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Introduction: CHIP as an epic journey
Like the lengthy epic tales of the Greek poet Homer, clonal 
hematopoiesis of indeterminate potential (CHIP) is postu-
lated to be the culmination of years, if not a lifetime, of clonal 
selection for mutant hematopoietic stem and progenitor cells 
(HSPCs) in the BM microenvironment. The most common CHIP 
mutations include loss-of-function mutations in epigenetic mod-
ifiers (DNMT3A, TET2, and ASXL1), splicing factor (SF) genes 
(U2AF1, SRSF2, SF3B1), and DNA damage–response (DDR) 
genes (PPM1D and TP53) as well as gain-of-function mutations 
in JAK2, among others (1–4). Although CHIP is defined by the 
absence of hematologic malignancy, such as myeloproliferative 
neoplasms (MPN), myelodysplastic syndrome (MDS), or acute 
myeloid leukemia (AML) (5), its association with myriad disease 
pathologies underscores its importance in contemporary hema-
tology research. CHIP is strongly associated with older age, with 
around 15% of individuals over 75 exhibiting overrepresenta-
tion of CHIP mutations (1). CHIP is likewise associated with an 
increased risk for several aging-associated diseases, including 
solid cancers, heme malignancies, a variety of heart and lung 
conditions, and all-cause mortality (1, 6–14). Given the propor-
tion of CHIP-associated diseases and diversity of mutations that 
drive CHIP, a key focus of the field has been understanding both 
intrinsic advantages of HSPCs harboring CHIP mutations and 
extrinsic BM niche changes with age, environmental exposures, 
infection, and other lifestyle factors that facilitate mutant HSPC 
competitiveness and expansion (15).

The hematopoietic niche was initially defined in 1978 as 
“the stem cell in association with other cells which determine its 
behavior” (16). Since then, decades of research have identified 
critical functions and cellular constituents of the BM niche that 
regulate hematopoiesis. The adult BM niche is predominantly 
localized to trabecular bone and is composed of a variety of cell 
types that support long-term hematopoietic stem cell (HSC) func-
tion, including endothelial cells, mesenchymal stem/stromal 
cells (MSC), osteolineage cells, and adipocytes (Figure 1). Many 
hematopoietic populations also contribute to HSC maintenance, 
including megakaryocytes, lymphocytes, and macrophages. The 
BM is highly vascularized and innervated with sympathetic and 
parasympathetic nerve fibers, providing a conduit of cytokine, 
chemokine, and endocrine signaling that regulates HSC activity 
in response to homeostatic cellular turnover, circadian cues, acute 
physiological needs for hematopoietic replenishment, and immu-
nological “danger” signals associated with host defense and tis-
sue-repair mechanisms (17–19). HSCs within the adult BM niche 
are primarily housed in perivascular beds (20), which can be sub-
divided into sinusoidal and arteriolar regions (21, 22). This spatial 
organization may be important in regulating quiescence versus 
cell-cycle activation in HSC, as sinusoidal perivascular beds could 
provide more exposure to nutrients, cytokines, and oxygen to sup-
port HSC cell-cycle activity (21, 22). However, others have shown 
quiescent stem cells localized proximal to sinusoids (23). While 
the exact structure of the BM niche and the organization of HSCs 
within these structures remains a matter of debate, many key cel-
lular components have been identified based on cell type–specific 
gene knockouts and functional studies. For instance, HSCs inter-
act extensively with leptin receptor–expressing (LepR+) MSCs, 
which promote HSC localization and maintenance in the BM 
through production of CXCL12 and stem cell factor (SCF). The 
complete array and role(s) of BM niche cell types is a topic exten-
sively reviewed elsewhere (24, 25).

Clonal hematopoiesis of indeterminate potential (CHIP) is characterized by the selective expansion of hematopoietic stem 
and progenitor cells (HSPCs) carrying somatic mutations. While CHIP is typically asymptomatic, it has garnered substantial 
attention due to its association with the pathogenesis of multiple disease conditions, including cardiovascular disease 
(CVD) and hematological malignancies. In this Review, we will discuss seminal and recent studies that have advanced our 
understanding of mechanisms that drive selection for mutant HSPCs in the BM niche. Next, we will address recent studies 
evaluating potential relationships between the clonal dynamics of CHIP and hematopoietic development across the lifespan. 
Next, we will examine the roles of systemic factors that can influence hematopoietic stem cell (HSC) fitness, including 
inflammation, and exposures to cytotoxic agents in driving selection for CHIP clones. Furthermore, we will consider how — 
through their impact on the BM niche — lifestyle factors, including diet, exercise, and psychosocial stressors, might contribute 
to the process of somatic evolution in the BM that culminates in CHIP. Finally, we will review the role of old age as a major 
driver of selection in CHIP.
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development, potentially during fetal life. Although the topic 
is more comprehensively reviewed elsewhere (17, 27), we will 
briefly summarize our current understanding of hematopoietic 
development to provide context for addressing current gaps in 
knowledge. In mammals, definitive HSCs (defined as function-
ally capable of reconstituting the entire hematopoietic system) 
first arise during fetal development from a region of the embry-
onic mesoderm called the aorta-gonad-mesonephros (AGM) 
(28). In parallel with definitive HSCs, a transient population of 
fetal HSCs (termed developmentally restricted HSCs [drHSCs]) 
and an embryonic multipotent progenitor (eMPP) population 
arise, which are responsible for early life blood production, lim-
ited adult multilineage output, and lifelong lymphoid output 
(29, 30). Contrary to previous dogma, definitive HSC expansion 
occurs after BM colonization, while drHSC/eMPP expansion 
occurs in the fetal liver (29, 31). BM colonization is accompa-
nied by BM ossification and vascularization, thereby giving rise 
to the foundational BM niche (17, 32). Concomitant with phases 
of HSC expansion, some evidence suggests that mutations can 
arise during fetal development. By reconstructing hematopoietic 
phylogenies using whole-genome sequencing of 12 MPN patients, 
one study reported DNMT3A and JAK2V617F mutations arising as 
early as 8 and 33 weeks of gestation, respectively (33). Moreover, 
a retrospective cohort study of the UK Biobank reported an asso-
ciation between abnormal birth weight, both low and high, and 
CHIP incidence, with a particular association (OR, 1.04 per 1 kg 

