacity and similar killing capacity to BMDM. Thus, preserving TR-AMs
early on, may provide critical protection until re-establishment of a fully functional
resident macrophage niche, including infection-trained BMDM, has been completed.
The remarkable TR-AM loss in C57BL/6 wild-type mice in our study differs from
previously published data, where mouse genetic strain determined TR-AM survival,
with BALB/c mice exhibiting a drastic TR-AM reduction, as opposed to C57BL/6 mice,
which maintained TR-AMs of an altered phenotype (51). In this study by Califano et
al., a relatively low dose of IAV PR8 was administered intranasally, whereas we
administered a high viral dose orotracheally, aiming at inducing severe pneumonia.
Animal strain and administration route for the infection may, therefore, depict a
limitation of our study, as results may differ for different in vivo models.
Transcriptomic and flow cytometry analyses revealed apoptosis as the primary cause
of post-influenza TR-AM death, largely independent of direct viral infection, suggesting
the involvement of a death-inducing ligand. While apoptosis promotes early viral
spread (22, 52), it also limits infection through elimination of infected cells (53, 54).
Leukocyte- and virus-driven alveolar epithelial cell apoptosis, however, compromises
the gas-blood barrier and impairs gas exchange (25, 28). Apoptosis inhibition can,
therefore, influence infection outcome. To compensate for any effect of caspase
inhibition on early virus propagation, we began our treatment on day 2 pi and observed
no significant difference in viral titers on day 3 pi, the peak of viral replication in this
model (28). Caspase-8 inhibition was chosen based on our in vitro data, which showed
a clear advantage over caspase-3 inhibition after TR-AM iBALF treatment. This initially
surprising result could be potentially explained through PANoptosis as the joint result
of pyroptosis, apoptosis, and necroptosis. This would permit cell death via caspase-3-

independent apoptosis or pyroptosis. Caspase-8 is involved in both these pathways
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(55-58) and is currently the only known programmed cell death (PCD) member that
connects all PCD pathways. This can explain the complete abrogation of TR-AM death
on day 3 pi, the reduced weight loss, and the improved TR-AM survival upon caspase-
8 inhibition. Nevertheless, the PANoptosis concept suggests that a single PCD
component cannot individually rescue cells once PANoptosis has been initiated, which
might explain why TR-AM loss was not completely prevented on day 7 pi, when death-
inducing signals are highly abundant (59-61).

Stochastic interrogation of TNFSF members revealed significant upregulation of
TNFSF14 in infected mouse lungs, with high soluble TNFSF14 levels also found in
BALF from patients with severe virus-induced ARDS. Previous studies on severe viral
pneumonia and sepsis positively linked elevated BALF/serum TNFSF14 levels to
disease severity (15, 16, 62, 63). Depending on cell type, pathogen interaction, and
receptor availability, TNFSF14 can influence cell survival, profile (re)programming,
immune response establishment, and infection memory (10, 64). TNFSF14 has been
previously described as a determinant of macrophage survival, phenotype, and
antibacterial properties (65-67), however, extensive studies regarding post-influenza
TR-AM death are lacking. In our study, TNFSF14 deletion or blockade preserved TR-
AMs and improved survival and weight loss during co-infection. These benefits were
not solely due to reduced bacterial burden but likely stemmed from enhanced tissue
repair and accelerated return to homeostasis due to improved TR-AM survival.
Previous work from our lab has highlighted TR-AMs as drivers of epithelial repair (41)
and mitigators of lung inflammation, even at the cost of bacterial clearance (43).
Further experiments would be required to fully address the role of TNFSF14 on
pathogen resistance and tolerance in the context of co-infection beyond the lung-

confined effect on TR-AM survival.
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Post-influenza TNFSF14-induced TR-AM death was cell-specific, with no significant
differences in other leukocytes (except neutrophils on day 3 pi) or in endothelial,
mesenchymal, or epithelial cells between wt and Tnfsf147 " mice. TNFSF14 treatment
did not worsen virus-induced death in alveolar epithelial cells, suggesting TNFSF14 is
not a strong driver of post-influenza distal epithelial cell apoptosis. We identified
neutrophils as the main leukocyte source of TNFSF14, which is in accordance with
previously published data (68, 69). TNFSF14 has been shown to play an instrumental
role in NK and T cell activation and expansion (11, 17, 70) and DC maturation (71) and
may thus serve as an intermediate between the acute and adaptive immune response.
Aberrant release due to dysregulated neutrophil activation could offer an alternative
explanation for the abundant TNFSF14 presence upon severe infection. This is in
accordance with literature, as high circulating or organ-specific TNFSF14 levels have
been positively correlated with highly inflammatory states (13, 15, 72-74) and blocking
of the ligand was shown to limit inflammation and attenuate organ injury (75).

