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BACKGROUND. Patients hospitalized for COVID-19 exhibit diverse clinical outcomes, with outcomes for some individuals 
diverging over time even though their initial disease severity appears similar to that of other patients. A systematic evaluation 
of molecular and cellular profiles over the full disease course can link immune programs and their coordination with 
progression heterogeneity.

METHODS. We performed deep immunophenotyping and conducted longitudinal multiomics modeling, integrating 10 assays 
for 1,152 Immunophenotyping Assessment in a COVID-19 Cohort (IMPACC) study participants and identifying several immune 
cascades that were significant drivers of differential clinical outcomes.

RESULTS. Increasing disease severity was driven by a temporal pattern that began with the early upregulation of 
immunosuppressive metabolites and then elevated levels of inflammatory cytokines, signatures of coagulation, formation of 
neutrophil extracellular traps, and T cell functional dysregulation. A second immune cascade, predictive of 28-day mortality 
among critically ill patients, was characterized by reduced total plasma Igs and B cells and dysregulated IFN responsiveness. 
We demonstrated that the balance disruption between IFN-stimulated genes and IFN inhibitors is a crucial biomarker of 
COVID-19 mortality, potentially contributing to failure of viral clearance in patients with fatal illness.

CONCLUSION. Our longitudinal multiomics profiling study revealed temporal coordination across diverse omics that 
potentially explain the disease progression, providing insights that can inform the targeted development of therapies for 
patients hospitalized with COVID-19, especially those who are critically ill.
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(24, 25), our integrative analysis revealed evidence for the poten-
tially critical role of inhibitory genes in this dysregulation through 
investigation of the temporal coordination. In summary, we pres-
ent a set of robust immunological findings that are capable of 
distinguishing between varying severities of COVID-19 among 
hospitalized patients and yield insight into the pathophysiology of 
severe disease. Our analysis strategy can be generalized to mine 
additional coordinated and temporal dynamics to investigate oth-
er infectious diseases beyond the current pandemic.

Results
Longitudinal multiomics profiling of SARS-CoV-2 infection response. 
The IMPACC study enrolled 1,152 participants from 20 US sites 
from May 2020 through March 2021, prior to the widespread roll-
out of SARS-CoV-2 vaccines (23). All participants were assigned to 
1 of 5 COVID-19 trajectory groups (TGs) using latent class model-
ing based on a modified WHO score, referred to as the respiratory 
ordinal status (5) (Figure 1B). Groups ranged from TG1 (length of 
hospital stay [LOS] of ~3–5 days and with a largely uncomplicated 
hospital course); TG2 (LOS of ~7–14 days and discharged with no 
limitations); TG3 (LOS of ~10–14 days and discharged with limita-
tions); TG4 (LOS of ~28 days or more), to TG5 (fatal illness by day 
28). Patients win both TG4 and TG5 were considered critically ill, 
with TG5 uniquely containing participants who had fatal illness 
within the first 28 days of hospitalization.

We carried out and reported deep immunophenotyping for 539 
IMPACC participants who were enrolled primarily before Septem-
ber 2020 (6). These data included profiling of targeted proteomics 
of serum (SPT), global plasma metabolomics (PMG), global and 
targeted proteomics profiles of plasma (PPG and PPT, respec-
tively), as well as transcriptomics from PBMCs and nasal swabs 
(denoted as PGX and NGX, respectively). All assays were collec-
tively measured longitudinally across 6 scheduled visits from day 0 
(referred to as baseline) to 28 days after hospital admission (Figure 
1A). In this work, we used these published profiles as training data 
to construct covarying immune programs and models that predict 
disease severity and mortality. We examined molecular immune 
programs using hold-out assays including those measuring immu-
nological outcomes via serum antibody titers, virological outcomes 
via nasal viral loads, and whole blood cell frequencies via mass 
cytometry by time of flight (CyTOF). To evaluate the performance 
of the prediction models on independent data, we performed new 
deep immunophenotyping for an additional 613 IMPACC partic-
ipants who were enrolled after September 2020 (Supplemental 
Table 1; supplemental material available online with this article; 
https://doi.org/10.1172/JCI176640DS1). In total, these IMPACC 
data included 20,544 distinct assay measurements comprising 
3,077 multiomics profiles (referred to hereafter as samples).