Dysregulation of the cellular composition and/or biophysical 
properties of the niche, due to systemic changes such as aging, 
chronic inflammation, metabolic imbalance, or environmental 
exposure, can affect the functional properties of HSCs, thereby 
establishing conditions that may promote clonal selection. This 
Review will summarize our current understanding of how these 
factors directly affect CHIP development and progression, with 
key studies summarized in Table 1. We will integrate these studies 
with the spectrum of lifestyle factors and CHIP-associated disease 
risks, highlighting current gaps in knowledge and opportunities 
for further study.

CHIP and hematopoietic development: where 
does the journey begin?
When CHIP clones emerge remains a critical open question. 
Like Homer’s epic Odyssey, our understanding of CHIP begins 
in medias res — somewhere in the middle of the chain of events. 
Sequencing studies have identified rare HSPC clones harboring 
CHIP mutations in most individuals aged 50–60, with longitu-
dinal stability and presence in multiple hematopoietic lineages. 
These data suggest that initiation of mutant clones occurs much 
earlier in life (26). Indeed, it is reasonable to assume that any 
given mutation occurs with similar probability throughout life in 
concordance with physiological rates of mutation accumulation. 
Hence, while CHIP is associated with aging, mutant HSPC clones 
may trace their origins to a much earlier point in hematopoietic  

Figure 1. Changes to the BM niche with aging, metabolic imbalance, and/or chronic stress can promote CHIP. The BM niche is composed of multiple 
cell types that support long-term HSC function. Aging, metabolic imbalance, and chronic stress can result in changes to the BM niche that impair HSPC 
fitness in a way that could lead to the selection for mutant HSPCs and the eventual clonal outgrowth of mature blood cells associated with CHIP. This 
includes changes to the MSCs and increased inflammation and adipose tissue, together with reduced BM mineral density. Other changes with aging 
that are not depicted here include the loss of osteolineage cells, reduced innate and adaptive immunity, and phenotypic changes in HSPCs and their 
more mature progeny.
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with therapy-related MPNs (t-MN) and treatment-induced clon-
al hematopoiesis (t-CH) (43–45). TP53 mutations also contribute 
to increased risk of heart failure in cancer survivors (46). Loss of 
Trp53 in mouse HSPCs promotes maintenance of stem cell poten-
tial and fitness following γ irradiation (47–49), leading to potent 
selection for Trp53-mutant HSPCs. Although the potential mech-
anisms underlying TP53-mutant HSPC expansion have not been 
fully clarified, p53 plays important roles in regulating HSC quies-
cence, self-renewal, and proliferation (47, 49–51).

TP53 mutations account for 40% of t-MN cases (44), likely 
due to t-MN’s association with a myriad of cytotoxic agents (38), 
while PPM1D gain-of-function mutations account for roughly 
20% of non–TP53-mutant t-MN cases (52) and are driven pri-
marily by platinum-based chemotherapies (38, 52–54). Interest-
ingly, PPM1D-mutant HSPCs harbor gain-of-function truncat-
ing mutations at exon 6 that induce constitutive PPM1D protein 
expression, desensitizing these mutant HSPCs to DDR-induced 
apoptosis (52–54). Crosstalk occurs between PPM1D and p53, in 
which PPM1D is transcriptionally upregulated by p53. PPM1D in 
turn suppresses various DDR proteins, including p53 (55, 56). A 
recent murine study revealed the importance of this synergy in 
myeloid malignancy, as resistance to PPM1D inhibitors is driv-
en by p53 inactivation (57). Moreover, genetic ablation of Ppm1d 
reduced HSC competition and serial replating capacity, suggest-
ing its involvement in promoting HSC fitness (57). While its role 
in normal HSCs could portend toxicity issues, ablating Ppm1d 
sensitized MLL-AF9–expressing leukemia cells to cisplatin treat-
ment, suggesting its therapeutic relevance in myeloid malignancy 

increase) between DNMT3A CHIP and higher birth weight (34). 
Although these studies showcase great strides in improved detec-
tion of rare mutant HSPC clones that allow us to infer potential 
origins for CHIP-associated mutations, more work is required to 
precisely identify when CHIP mutations, and the processes that 
select for them, occur in an individual’s life.

Genotoxins and inflammation: the BM’s Scylla 
and Charybdis
Much like the two sea monsters Odysseus must navigate between, 
the BM must navigate cellular stresses that can severely impair 
hematopoietic function and potentially select for mutant HSPCs 
(35). We will begin our discussion with the well-characterized 
contributions of genotoxic agents, such as chemotherapeutics 
and other factors influencing mutation-driven clonal expansions 
in HSPC pools.