TNFRSF14 and LTbR, the two competitor TNFSF14 receptors, followed distinct
kinetics in terms of transcriptional regulation and protein expression in TR-AMs during
the infection course. Attenuated TR-AM loss after IAV infection of Ltbr/- mice,
compared to Tnfrsfl47- mice, and improved survival after intrapulmonary transfer of
Ltbr’- TR-AMs to co-infected wt mice, demonstrated a stronger impact on TR-AM death
for LTbR. Given the more prominent TR-AM preservation in Tnfsf14/- mice compared
to Ltbr’- mice, we hypothesize that cell death could also be initiated through ligation of
TNFSF14 to TNFRSF14, potentially through activation of a co-receptor, as TNFRSF14
lacks a pro-death domain (10, 76). It should be noted, however, that engagement of
LTbR by TNFSF14 on macrophages is not merely confined to apoptosis induction.
Transforming growth factor-beta (TGF-B) can be secreted upon crosslinking (77),

which has been shown to drive an immunoparalysis state in the aftermath of infection,
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further enhancing secondary infection susceptibility (78). LTbR-TNFSF14 interaction
on the endothelium alters microvasculature structure, which can in turn favor the
recruitment of immune cells (79). The intricate nature of TNFSF14-TNFRSF14/LTbR
interactions thus points at a multitude of potential roles for the signaling axis in the
context of influenza, besides TR-AM depletion. Nevertheless, with clinical trials in the
context of virus-induced pneumonia and systemic inflammation already revealing
beneficial safety profiles (63, 80, 81), therapeutic interventions disrupting TNFSF14-
initiated intercellular pathways to preserve TR-AM function appear as promising

approaches for improving host defense in the context of IAV pneumonia.
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Methods

Sex as a biological variable. Sex was not considered as a biological variable for patient
samples. Both male and female mice were used for all studies.

Mice. Wt C57BL/6 mice were purchased from Charles River Laboratories. Tnfsf14-
(82), Tnfrsf14--(83), and Ltbr”/- (84) mice were a gift from Prof. Klaus Pfeffer (Heinrich
Heine University Disseldorf, Diisseldorf, Germany). Tnfsf10-- (85) mice were obtained
from AMGen. All mice were bred under specific-pathogen-free conditions (SPF) and
infected at 10-12 weeks of age.

In vivo infection. For in vivo IAV infection experiments, mice were orotracheally
inoculated with 250-1000ffu of A/Puerto Rico/8/1934 (PR8, H1N1) influenza virus.
Control groups were inoculated with sterile PBS”-. For co-infection experiments, mice
were i.n. infected with 20cfu Spn [serotype 3, strain PN36 (NCTC 7978), provided by
the group of M. Witzenrath, Department of Infectious Diseases and Pulmonary
Medicine, Charité, University Medicine Berlin, Berlin, Germany] 7 days after 1AV
infection.

In vivo treatment. For apoptosis inhibition, wt mice were infected with 500ffu (day 7
experiments) or 1000ffu 1AV (day 3 experiments) and treated with s.c. injections of
10mg/kg of a specific caspase-8 inhibitor (Z-IETD-FMK, R&D Systems), or a DMSO
control. For day 3 experiments, treatment involved a single injection on day 2 pi,
whereas daily injections were applied days 2-6 pi for analysis on day 7 pi. Neutrophil
depletion was performed through the i.p. application of 200ug anti-1A8 antibody
(InVivoPlus rat anti-mouse Ly6G, cat. BP0075-1, BioXCell) or an anti-2A3 isotype
control (InVivoPlus™ rat IgG2a isotype control, anti-trinitrophenol, cat. BP0089,
BioXCell) diluted in sterile PBS in mice infected with 500ffu IAV on days -1, 1, 3, and
5 pi. TNFSF14 neutralization was achieved with a mouse anti-mouse LIGHT blocking

antibody (clone 3D11, 1gG2b, k, isotype control mouse IgG2b, clone 27-35,
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BioLegend), kindly provided by Prof. José Ignacio Rodriguez Barbosa and Prof. Maria-
Luisa del Rio (INBIOMIC, University of Ledn, Ledn, Spain). A single i.p. injection of
500ug of antibody or isotype control was performed two days after IAV infection with
500ffu. For in vivo treatment with rTNFSF14, 10ug of carrier-free mouse rTNFSF14
(cat. 1794-LT, R&D Systems) diluted in 0.03mL PBS”- were orotracheally administered
to IAV-infected mice on days 1 and 2 pi for analysis on day 3 pi.

Adoptive TR-AM transfer. Murine TR-AM were obtained from the BALF of naive wt,
Tnfrsfl47, and Ltbr’- mice, as previously described (25). Adoptive transfer of 400,000
TR-AM per mouse was performed on day 3 after infection of wt mice with 250ffu IAV,
with an engraftment efficiency of 14-20% calculated 24h later, at a time point where
over 70% of the original TR-AM pool was still detectable in the BALF of infected mice
(data not shown). Secondary pneumococcal infection was performed four days later.
TR-AM isolation and cell culture for ex vivo treatment. Following BALF extraction from
naive mice, cells were resuspended in full TR-AM medium (RPMI-1640/2% fetal
bovine serum (FBS)/2.5% HEPES/1% L-glutamine/1% penicillin/streptomycin). TR-
AMs were seeded at a density of 10-50,000 cells/well on a 96-well plate.