Multiomics factors predict clinical TGs. We focused on 2 clini-
cally relevant objectives to stratify disease severity using baseline 
multiomics profiles (26–28) (Figure 2A): predicting disease sever-
ity (identifying factors separating TG1 versus TG2/TG3 versus 
TG4/TG5; referred to as the “severity task”) and predicting fatal 
illness among critically ill participants (identifying factors sep-
arating TG4 versus TG5; referred to as the “mortality task”). To 
address the high dimensionality of the data, we first constructed 
low-dimensional multiomics factors using multiple co-inertia 

Introduction
COVID-19, caused by SARS-CoV-2 infection, reflects a complex 
balance between viral replication, host immune response, and 
physiological manifestations such as hypoxia, organ dysfunc-
tion, and systemic inflammation (1–4). Patients hospitalized with 
COVID-19 exhibit a broad range of clinical outcomes, from mod-
erate severity and a short hospital stay to critical illness with pro-
longed hospitalization and even death (5, 6). Profiling the immune 
response in a clinically diverse cohort would enable the linking of 
molecular and cellular mechanisms with these differential out-
comes and could inform the development of targeted therapies.

Several hallmarks of severe COVID-19 have been identified, 
including overproduction of proinflammatory cytokines (7–9), 
lymphopenia (7, 10, 11), formation of neutrophil extracellular traps 
(NETs) (12), impaired IFN signaling (13–16), presence of anti-IFN 
autoantibodies (17), and immune senescence (18). Although these 
studies have identified many individual components underlying 
the pathophysiology of SARS-CoV-2 infection, it is still unclear how 
their temporal coordination interplay contributes to the observed 
heterogeneity of responses among hospitalized patients, especial-
ly among the critically ill. Why do some patients with COVID-19 
survive, while others experience fatal illnesses despite apparently 
similar severity at hospital admission? Additionally, most existing 
studies focus on measurements from peripheral blood and lever-
age only one or a small number of assays, thus limiting opportuni-
ties to identify biologically relevant connections between tissues 
and mechanisms that operate across scales. Such a systems-level 
understanding requires longitudinal multiomics studies on large-
scale and clinically well-defined hospitalized cohorts to charac-
terize innate, adaptive, and mucosal immune cascades associated 
with disease severity (19–22).

The Immunophenotyping Assessment in a COVID-19 Cohort 
(IMPACC) study aims to gain a panoramic understanding of 
SARS-CoV-2 infection via the collection and analysis of detailed 
clinical, laboratory, and radiographic data along with longitudinal 
biologic samplings of blood and respiratory secretions from par-
ticipants hospitalized with COVID-19 across the United States 
(23). Previously, IMPACC conducted deep immunophenotyping 
of longitudinal samples for 539 hospitalized participants mostly 
enrolled before September 2020 to identify biological states asso-
ciated with SARS-CoV-2 disease course trajectories (6).

In the current work, we first carried out an integrative multio-
mics analysis of the existing IMPACC data to develop models that 
focused on 2 tasks: predicting disease severity and mortality. To 
test these models, we then generated independent immunophe-
notyping data on an additional 613 hospitalized IMPACC partic-
ipants enrolled after September 2020. Our integrative analysis 
revealed strong orchestrated variations across serum soluble pro-
teins (cytokines, chemokines, and secreted receptors), plasma 
proteins and metabolites, gene expression in PBMC and nasal 
swab samples, circulating immune cell frequencies, as well as viral 
loads and SARS-CoV-2 serum antibodies. For example, early dys-
regulation of metabolism in plasma, depressed B cell functions, 
and a disrupted balance in IFN signaling could distinguish fatal-
ity among critically ill patients whose disease severity levels were 
similar at hospital admission. Although the dysregulation of IFN 
signaling in severe COVID-19 has been hypothesized previously  
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2C). We refer to factor 1 as the “severity factor” and factor 4 as 
the “mortality factor” hereafter. Each of these factors represents 
a coordinated immune program involving correlated metabolite, 
protein, and gene profiles. We identified diverse significant asso-
ciations (multiple testing adjusted [adj.] P < 0.05) between these 
2 factors and comorbidities, clinical laboratory testing, and com-
plications during the hospital stay for the initial 539 participants 
(Figure 2E). The severity factor showed strong positive associ-
ations with baseline total WBC (adj. P = 6.6 × 10–14) and neutro-
phil (adj. P = 1.3 × 10–9) counts, while being negatively associat-
ed with the lymphocyte count (adj. P = 2.0 × 10–5). We also noted  
significant associations with baseline values of several acute-phase 
reactants (adj. P < 0.05), including C-reactive protein (CRP), lac-
tate dehydrogenase (LDH), ferritin, procalcitonin, and albumin, 
and with D-dimer, prothrombin time (PT), partial thromboplastin 
time (PTT), and international normalized ratio (INR), which are 
used to measure blood clotting functions. Moreover, the severity 
factor was predictive of high-acuity complications such as shock 
(adj. P = 1.3 × 10–13) and cardiac arrest (adj. P = 2.4 × 10–7). In con-
trast, the mortality factor demonstrated a strong negative associa-
tion with baseline platelet (adj. P = 2.4 × 10–11) and total WBC (adj. 
P = 2.0 × 10–8), neutrophil (adj. P = 9.6 × 10–5), and lymphocyte (adj. 
P = 1.7 × 10–2) counts and strong positive associations with baseline 
serum creatinine and preexisting chronic kidney disease, hyper-
tension, and solid organ transplantation (adj. P < 0.05). Regarding 
its association with complications during the hospital course, the 
mortality factor was most positively associated with acute renal 
failure (adj. P = 8.1 × 10–5).