Cytotoxic agents. Cytotoxic agents, such as chemotherapeutics 
and radiation, are commonly employed to (somewhat) selectively 
eliminate malignant cells by eliciting DNA damage or impairing 
key cellular functions, such as DNA replication, transcription, and 
damage repair, or by inducing metabolic stress (36). Cytotoxic 
drugs are also employed as myeloablative agents in the setting of 
HSC transplantation (36, 37). In either case, cytotoxic agents are 
often inciting stimuli for expansion of HSPCs harboring muta-
tions in DDR genes, such as in TP53 and PPM1D, which confer 
resistance to DNA-damaging insults (38–40). Moreover, cytotoxic 
drugs may affect the niche in ways that promote MSC and HSC 
senescence (41, 42). TP53 mutations are most highly associated 

Table 1. BM niche changes and associated CHIP phenotypes

Context Niche changes Associated CHIP  
mutation

Associated mouse models Associated  
disease risk

References

Cytotoxic treatments Induction of MSC senescence; acute BM 
injury (mature cell destruction); long-term 
BM injury (HSC senescence); sympathetic 

nerve damage in BM

TP53 HUPKI; p53R248W/+; germline p53–/–; 
germline p53+/–

CVD, t-MN, CHIP (38, 44, 46, 163)

PPM1D Constitutive active truncation mutant CVD, t-MN/CHIP (38, 52, 54, 164)
NA (WT) Drug-treatment model (59)

Inflammation Elevated inflammatory cytokines  
(IL-1, IL-6, TNF, IFN)

JAK2V617F SclCreER:JAK2V617F (inducible knockout) AML, MPN, CVD, PMF (85–87, 165)
TET2 Germline Tet2+/–; SclCreER/Vav-Cre:Tet2fl/+ 

(inducible heterozygote)
AML, MPN, CVD, gout,  

diabetes
(13, 66, 67, 69,  

70, 166)
DNMT3AR882H Dnmt3aR878H AML, MPN, CVD (76, 77, 116, 145)

Sleep disruption Elevated inflammatory cytokines  
(IL-1, IL-6, TNF, IFN)

NA Sleep fragmentation in C57BL/6J;  
CPW in C57BL/6J

AML (108–110)

Psychological stress Elevated inflammatory cytokines  
(IL-1, IL-6, TNF, IFN)

NA Repeated intruder-induced social defeat 
(stress) in C57BL/6J

CVD (98, 99)

Obesity BMAT; elevated inflammatory cytokines  
(IL-1, IL-6, TNF, IFN)

TET2 Ob/Ob; HFD-fed C57BL/6 AML, CVD (13, 68, 115)
DNMT3AR882H (114, 115)

NA (WT) HFD-fed WT mice (117–119)
Aging Elevated BMAT; elevated inflammatory 

cytokines (IL-1, IL-6, TNF, IFN); impaired 
B-lymphopoiesis; myeloid skewing;  
low bone density; matrix stiffening;  

decrease in LepR+ MSCs

TET2 AML, MPN, CVD (69–71)
DNMT3AR882H Dnmt3aR878H AML, MPN, CVD (76, 77, 116, 145)

SFs (U2AF1, SRSF2, 
SF3B1)

SclCreER:SRSF2P95H,  
U2AF1(S34F)/rtTA

MDS/AML (38, 167–169)

ASXL1 Mutant ASXL1 (149)
Elevated JAK/STAT signaling (170)

Table summarizes and integrates key current knowledge discussed in this Review related to the impact of different environmental and physiological 
factors on the BM environment as well as CHIP mutations and disease outcomes associated with these combinations of mutations and phenotypic 
factors. PMF, primary myelofibrosis; CPW, curling prevention by water; BMAT, elevated BM adipose tissue; HFD, high-fat diet.
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Previous work revealed synergy between inflammation and 
selective expansion of certain mutant HSPC clones. Notably, 
Tet2-mutant HSPCs were shown to selectively expand in response 
to TNF-α (in vitro) and LPS (in vivo, for four weeks) stimulation 
(66, 67). This activity has been mechanistically linked to the 
STAT3/IL-6 signaling axis (67, 68). Moreover, recent work has 
reinforced IL-1 signaling as a driver of Tet2-deficient CHIP (69–
71). IL-1 signaling is necessary and sufficient for Tet2-deficient 
clonal expansion, as stimulating mice with IL-1α or IL-1β for at 
least two weeks accelerated Tet2-mutant HSPC expansion, while 
genetic ablation or pharmacologic inhibition of the IL-1 recep-
tor normalized Tet2-mutant HSPC expansion (69, 70). Mecha-
nistically, Tet2-deficient HSPCs resisted IL-1–mediated deple-
tion via DNA hypermethylation at prodifferentiation enhancer 
regions, which epigenetically primed them to favor self-renewal. 
While IL-1β stimulus promoted demethylation at these enhancer 
regions in WT HSPCs, resulting in myeloproliferative gene upreg-
ulation and subsequent differentiation, Tet2-deficient HSPCs 
maintained sufficient methylation at these regions to prevent 
their differentiation, thus mediating their expansion over their 
WT counterparts under chronic inflammatory stress (70), mir-
roring previous work demonstrating IL-1β–mediated selection for 
HSPCs with Cebpa loss (72).