Colorimetric viability assay for ex vivo treated TR-AMs. Primary TR-AMs isolated from
the BALF of naive wt mice and BALF TR-AMs from control patients who underwent
routine bronchoscopy for diagnostic purposes and revealed normal BALF cellularity
were treated with 0.1mL TR-AM medium containing 10% iBALF or rTNFSF14 for 24h.
For caspase inhibition experiments, cells were pre-incubated in 50uM of a specific
caspase-3 (Z-DEVD-FMK, cat. FMK004, R&D Systems) or caspase-8 inhibitor (Z-
IETD-FMK, cat. FMK007, R&D Systems) for 3h prior to BALF treatment. Viability was
assessed via colorimetric assay (Cell Counting Kit-8, cat. 96992, Sigma Aldrich), as
per the manufacturer’s instructions, and was considered proportional to the measured

light absorbance. Absorbance was measured in an iMark microplate reader (Bio-Rad).
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Caspase-3/7 and caspase-8 activity. Wt, Tnfrsf147, and Ltbr- BALF TR-AMs were
treated with 0.1mL TR-AM medium containing 10% day O or day 7 iBALF from wt or
Tnfsf147 mice for 24h. Lyophilized Caspase-Glo® 3/7 or Caspase-Glo® 8 substrate
(Promega) was resuspended in 10mL luciferase-containing Caspase-Glo® buffer
(Promega) and added & 0.1mL/well to the cells. After 1h incubation at RT, cells were
transferred to a black 96-well plate for luminescence detection using a 520/25 filter in
an FLx800 fluorescence reader (BioTek Instruments). For ligand blocking experiments,
IBALF had been previously incubated with 1ug/mL of the mouse anti-mouse TNFSF14
antibody or an isotype control for 1h at 4°C prior to iBALF treatment. For TNFSF14
receptor blocking experiments, TR-AMs were pretreated with 1pug/mL for 1h at 37°C,
COg, prior to IBALF treatment, to achieve receptor saturation. Antibodies included
Armenian hamster anti-mouse anti-TNFRSF14 (CD270 (HVEM) monoclonal antibody,
LH1, functional grade, cat. 16-5962-85, eBioscience™), Armenian hamster anti-mouse
isotype control (cat. 16-4888-85, eBioscience™), rat anti-mouse anti-LTbR (clone 4H8-
WH2, developed by the laboratory of Dr. Carl F. Ware, marketed by AdipoGen Life
Sciences, and kindly provided by Prof. José Ignacio Rodriguez Barbosa and Prof.
Maria-Luisa del Rio, University of Ledn, Spain), and rat anti-mouse 1gG2a isotype
control (cat. AG-35B-0002-C050, AdipoGen). To dissect the roles of soluble and
transmembrane TNFSF14 on TR-AM apoptosis, flow-sorted day 3 TR-AMs were either
treated with iBALF or co-cultured with neutrophils at a 1:5 ratio for 24h. Marimastat
(cat. M2699, Sigma-Aldrich) was added at a concentration of 10uM to prevent
TNFSF14 shedding.

Spn load after in vivo infection. Two days after IAV infection and 6-72h after Spn
infection, BALF, lungs, and spleens from co-infected mice were harvested and
homogenized. A series of inoculum dilutions in NaCl was prepared for each sample in

1:10 dilution steps. For each dilution step, 4 x 0.01mL inoculum were pipetted on a
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blood agar plate and stored at 37°C overnight. Bacterial load was calculated by
counting the average number of separately grown colonies, multiplied by 1Qnumber of
dilution step*100 (= number of colonies in 1mL).

Ex vivo phagocytosis and killing assay. Wt and Ltbr’- naive BALF TR-AMs were
isolated as previously described. Cells were seeded & 100,000 cells/well on a 96-well
round-bottom plate and ex vivo infected with Spn at an multiplicity of infection (MOI)
1000 for 10min (37°C). Cells were vigorously washed 5 times in ice-cold PBS to
remove any extracellular bacteria and lysed in water. An inoculum dilution series of cell
lysates was pipetted on blood agar plates as described above. Total colony count on
the following day depicted phagocytosed bacteria. For flow cytometry-based
comparison of day 8 TR-AMs and BMDM Spn uptake and killing, 100,000 cells of whole
BALF cell samples were ex vivo infected with Spn at an MOI 100 for 10min (t0). Cells
were washed three times with ice-cold PBS and were either fixed and permeabilized
using the eBioscience™ Foxp3/Transcription Factor Staining Buffer Set (cat. 00-5523-
00, Invitrogen), as per the manufacturer’s instructions, or returned to the incubator for
an additional 30min (t1) in sterile medium, after which the same procedure was
performed. Staining was performed in two steps, starting with an anti-Spn antibody
(rabbit, cat. PA17259, Invitrogen) or a rabbit IgG isotype control (cat. ab172730,
abcam) at a concentration of 40ug/mL for 1h at RT, followed by leukocyte surface
staining containing a secondary donkey anti-rabbit IgG (H+L) Alexa Fluor™ 555
antibody (cat. A-31572, Invitrogen). Non-infected samples were used as
autofluorescence controls. Phagocytosis capacity was reflected in the percentage of
Spn+ cells at (t0), kiling capacity at (t1) was determined for each macrophage
population as follows: percent killing = 100 - [(%Spn+ cells at t1/%Spn+ cells at t0) x