While HSPC competitiveness is at least partially defined by 
how well mutant HSPCs resist chronic stress–induced BM deple-
tion and terminal differentiation (73), mutation-specific phe-
notypes also contribute to a competitive advantage. Previous 
work comparing Dnmt3a- and Tet2-knockout models revealed 
that Tet2-deficient HSCs exhausted at the same rate as their WT 
counterparts, but loss of Dnmt3a effectively immortalized HSCs 
(74, 75). Other studies showed that loss of Tet2 favored myeloid 
lineage bias in HSPCs (69, 70), suggesting a divergent model in 
which Dnmt3a-deficient CHIP is primarily driven by HSCs, while 
Tet2-deficient CHIP is driven primarily by multipotent progenitors 
(74). Similarly, mutant HSPC competitiveness may also depend 
on the inflammatory stimulus. While Tet2-deficient HSPCs pref-
erentially expand in response to LPS and IL-1, as discussed above 

(57). The role of Ppm1d mutations in AML development was fur-
ther corroborated in vivo. While a single dose of γ radiation or two 
doses of 5-fluorouracil (5-FU) delivered over two weeks failed to 
initiate leukemia development in Ppm1d mutant mice, sequential 
treatment with four doses of γ radiation over eight weeks induced 
eventual AML transformation in a proportion of Ppm1d-mutant 
mice (58). These data suggest that malignant transformation 
depends on cumulative exposures to genotoxic stressors. Fur-
thermore, chemotherapeutic agents, specifically those with neu-
rotoxic properties such as cisplatin, can damage the sympathetic 
nervous system in the BM, impairing regeneration of both HSPCs 
and stromal constituents of the niche. In this setting, induction 
of nerve growth factor or deletion of Tp53 in sympathetic nerves  
rescued BM regeneration after a seven-week course of cisplatin 
(59). One may speculate that mutations in Ppm1d or Tp53 could 
reduce the dependence of HSPCs on BM sympathetic innerva-
tions for their regenerative potential, thereby allowing them to 
outcompete normal HSPCs during hematopoietic recovery in a 
chemotherapy-damaged BM niche. Collectively, these studies 
show that chemotherapeutic agents constitute a potent mecha-
nism for mutant HSPC selection, with impaired BM niche function 
as a potential contributing factor.

Inflammatory signaling. Inflammation is a complex biological 
response to harmful stimuli, e.g., pathogens or tissue damage, that 
involves a coordinated series of events including cytokine/chemo-
kine signaling, activation and recruitment of innate immune cells, 
and ideally, resolution of the inciting stimulus (60, 61). While 
inflammation is a critical defense mechanism against infection 
and injury, dysregulated and/or chronic inflammation can con-
tribute to various disease pathogeneses. Thus, a key area of inter-
est is understanding how acute and chronic inflammation affect 
HSPC proliferation, differentiation, and self-renewal in normal 
and malignant hematopoiesis. Although this topic has been com-
prehensively reviewed elsewhere (62–65), several recent stud-
ies have considerably advanced our understanding of the role of 
inflammation in promoting CHIP initiation or progression, while 
also uncovering new questions.

Figure 2. A model of an inflammatory feed-forward  
cycle in CHIP. Tet2 deficiency leads to myeloid 
skewing and an increase in the number of mature 
myeloid cells carrying the mutation, in the BM and 
elsewhere. Because TET2 regulates inflammatory 
gene expression, its loss in myeloid cells leads to 
a hyperinflammatory BM niche, driven by elevated 
IL-1 and TNF-α signaling. This, in turn, has been 
shown to further promote Tet2–/– clonal expansion. 
Thus, Tet2-mutant HSPCs may establish condi-
tions in the BM that favor their own expansion, 
effectively creating a feed-forward loop. This 
model may be relevant to other common CHIP 
mutations that demonstrate selective advantages 
under inflammatory stress.
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-extrinsic mechanisms. However, while these studies conceptu-
ally illustrate the role of inflammation as a selection mechanism, 
caveats and limitations remain to be addressed. The extent to 
which treatment with single inflammatory mediators recapitulates 
selection for CHIP mutations is not clear, as physiological inflam-
mation typically involves multiple inflammatory signals. Likewise, 
few studies have provided direct comparisons between inflam-
matory factors to assess which ones play a greater or lesser role 
in selecting for specific mutations. Coordinated studies that facil-
itate direct comparisons of inflammatory mediators, combined 
with the use of aging and chronic disease models in mice with tar-
geted knockouts of key inflammatory pathway components, may 
offer an opportunity to clarify the role(s) of individual factors.

Finally, direct evidence for the role of inflammatory signaling 
as a driver of CHIP in humans remains relatively limited, though 
its roles in CHIP-related morbidities such as cardiovascular dis-
ease (CVD) are more clearly delineated in clinical studies (91). 
Analysis for CHIP mutations in the Canakinumab Anti-inflam-
matory Thrombosis Outcomes Study (CANTOS) clinical trial 
cohort (ClinicalTrials.gov NCT01327846), in which canakinumab 
(anti–IL-1β antibody) was administered to patients with prior myo-
cardial infarction, revealed decreased subsequent major adverse 
cardiovascular events (MACEs) in subjects with TET2 mutations 
relative to those without CHIP (91). Furthermore, new clinical 
trials are investigating the efficacy of canakinumab in prevent-
ing evolution to malignancy in individuals with clonal cytopenia 
of undetermined significance (CCUS) (NCT05641831) as well as 
MDS (NCT04239157). Recent CANTOS data have also shown 
improvement in anemia and inflammatory marker levels follow-
ing canakinumab treatment among individuals with CHIP (92). 
Multiple biologics and antibodies that block cytokines such as 
TNF-α and IL-6 are in clinical use, typically for rheumatoid diseas-
es (93, 94). These could be efficacious in limiting further selection 
for specific CHIP mutations and/or CHIP-associated diseases, 
though safety concerns associated with risk for severe infection 
have been previously noted (95).

Psychosocial stressors: the Sirens’ wail
Odysseus chose to hear the Sirens’ song while lashed to his ship’s 
mast. However, psychosocial stressors are a generally unavoid-
able feature of modern society and include stresses associat-
ed with interpersonal conflict and social competition as well as 
job-related stressors related to achievement of goals and real or 
perceived impacts on social status (96). Although psychosocial 
stress responses (akin to the “fight or flight” response) likely 
evolved to prepare the body to respond to immediate threats of 
injury, persistent activation of these responses can become mal-
adaptive and negatively affect health (97). However, the impact of 
psychosocial stress on the hematopoietic niche and its relationship 
to CHIP remain unknown, despite links to CHIP-associated dis-
eases such as CVD (98). Notably, a study using a mouse model of 
intruder-mediated social defeat reveals HSPC mobilization from 
the BM and increased extramedullary monocyte, neutrophil, and 
erythrocyte production up to 24 days after stress cessation (99). 
However, whether these hematopoietic changes promote CHIP is 
unknown and may represent a critical area for future study given 
the relative ubiquity of social stressors in modern society. More-

(66, 67, 69–71), Dnmt3a-knockout HSPCs expand under chron-
ic (four weeks) IFN-γ stimulation in vivo and, to a lesser extent, 
IL-1β stimulation (76, 77). On the other hand, four weeks of stimu-
lation with LPS, TNF-α, and poly I:poly C (pIpC) failed to promote 
selective expansion of Dnmt3a-knockout HSCs in this model (76, 
77). In contrast, endogenous TNF-α signaling facilitated selective 
expansion of HSPCs carrying a heterozygous Dnmt3aR878H muta-
tion (which recapitulates the human DNMT3AR882H mutation), 
suggesting potential differences in response to TNF-α stimula-
tion between genetic knockouts and point mutations in Dnmt3a. 
(76, 77). In this latter study, the aging-associated fitness advan-
tage of Dnmt3a-deficient HSCs required TNF-α/TNFR1 signal-
ing, loss of which normalized HSC fitness without affecting lin-
eage output. However, genetically ablating TNFR2 resulted in 
myeloid lineage bias without affecting HSC fitness (77). While 
TNFR signaling has not been studied in vivo in Tet2-deficient 
mouse models, in vitro data suggest that loss of Tet2 and Dnmt3a 
both endow HSPCs with enhanced survival and/or clonogenic 
activity in response to TNF-α signaling (66, 67). Whether differ-
ential expression and/or signaling via TNFR1 or -2 underlies the 
differences in self-renewal activity between Tet2- and Dnmt3a- 
deficient HSCs remains an open question.

Finally, these recent studies provide rationale for an inter-
esting hypothesis related to Tet2-mutant clonal selection. Loss of 
Tet2 promotes myeloid skewing (78), increasing peripheral mature 
myeloid cells, such as macrophages and neutrophils (79), that sim-
ilarly carry this mutation. As Tet2 regulates inflammatory gene 
expression (80), its loss in myeloid cells promotes a hyperinflam-
matory phenotype that can further shape the hematopoietic niche, 
impairing normal hematopoiesis (81, 82). This hyperinflammation 
also promoted Tet2-deficient clonal expansion via IL-1 (69, 70) 
and TNF-α signaling (66), thus creating an effective feed-forward 
loop (Figure 2) by which Tet2-deficient myeloid cells shape a niche 
that favors Tet2-deficient HSPC expansion (69, 70, 83). The extent 
to which such myeloid:HSC feed-forward loops drive selection in 
other CHIP mutant contexts remains largely an open question.

Beyond epigenetic modifiers, HSPCs harboring the JAK2V617F 
mutation also preferentially expand in BM under inflammato-
ry conditions. Previous work established that JAK2V617F HSPCs 
expand at the expense of HSC self-renewal (84), and other work 
shows that treating mice harboring JAK2V617F HSPCs with IFN-γ, 
TNF-α, and/or TGF-β enhances JAK2V617F HSPC expansion in a 
DUSP1-dependent manner (85). Recent work also revealed a role 
for IL-1β in promoting MPN disease initiation in JAK2V617F HSCs 
by enhancing their early expansion in the BM (86), mirroring a 
previous study in which JAK2V617F hematopoietic cells exhibited 
increased IL-1β secretion, contributing to sympathetic nerve dam-
age and subsequent MSC attrition in the BM niche (86, 87). Indeed, 
a chronic inflammatory state is a key feature of many MPNs (88), 
which are often characterized by clonal expansion of HSPCs with 
gain-of-function mutations in JAK2/STAT3/STAT5 pathways 
(89). However, it is unclear whether increased IL-1β secretion of 
JAK2V617F hematopoietic cells directly influences the dynamics of 
parental HSCs through paracrine or autocrine signaling (90).

Collectively, these studies suggest that inflammation plays a 
critical role in establishing conditions in the BM niche that select 
for mutant HSPCs through a combination of cell-intrinsic and 
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over, while long-duration exposure to night-shift work, which dis-
rupts the circadian biological clock (100), is inconclusively linked 
to hematopoietic cancers (101), its link to nonmalignant CHIP- 
associated morbidities such as CVD is more evident (102). Below, 
we offer rationales for investigating potential mechanisms that link 
impacts on HSPCs caused by circadian rhythm disruption with 
somatic evolution in the BM, leading to CHIP and its sequelae.