100].
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RT2 Profiler PCR Arrays. RT? profiler PCR arrays (Qiagen) were used for pathway or
group gene expression analysis of flow-sorted TR-AMs. RNA isolation, genomic DNA
elimination, reverse transcription, cDNA synthesis, and qPCR were performed
according to the manufacturer’s instructions. In samples with low RNA amount (<1ug),
a pre-amplification of cDNA targets preceded gPCR by addition of a PCR master mix
(RT? PreAMP PCR Mastermix, Qiagen) and a species- and pathway-specific primer
mix (PBM-063Z-RT? PreAMP cDNA Synthesis Primer Mix for Mouse TNF Ligands and
Receptors, PBM-212Z - RT?2 PreAMP cDNA Synthesis Primer Mix for Mouse Cell
Death PathwayFinder™, cat.330241, Qiagen) to the cDNA samples. PCR components
were added to the 96-well plate format provided by the company (PAMM-063ZC-24-
RT? Profiler™ PCR Array Mouse TNF Signaling Pathway, PAMM-212ZC-12-RT?
Profiler™ PCR Array Mouse Cell Death PathwayFinder, cat. 330231, Qiagen). Real-
time PCR was performed in the StepOnePlus™ Real-Time PCR System and in the
QuantStudio™ 3 Real-Time PCR System (Applied Biosystems™). Data analysis was
performed with the company’s web-based data analysis software (GeneGlobe Data
Analysis Center, Qiagen). A detailed description of the data statistical interpretation
can be found in the “"Supplemental methods” document.

Single-cell RNA sequencing. To identify the main leukocyte TNFSF14 source, 500,000
live leukocytes (gated as Sytox- CD45+) from the homogenized single-cell lung
suspensions of IAV-infected mice on day 3 and 7pi were sorted into 0.35uL 0.04%
BSA/PBS. Following viability control, 10,000 cells were loaded onto Chromium Chip
B (10X Genomics). Gel beads in emulsion (GEM) generation, cDNA synthesis and
amplification, and library preparation were performed with the Chromium Single Cell 3’
Reagent Kit v3.1 (10X Genomics), as per the manufacturer’s protocol. Indexed libraries
were sequenced on an lllumina NextSeq2000. Prior to analysis, reads were aligned

against the mouse genome (GRCm38.p6) and quantified using StarSolo
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(https://github.com/alexdobin/STAR). Analysis was conducted with the Scanpy
software (https://github.com/theislab/scanpy). After quality filtering, raw cell counts
were normalized to the median count over all cells and transformed into log space for
variance stabilization. Principal component analysis (PCA) identified 14 and 11
components on days 3 and 7 pi, respectively. Uniform Manifold Approximation and
Projection (UMAP) embedding was created to identify cell type clusters through Leiden
clustering. Doublet analysis was conducted on day 7 using Scrublet
(https://github.com/swolock/scrublet), leading to the removal of a doublet cluster (118
cells).

Statistics. Data are shown in scatterplots as single data points. Means + SEM per group
are indicated by bars and error bars. Statistical significance between two groups was
calculated using 2-tailed Student's t-test. For comparison between more than two groups,
significance was determined by 1-way ANOVA, 2-way ANOVA with Tukey’s posthoc test,
or by Kruskal-Wallis test followed by Dunn’s post hoc comparison test. Survival curves
were compared by log-rank (Mantel-Cox) test. P<0.05 was considered as significant. *P <
0.05; *P < 0.01; **P < 0.005. Graphs were prepared using GraphPad Prism (GraphPad
Software version 10.2.3).

Study approval. Animal experiments were approved by the regional authorities of the
State of Hesse (Regierungspraesidium Giessen, Germany) and by the Institutional
Ethics Committee at the IBioBA Institute (Buenos Aires, Argentina). Use of human
BALF samples was approved by the University of Giessen Ethics Committee, samples
were provided by the biobank of the German Center for Lung Research (DZL). Written
informed consent was received prior to sample use.

Data availability. Data supporting the findings of this study are available within the
article and its supplemental material. Values for all data points in graphs are reported

in the Supporting Data Values file. SCRNA-Seq data can be accessed under the GEO
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https://www.jci.org/articles/view/160517#sd

581 accession number GSE273805

582  (https://'www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE273805).
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823 Figure 1. IAV infection increases susceptibility to secondary pneumococcal
824  infection. (A) Schematic representation of the co-infection model, with pneumococcal
825 infection taking place 7 days after IAV infection. (B-C) Survival (B) and weight loss (C)

39



826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844

after IAV/Spn co-infection of wt mice (n=6-8, data pooled from five independent
experiments). (D-G) Representative histological images of mock-infected (D), Spn-
infected (E), IAV-infected (F), or mice infected with 1AV 7 days prior to Spn infection
(G), lungs harvested ten days after IAV infection. Scale bar set at 100um, data pooled
from two independent experiments. (H) Bacterial load in the BALF of IAV- or mock-
infected mice nine days after IAV infection and 48h after Spn infection (mean + SEM,
n=6-9, data representative of three independent experiments). (I) Leukocyte
populations including neutrophils (n=7-9), BMDM (n=8-9), NK cells (n=7-9), T cells
(n=3-9), NK1.1* NKT cells (n=3-9), and B cells (n=5-9), in the BALF of IAV-infected
mice 0-14 days pi (mean £ SEM, data pooled from sixteen independent experiments).
(J) TR-AM population during the 1AV infection course (means = SEM, n=3-10, data
pooled from six independent experiments). (K) BALF bacterial load 6-72h after
pneumococcal superinfection performed seven days post-lIAV infection (mean + SEM,
n=3-9 per time point, data pooled from three independent experiments). (L-M) Spn
phagocytosis capacity (L) depicted as %Spn+ cells 10min (t0) after infection and killing
capacity (M, % killing at t1 over t0) for day 8 TR-AMs and BMDM, n=5, data
representative of three independent experiments. Significance was determined by log-
rank (Mantel-Cox) test, unpaired 2-tailed t-test, and by 1-way ANOVA with Tukey’s
posthoc test; *p<0.05, *p<0.01, ***p <0.001, ***p <0.0001.
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represent means * SEM, n=9 per group, data pooled from three independent
experiments. (C-D) Caspase-3/7 (C) and caspase-8 activity (D) after iBALF TR-AM
treatment. Graphs represent means + SEM, n=7-8, data pooled from three
independent experiments, respectively. (E) Heat map depicting average fold changes
of cell death-related genes in flow-sorted, HA-negative, mock, day 3, and day 7 pi
BALF TR-AMs, n=3-7 per time point, data pooled from four independent experiments.
(F) Percentage of apoptotic TR-AMs on days 0, 3, and 7 pi (means = SEM, n=7-12,
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following naive TR-AM treatment with iBALF after 3h pre-treatment with 50uM of a
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experiments. (H) Experimental layout for caspase-8 inhibition in vivo experiments. (1)
Weight loss after IAV infection and caspase-8 inhibition, n=8-11, data pooled from six
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6, data pooled from two independent experiments). (L) BALF TR-AMs on day 7 pi after
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Tukey’s posthoc test; *p<0.05, **p<0.01, ***p <0.001, ****p <0.0001.
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with severe viral pneumonia (n=8-17 per group). Data pooled from three experiments.
(K) Caspase-3/7 activity after IBALF treatment of naive wt TR-AM, following anti-LTbR
or anti-TNFRSF14 blocking (n=15-28, data pooled from six experiments). (L) Caspase-
3/7 activity after iBALF treatment of naive wt, Tnfrsf14--, and Ltbr”- TR-AM (n=6-9, data
pooled from four experiments). (M) TR-AM numbers of wt, Tnfrsf14/- and Ltbr/- mice
on day 0 and 7 pi (n=5-13, data pooled from twelve experiments, wt controls including
values depicted in 1J). (N) Body weight of wt, Tnfsf14/-, and Ltbr’- mice over the IAV
infection course (n=5 per group, data pooled from three experiments). Graphs
represent means + SEM, significance determined by unpaired 2-tailed t-test, 1-way, 2-
way ANOVA with Tukey’s posthoc test, and Kruskal-Wallis test followed by Dunn’s
post hoc comparison test; *p<0.05, **p<0.01, ***p <0.001, ****p <0.0001.
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Figure 4. TNFSF14 treatment aggravates post-influenza TR-AM loss. (A)
Percentage of apoptotic cells within LTbR TNFRSF14- and LTbR* and/or TNFRSF14*
TR-AM subgroups on days 3 and 8 pi. Graphs represent means + SEM, n=8-10 per
group, data pooled from two independent experiments. (B-C) Cell survival proportional
to light absorbance after 24h treatment of murine (B) and human (C) TR-AMs with
different doses of ITNFSF14 and normalized to control samples. Graph represents
means + SEM, n=5-7. Data in (B) and (C) pooled from seven and four independent
experiments, respectively. (D) Caspase-3/7 activity after 24h TR-AM treatment with
500ng/ml rTNFSF14 (means * SEM, n=6-7, data pooled from six independent
experiments). (E) Schematics of rTNFSF14 application to IAV-infected mice days 1
and 2 pi with analysis performed on day 3 pi. (F) Percentage of live (annexin V- 7-AAD"
) and apoptotic (annexin V*7-AAD") TR-AMs (n=3) on day 3 pi after rTNFSF14
treatment, data representative of three different experiments. (G-H) Total BALF (n=6-
11, G) and lung-tissue TR-AMs (n=7-10, H) on day 3 pi after rTNFSF14 treatment,
compared to mock infection. Graphs represent means + SEM and data is pooled from
seven independent experiments. Significance was determined by 1-way or 2-way
ANOVA with Tukey’s posthoc test; *p<0.05, **p<0.01, ***p <0.001, ***p <0.0001.
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Figure 5. Post-influenza TR-AM loss can be prevented through directed targeting
of the TNFSF14 ligand. (A-B) BALF TR-AMs (A) and sessile lung TR-AMs (B) in wt
and Tnfsfl4”/- mice after IAV infection (means + SEM, n=8-12, data pooled from
seventeen different experiments, wt controls in (B) including values depicted in
Supplemental Figure 2A). (C-D) Heat maps depicting fold change of apoptosis-related
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genes on day 3 pi (C) and day 7 pi (D) over mock-infected wt and Tnfsf14/- TR-AMs,
n=3-5, data pooled from five different experiments. Wt data extracted from the data set
presented in Figure 2E. (E) Caspase-3/7 activity after TR-AM treatment with wt and
Tnfsfl4/ iBALF. Graph represents means + SEM, n=4 per condition, data
representative of three independent experiments. (F) Body weight of wt and Tnfsf14-
mice over the 1AV infection course. Graph represents means + SEM of weight at each
time point, n=12-13, data pooled from six independent experiments, wt controls
including data presented in Figure 3M). (G-H) BALF (G) and lung tissue (H) TR-AMs
on day 7 pi after anti-TNFSF14 treatment on day 2 pi. Graph represents means = SEM,
n=9-13, data pooled from four independent experiments. (I) Body weight of anti-
TNFSF14 and isotype-treated wt mice after IAV infection. Graph represents means *
SEM of weight at each time point, n=10-11, data pooled from four independent
experiments. (J) Caspase-3/7 activity after 24h iBALF treatment of anti-TNFSF14 pre-
treated naive TR-AMs. Data pooled from six independent experiments (means + SEM,
n=16). Significance was determined by unpaired 2-tailed t-test, 1-way, or 2-way
ANOVA with Tukey’s posthoc test; *p<0.05, **p<0.01, ***p <0.001, ***p <0.0001.
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Figure 6. Neutrophils are the main cellular