Circadian rhythms, which are the body’s internal clock, regu-
late physiological processes, including sleep-wake patterns, hor-
mone regulation, body temperature, and systemic metabolism 
over an approximately 24-hour period. HSPC proliferation dynam-
ics are dictated by circadian rhythms through sympathetic inner-
vations that regulate hematopoietic and nonhematopoietic cells 
within the BM niche (103). These sympathetic innervations influ-
ence overlapping cycles of HSPC proliferation and DNA synthesis 
(104), circadian changes in CXCL12 secretion from the niche that 
regulate HSPC BM egress (105, 106), and rhythmic changes to 
vascular permeability driven by noradrenaline release in concert 
with bipotent bursts of TNF-α (107). Interestingly, recent work 
revealed that sleep interruption exerts lasting epigenetic changes 
that skew HSPCs toward myeloid lineage bias (108). Similarly, a 
separate study, which developed a novel murine model of pro-
longed sleep deprivation (up to 4 days), revealed increased accu-
mulation of neutrophils and multiple proinflammatory cytokines 
in the peripheral blood, including IL-6, IL-17, and TNF-α, within 
24 hours of sleep deprivation (109). Finally, a longitudinal study 
of 130,343 women aged 50–79 years found that those with higher 
sleep disturbances were at 22% higher risk of leukemia, particu-
larly myeloid leukemia (110). Altogether, circadian rhythm disrup-
tion can profoundly alter hematopoietic homeostasis via systemic 
increases in proinflammatory cytokines, reduction of key chemo-
kine cues that regulate neutrophil-recycling processes, and lasting 
epigenetic changes in HSPCs (108, 109, 111) that could select for 
HSCs with CHIP mutations. Intriguingly, a recent murine study 
utilized sleep fragmentation (112) throughout an 80-day compet-
itive transplant experiment between WT and Tet2-deficient BM. 
This work showed that sleep disruption accelerates Tet2-mutant 
cell expansion in peripheral blood (113). However, more work 
using these novel paradigms is necessary to directly investigate 
how circadian rhythm disruption influences CHIP.

Diet and exercise: whither the Lotus-Eaters?
While the vegetarian diet on the island of the Lotus-Eaters would 
presumedly be healthy, the direct impact of diet on CHIP devel-
opment or progression is largely unknown. A recent retrospective 
cohort study of 44,111 participants (mean age = 56.3 years) from 
the UK Biobank reported that CHIP was present in 162 of 2,271 
(7.1%) participants with an unhealthy diet, 2,177 of 38,552 (5.7%) 
participants with an intermediate diet, and 168 of 3,288 (5.1%) 
participants with a healthy diet; dietary metrics were scored by 
weekly frequency of intake of fruits and vegetables versus pro-
cessed and unprocessed meat. While no statistically significant 
differences were observed between the distribution of CHIP 
mutations across dietary classes, the majority (58.6%) of partici-
pants with CHIP that had an unhealthy diet had DNMT3A muta-
tions, while 16% of participants had TET2 mutations and 6.2% 
had ASXL1 mutations (114). Direct observations using murine 

models of Tet2-deficient CHIP and an obesogenic diet (high fat 
and sucrose content) showed clonal expansion similar to that seen 
with aging (13); however, these experiments did not include direct 
comparisons of CHIP mutation–bearing mice between regular and 
obesogenic diets. Interestingly, diabetes-induced hyperglycemic 
stress can progress Tet2 CHIP to a full-blown MPN in mice (68). 
Congruent with other studies, poor diet and obesity may exacer-
bate CHIP progression through increased inflammatory signal-
ing (13, 68, 115). While others have established inflammation as 
a driver of mutant HSPC expansion (66, 69, 71, 76, 77, 85–87, 116), 
these studies also implicate the sufficiency of an obesity-induced 
inflammatory state in promoting mutant HSPC clonal expansion.

Indeed, previous studies have linked poor diet to systemic 
inflammation (117). Of note, a high-fat diet increases gut perme-
ability and subsequently upregulates expression of proinflamma-
tory cytokines (118, 119). Conversely, dietary restriction can nor-
malize some aging-associated HSC phenotypes, such as increased 
leukocyte number, myeloid lineage bias, and decreased quies-
cence due to suppression of IGF1 and IL-6 signaling (120, 121). 
Similarly, short-term fasting and refeeding induced autophagy in 
HSCs, which in turn normalized glucose uptake and glycolytic flux 
of aged HSCs, improving their regenerative potential (122). These 
studies point to an exciting unanswered question in the field: can 
CHIP be mitigated by dietary intervention? Inferential evidence 
from an analysis of 8,709 women with a mean age of 66.5 years 
found that, while diet quality and physical activity had no associ-
ation with CHIP prevalence, maintaining a normal BMI (18.5–25 
kg/m2) was strongly associated with lower CHIP prevalence (123). 
Moreover, dietary restriction increased CXCL12/CXCR4 activity 
(124), which mitigates age-related HSC dysfunction and main-
tains normal ROS levels (125–127), constituting a potential avenue 
for mitigating CHIP clone expansion.

Exercise. In addition to dietary habits, regular exercise is cru-
cial to maintaining a healthy body weight and fosters myriad other 
benefits (128, 129). However, whether exercise can mitigate CHIP 
clone expansion has not been investigated beyond an ongoing 
clinical trial (NCT03996239) studying the impact of aerobic exer-
cise on CHIP progression. Of note, while the capacity of exercise 
to reduce adipose tissue deposits in humans is well known (130), 
a murine study showed that aerobic exercise can also decrease 
dietary-induced BM adipose tissue accumulation (131). Aging and 
obesity increased BM adipose tissue, which altered HSC polariza-
tion, diminished granulocyte and erythroid differentiation (132), 
reduced bone density, and profoundly remodeled the hematopoi-
etic niche by altering expression of extracellular matrix signaling 
pathways associated with proliferation and differentiation (133). 
In this mouse study, a 12-week treadmill regimen delayed high-
fat diet–induced obesity, increased trabecular bone mass, and 
improved the BM microenvironment by partially inhibiting adi-
pokine signaling (131). Moreover, exercise diminished adipocyte 
leptin production, which in turn augmented production of quies-
cence-promoting factors secreted from LepR+ MSCs in the BM. 
Notably, while exercise in this study reduced chronic leukocyto-
sis, emergency myelopoiesis was not compromised (131). More-
over, exercise-trained mice had higher BM reconstitution after 
irradiated transplant even when fed a high-fat diet, suggestive of 
improved BM niche function. Thus, while exercise could mitigate 
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CHIP through balancing the inflammatory milieu and partially 
correcting the adverse composition of the damaged niche, such 
benefits have not been evaluated in the setting of CHIP, leaving a 
critical open question in the field.