source of TNFSF14 during IAV

infection. (A) TNFSF14 expression on leukocytes, epithelial, endothelial cells, and
MC in the lungs of non-infected and day 7 mice, n=4-5, data pooled from two
independent experiments. (B) TNFSF14 expression in different lung regions of mock-
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and IAV-infected wt mice on day 7 pi (n=3-4, data representative of two independent
experiments). Scale bar set at 25um. (C) Serum TNFSF14 on days 0, 3, and 7 pi (n=3-
5, data pooled from three independent experiments). (D-E) Leukocyte scRNA-Seq
analysis on day 3 (D) and day 7 pi (E), n=4, data from two independent experiments.
Monocyte and neutrophil clusters on day 3 pi were characterized according to the gene
signature of the top 5 uniquely expressed genes per cluster. Dot plots depict Tnfsf14,
Ltbr, and Tnfrsf14 expression. (F) gPCR analysis for Tnfsf14 expression in blood and
BALF neutrophils (n=4, data pooled from two independent experiments). (G) gPCR
analysis for TNFSF14 expression in BALF neutrophils from patients with severe 1AV-
induced ARDS compared to non-lIAV controls (n=3-4). (H) TNFSF14 expression on
BALF leukocytes on day 3 pi and bone marrow-derived (BM) neutrophils from non-
infected mice, n=3-10, data pooled from two independent experiments. (I-J) gPCR
analysis in lung tissue, n=7-9 (I), and BALF ELISA, n=9-13 (J), for TNFSF14
expression on day 7 pi after neutrophil depletion. Data pooled from four and five
independent experiments, respectively. (K-L) BALF (K) and lung (L) TR-AMs on day
7 pi after neutrophil depletion (n=8, data pooled from four and five independent
experiments, respectively). Graphs represent means * SEM. Significance was
determined by unpaired 2-tailed t-test, 1-way, or 2-way ANOVA; *p<0.05, **p<0.01,
***n <0.001, ****p <0.0001.
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Figure 7. Severity of post-influenza pneumococcal pneumonia is attenuated in