Aging: the end or beginning of the odyssey?
While Homer’s protagonist spent a decade escaping many perils, 
he did not escape the passage of time. Likewise, the only truly 
inescapable alteration to the niche, and the most dominant deter-
minant of who develops CHIP, is aging. Our species’ evolution has 
favored tissue maintenance to maximize reproductive output. As 
this maintenance wanes in postreproductive periods, so does the 
integrity of the HSC niche, and in combination with a lifetime of 
insults, comes the inevitable decline in our soma associated with 
old age (134). It is possible to mitigate these insults by maintain-
ing proper diet, sleep, and exercise routines, reducing chronic 
stress, and managing inflammatory states. However, aging poses 
a unique challenge for the BM niche that incorporates many fea-
tures of the insults outlined above. It is associated with (a) lower 
bone mineral density, (b) stiffening of the BM matrix, (c) increased 
inflammation (termed “inflammaging”), and (d) various changes 
in MSCs (135). These changes can collaborate with cell-intrinsic 
features of HSC aging (136–138), including proliferative attrition 
and replicative stress, to profoundly impair hematopoietic fitness 
and promote mutant clonal selection (Figure 1).

Reduced bone mineral density of older mice diminishes MSC 
proliferation and response to osteogenic growth factors (139), 
resulting in decreased niche factors such as Netrin 1 (140) and 
POT1A (141), leading in turn to DDR defects, BM ROS, and adi-
pose tissue accumulation (141), which can alter HSC polarization, 
differentiation (132), and long-term function (133). Furthermore, 
aging increases central marrow LepR+ MSC, which, in addition to 
having a deleterious effect on the sinusoidal vasculature, is asso-
ciated with decreased osteoprogenitor function (142). The resul-
tant degraded and inflamed BM niche may parallel developmental 
HSC/eMPP extinguishment (29, 30), which suggests a potential 
concomitance between myeloid-skewing extrinsic cues from the 
niche and lymphoid attrition with age.

In contrast to CHIP’s low prevalence, defined by a 2% variant 
allele frequency threshold in nonelderly, rare clones harboring 
CHIP mutations are present in most people before age 70 when 
analyzed by error-corrected sequencing methods (26). This sug-
gests that before old age, most CHIP clones either do not expand 
or expand very slowly, and the altered BM microenvironment 
associated with aging might be responsible for the emergence of 
CHIP at clinically relevant rates.

However, there is a paucity of studies directly investigating the 
aging-specific changes that contribute to CHIP clone selection in 
humans. Mouse models provide some evidence that aging, primar-
ily through inflammatory signaling, favors certain mutant HSCs. 
Indeed, age-associated “inflammaging” (143, 144) can drive rapid 
myelopoiesis and IL-1β production, impairing BM niche function 
(142). A recent mouse study showed that Dnmt3aR878H BM cells 
expanded faster when transplanted into older recipient mice, due 
to their reduced sensitivity to LPS- and TNF-induced necroptosis 
in the aged setting (145). Recent work revealed increased expan-
sion of Tet2-deficient HSPCs starting 7 months after selective, 

inducible Tet2 deletion. Intriguingly, IL-1α correlated with the 
rate of expansion, and deleting the IL-1 receptor in Tet2-deficient 
HSPCs prevented their expansion (69). Additionally, gut microbi-
ome changes in aged mice were associated with increased IL-1α 
and IL-1β in the BM, reducing engraftment potential and increas-
ing myeloid bias of HSCs (146). As IL-1β promotes expansion of 
Tet2-deficient HSPCs (70), an aged microbiome may promote 
Tet2-deficient HSPC expansion; however, this hypothesis remains 
untested. In addition to these cell-extrinsic cues, several cell- 
intrinsic changes have been described in aged HSCs (147). Aged 
HSCs showed altered heterochromatin landscapes associated 
with increased aberrant expression of repetitive elements, such as 
endogenous retroviral sequences that induce interferon-regulated 
genes. Deleting Tet2 in aged cells partially mitigated these heter-
ochromatin changes, leading to a more youthful transcriptomic 
profile. Moreover, reverse transcriptase inhibitors reduced the 
amount of cytosolic DNA in old WT HSCs, rescuing their fitness 
compared with old Tet2-deficient HSCs in vitro, although whether 
this approach can abrogate Tet2-deficient HSPC expansion in vivo 
is unknown (83). Notably, others have suggested implementing 
reverse transcriptase inhibitors as rejuvenating treatments to cor-
rect aberrant expression of repetitive elements as well (148).