the absence of TNFSF14. (A-B) Survival (A) and weight loss (B) after IAV/Spn co-

infection of wt and Tnfsf14”- mice (means + SEM, n=17-18, data pooled from five

different experiments). (C-D) Bacterial burden in the BALF (C) and in the lungs (D) of

wt and Tnfsf14/- mice 9 days after IAV infection and 48h after Spn infection (means +
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SEM, n=10, data pooled from eight independent experiments). (E) Total BALF TR-AM
numbers of wt and Tnfsf147- mice 9 days after IAV/ 48h after Spn infection (means +
SEM, n=7-8, data pooled from five different experiments). (F-G) Survival (F) and weight
loss (G) following IAV/Spn co-infection and TNFSF14 blocking on day 2 pi (means *
SEM, n=12-16, data pooled from five independent experiments). (H) Schematics of
experimental layout for IAV/Spn co-infection with adoptive transfer (a.t.) of naive wt,
Tnfrsfl47, or Ltbr”- TR-AMs on day 3 pi. (I) Survival of wt mice upon IAV/Spn co-
infection and TR-AM a.t. (means = SEM, n=4-12, data pooled from five independent
experiments). (J) Bacterial load in lysed wt and Ltbr’-naive TR-AMs after ex vivo Spn
infection (means + SEM, n=12, data pooled from four independent experiments).
Significance was determined by log-rank (Mantel-Cox) test, unpaired 2-tailed t-test, 1-
way and 2-way ANOVA with Tukey’s posthoc test; *p<0.05, **p<0.01. (K) Proposed
hypothesis: Severe IAV-induced pneumonia is characterized by massive leukocyte
recruitment, including neutrophils. Once in the alveoli, neutrophils start releasing
TNFSF14, which is sensed by TR-AMs through ligation to surfaced-expressed
receptors TNFRSF14 and LTbR, culminating in TR-AM death, which increases host
susceptibility to post-influenza pneumococcal pneumonia. AEC: alveolar epithelial
cells.
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Supplemental Figure 1. Gating strategy for the identification of different immune
cell populations in murine BALF (A) and lung tissue (B) per flow cytometry
analysis. Representative plots following multicolor staining of BALF and lung-tissue
immune cells, as described in the “Supplemental Methods” document. Gating
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993 strategies were set according to the appropriate isotype and fluorescence minus one
994  (FMO) controls.
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Supplemental Figure 2. Immune cell kinetics in the lung tissue of IAV-infected

mice over the infection course. Following BALF extraction, lungs of wild-type mice

infected with 500ffu IAV were harvested at different time points. Immune cell

populations were identified per flow cytometry analysis, including sessile TR-AMs