Finally, impaired glucose metabolism (122) and hypergly-
cemia are known features of inflammaging, and introduction 
of Tet2 mutations into hyperglycemic Ins2Akita/+ mice triggered 
age-dependent increases in mortality, hyperactive inflammation, 
and progression to an MPN/AML phenotype (68), demonstrating 
key links between inflammation and aging-associated metabolic 
phenotypes that may promote CHIP. Moreover, the preferential 
expansion of mutant Asxl1 HSCs in aged mice also relied on a cell- 
intrinsic mechanism involving Akt/mTOR activation (149), which 
can regulate multiple cellular metabolic pathways (150). However, 
as in the case of Tet2-deficient HSPC expansion described above 
(69), selection was only evident several months after induction. 
Furthermore, this process may be partially driven by attenuat-
ed responses to inflammatory factors in Asxl1 mutant HSPCs, as 
shown in zebrafish models (151). In addition to aging-dependent 
cell-intrinsic and -extrinsic changes, mutant clone evolution due 
to secondary genetic and epigenetic events could augment their 
fitness. Tet2-deficient differentiated cells expressed higher levels 
of inflammatory cytokines, such as IL-6 (152) and IL-1 (153, 154), 
suggesting that Tet2-mutant cells can alter the microenvironment 
to fuel their own expansion in a positive feedback loop (Figure 2). 
Disentangling these effects from those derived from aging will 
require careful experimental design.

Conclusions and discussion
Here we have consolidated seminal and recent works that shape 
our current understanding of CHIP development and progres-
sion as a product of cell competition, in which changes in the BM 
niche dictate genotype-dependent HSC fitness (155). However, as 
we have alluded to throughout our discussion, much work is still 
needed to rigorously characterize driving factors of CHIP.

While novel analysis of MPN patient sequencing data reveals 
crucial insight into the potential origins of CHIP mutations (33), 
it is unknown which, if any, CHIP mutations occur during fetal 
development. However, as we and others (155) have pointed out, 
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RUNX1, IDH2, TP53) groups, where 
risk is defined as having increased 
incidence of myeloid neoplasms 
(161). However, while TET2 may be 
considered low risk with respect to 
myeloid malignancy, it is high risk 
in the context of atherosclerosis 
(14, 162). These data suggest there 
are likely unique courses of somatic 
evolution for each mutation, which 
in turn may exacerbate specific clin-
ical risks. Thus, determining the 
extent to which a changing BM niche 
(Figure 1) or activity of inflamma-
tory feed-forward loops (Figure 2) 
favors one mutation or another will 
require tailored studies. For many of 
these mutations, further investiga-
tion is needed to evaluate whether 
CHIP-promoting conditions differ 
from those that result in a down-

stream disease phenotype (MDS/AML/CVD).
Finally, although the studies reviewed here highlight the 

independent impacts of selective factors such as inflammation or 
altered BM niche composition and function, an integrated view 
of how various contexts (old age, lifestyles, and exposures) alter 
the BM niche to differentially influence the fate/fitness of mutant 
HSPCs that confer different risks for malignant progression will 
be key to designing interventions that limit these risks. Unravel-
ing these interactions will provide a more nuanced understanding 
of the mechanisms governing the clonal odyssey in the BM niche 
across (potentially) a lifetime.
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the occurrence of the mutation may matter less than the chang-
ing microenvironment that dictates clonal fitness. Many studies 
have elucidated key mechanisms driving mutant HSPC expan-
sion, including cytotoxic stress, inflammation, and aging. Of 
note, recent murine studies have demonstrated inflammaging 
as a clear driver of Tet2-deficient HSPC expansion. These stud-
ies also paint an interesting picture, echoed among other CHIP 
models, in which mutant HSPCs that selectively expand under 
inflammatory conditions can promote an inflammatory state via 
overproduction of dysregulated, hyperinflammatory myeloid 
progeny (Figure 2). This feed-forward pattern may be a mech-
anistic basis for CHIP and/or its progression to malignancy in 
some individuals (156). Moreover, lifestyle factors, such as circa-
dian rhythm disruption, poor diet, and lack of exercise, can have 
profound impacts on normal hematopoiesis (13, 68, 108, 109, 111, 
115, 131, 157), with a common role for increasing systemic inflam-
mation. However, there are few studies that directly investigate 
how social stress affects the hematopoietic system and no studies 
that have investigated social stressors as a driver of CHIP. While 
clinical data and current clinical trials have revealed novel asso-
ciations between some lifestyle factors and CHIP incidence (110, 
114, 123), whether and how these lifestyle factors contribute to 
CHIP remain unknown (Figure 3).

Most of the studies discussed here are limited to “paradig-
matic” CHIP mutations such as TET2 or DNMT3A, whereas 
mechanisms promoting clonal selection for other mutations 
remain somewhat understudied. For instance, mutations in the 
SFs SF3B1, SRSF2, and U2AF1 perturb hematopoiesis via sever-
al mechanisms, including myeloid skewing, impairment of the 
DDR, and exacerbated inflammatory responses (158–160). How-
ever, the extent to which these mechanisms contribute to selec-
tion remains unknown. This lack of information creates potential 
hazards in drawing inductive conclusions from limited data sets 
regarding the mechanism(s) driving selection for different CHIP 
mutations. CHIP mutations are often segregated into low-risk 
(DNMT3A, TET2, ASXL1) and high-risk (SRSF2, SF3B1, JAK2, 

Figure 3. Summary. Aging is a known driver of CHIP. Recent work has further cemented our mechanistic 
understanding of genotoxic insults and inflammation as drivers of mutant HSPC expansion. However, how 
lifestyle factors, such as circadian rhythm disruption, psychosocial stress, and dietary/exercise habits, con-
tribute to CHIP progression or development remains largely unknown. These factors constitute likely areas for 
future investigation, from both the standpoint of clinical intervention and from the basic science standpoint 
of establishing mechanistic understanding of somatic evolution of the BM and other tissues with age.
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