(n=6-11) (A), neutrophils (n=5-10) (B), BMDM (n=5-10) (C), T cells (n=4-10) (D), B
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cells (n=3-7) (E), CD11b resident DCs, (n=6-7) (F), eosinophils (n=6-7) (G), NK cells
(n=5-10) (H), CD11b* DCs (n=6-7) (I), pDCs (n=6-7) (J), IM (n=6-7) (K), NK1.1* NKT
cells (n=5-10) (L), and Ly6C- resident monocytes (n=6-7) (M). Data shown pooled from
nine independent experiments, mean + SEM is depicted. Significance was determined
by 1-way ANOVA with Tukey’'s posthoc test; *p<0.05, **p<0.01, ***p <0.001,
****p <0.0001. (p)DCs: (plasmacytoid) dendritic cells, IM: interstitial macrophages, NK:
natural killer.
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Supplemental Figure 3. TR-AM apoptosis can be attenuated through the use of
a caspase inhibitor. (A) Gating strategy for the quantification of apoptotic TR-AMs in
the BALF of IAV-infected mice on days 0, 3, and 7 pi. (B-C) TR-AM viability following
treatment with 0.5uM staurosporine and different doses of a caspase-3 (B) or a
caspase-8 (C) inhibitor, values depicted as % survival of control. DMSO-treated cells
set at 100%. Graphs represent means + SEM, n=4 per condition. Data pooled from
three independent experiments. Significance was determined by 2-way ANOVA with
Tukey'’s posthoc test; *p<0.05.
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Supplemental Figure 4. TNFSF14 orchestrates post-influenza TR-AM apoptosis
in a cell-specific manner. (A-B) TNFSF14 receptor- positive cells as percentage of
all BALF TR-AMs on day 3 pi (A) and percentage of apoptotic TR-AMs based on
TNFSF14 receptor expression at the same time point (B). Graphs represent means +
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SEM, n=8 per group, data poled from two independent experiments. (C) Percentage
of live transwell-seeded AEC after 24h 1AV infection and treatment with rTNFSF14.
Graphs represent means = SEM, n=9 per group, data pooled from two independent
experiments. (D-G) Immunofluorescence analysis revealing a basolateral LTbR
expression (D,F) and a non-preferential, cytoplasmic TNFRSF14 expression (E,G) on
epithelial cells on days 0 (D-E) and 7 pi (F-G). Scale bar for smaller panels set at 5um,
for larger panels set at 10um (D-E) or 20um (F-G). Data representative of three
independent experiments. (H-I) SDS-PAGE (H) and blue native PAGE () for TNFSF14
in naive and day 3 BALF samples with mouse rTNFSF14 (rmTNFSF14) as a positive
control, demonstrating a single band at 26kDa upon denaturation. Under naive
conditions TNFSF14 appeared around 80kDa, reflecting the presence of the
homotrimer in the BALF. Data representative of three independent experiments.
Graphs represent means = SEM, n=6-8. Data pooled from three independent
experiments. Significance was determined by unpaired 2-tailed t-test and two-way
ANOVA,; ***p <0.001, ****p <0.0001.
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Supplemental Figure 5. Lack of TNFSF14 attenuates TR-AM death without
heavily affecting other cell population kinetics. (A-E) BALF neutrophils (A), BMDM
(B), NK cells (C), NK1.1* NKT cells (D), and T cells (E) on day 3 pi after rTNFSF14
treatment on days 1 and 2, n=9-11, means +* SEM, data pooled from three independent
experiments. (F) Quantification of TR-AM numbers in the BALF of IAV-infected
Tnfsf107- mice on day 7 pi (means + SEM, n=5-6, data pooled from three independent
experiments). (G-J) Heat maps depicting fold change of necrosis- (G-H) and
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autophagy-related (I-J) genes on day 3 pi (G, I) and day 7 pi (H, J) over mock-infected
wt and Tnfsf14”/- TR-AMs, n=3-5, data from five independent experiments. Wt data
extracted from the data set presented in Figure 2E. (K) Viral titers in the BALF of wt
and Tnfsfl4/- mice on day 3 pi (means + SEM, n=4, data representative of three
independent experiments). (L-N) Lung epithelial (EpCAM* L), endothelial (CD31+, M),
and mesenchymal cells (MC, N) of wt and Tnfsf14”- mice after IAV infection (means +
SEM, n=4-10, data pooled from ten independent experiments). (O-S) Immune cell
populations in the BALF of wt and Tnfsf14-/-mice, including neutrophils (O), BMDM (P),
NK cells (Q), NK1.1* NKT cells (R), and T cells (S). Graphs represent means + SEM,
n=5-13, data pooled from fourteen independent experiments, wt controls including data
presented in Figure 1l. Significance was determined by unpaired 2-tailed t-test and 2-
way ANOVA with Tukey’s posthoc test; *p<0.05, **p<0.01, **p <0.001, ****p <0.0001.
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Supplemental Figure 6. Neutrophil depletion attenuates weight loss without

affecting leukocyte influx after 1AV infection. (A) Caspase-3/7 activation after

treatment of day 3 TR-AMs with iBALF or co-culture with neutrophils plus a

metalloproteinase inhibitor, n=6-9, data pooled from three independent experiments.

(B-E) Neutrophils depicted as percentage of total leukocyte numbers after neutrophil
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depletion, in the blood (B), spleen (C), BALF (D), and lungs (E) of IAV-infected mice
on day 7 pi (means = SEM, n=5-8, data pooled from two independent experiments).
(F) Body weight as percentage of initial weight after IAV infection and neutrophil
depletion, n=7-11, data pooled from four independent experiments. (G-K) BALF
immune populations on day 7 pi after neutrophil depletion, including BMDM, (G), NK
cells (H), NK1.1* NKT cells (I), T cells (J), and B cells (K). Graphs represent means *
SEM, n=5-8, data from two independent experiments. Significance was determined by
unpaired 2-tailed t-test for two groups, including the AUC between the two treatment
groups for (F); *p<0.05, **p<0.01, **p <0.001, ****p <0.0001.
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Supplemental Figure 7. Loss of TNFSF14 does not impact neutrophil influx,
spleen bacterial burden, or TR-AM phagocytosis capacity after IAV/Spn co-
infection. (A) Spn burden in the spleens of wt and Tnfsf14/- mice 9 days after IAV
infection and 48h after Spn infection (means + SEM, n=10, data pooled from eight
different experiments). (B) Neutrophils depicted as percentage of total live cells in the
BALF of wt and Tnfsf147 mice at the same time point (means + SEM, n=7-8, data
pooled from five independent experiments). (C-D) Phagocytosis capacity of wt and
Tnfsf14/-day 7 TR-AMs depicted as FITC signal normalized to non-infected TR-AMs
(C) and percentage of FITC+ TR-AMs (phagocytic cells, D), following ex vivo
incubation with pHrodo™ Green Escherichia coli BioParticles™ (means + SEM, n=3-
4, data representative of three independent experiments). Significance was
determined by unpaired 2-tailed t-test.
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