The severity factor unravels broad immune dysregulation as 
hallmarks of severity. While the severity factor and mortality fac-
tor were identified by the 2 prediction tasks using baseline omics 
measurements, we constructed the multiomics factors using sam-
ples from all visits to capture multiomics covariations at the base-
line visit and over time. At the baseline visit, the severity factor 
displayed a significant increase with severity and mortality among 
the initial 539 critically ill participants (Figure 3A, severity adj. P = 
1.4 × 10–30, mortality adj. P = 0.049, Supplemental Table 4), with 
the difference between groups increasing over time (Figure 3B). 
The more moderate groups (TG1–TG3) showed a sharp reduction 
in the severity factor levels over time compared with the more 
severe groups (TG4 and TG5) (adj. P = 5.2 × 10–28). Interestingly, 
while patients in the critical group who survived (TG4) also exhib-
ited a gradual decrease in the severity factor over time, those in 
the critical group who died from the disease (TG5) displayed a sig-
nificant increase in the severity factor level (Figure 3B, mortality 
slope adj. P = 7.1 × 10–15). These observations suggest that the sever-
ity factor captured features that were not only linked with overall 
COVID-19 severity but also associated with death among critical-
ly ill participants after hospitalization.

We defined high-contribution features for a factor as those 
highly correlated with this factor (see Methods) and used them 
to characterize the associated immune program. The severity fac-
tor showed strong covarying patterns across the different assays 
with 58 secreted cytokines/chemokines (of 92), 124 targeted 
plasma proteins (of 210), 685 global plasma proteins (of 1,430), 
366 plasma metabolites (of 722), 3,637 PBMC genes (of 12,408), 
and 768 nasal genes (of 12,458) identified as high-contribution 

analysis (MCIA) (29) of the 539 IMPACC participants in our train-
ing cohort. The dimension reduction combined 27,320 analytes 
(92 for SPT; 210 for PPT; 1,430 for PPG; 722 for PMG; 12,408 
for PGX; 12,458 for NGX) into multiomics factors that contained 
covarying patterns across assays.

We developed prediction models using multiomics factors 
from baseline samples (MCIA model) for each task to identify mul-
tiomics factors at hospital admission that correlated with clinical 
TGs. We also trained models using 28 clinical characteristics (clin-
ical model) and combined multiomics factors and clinical charac-
teristics (ensemble model) to assess and compare the performance 
across models (see Supplemental Methods). To validate these 
trained models, we applied the fitted MCIA factor construction and 
prediction model to the test cohort of 613 independent IMPACC 
participants first reported here and evaluated the resulting classifi-
cation accuracy (Figure 1, C–E).

Both the MCIA model and the ensemble model outperformed 
the clinical model on the severity task, as measured by Spearman 
correlation (MCIA: ρ = 0.59; ensemble: ρ = 0.69; clinical: ρ = 0.37), 
and statistical significance was determined through the bootstrap 
procedure (P < 1 × 10–6) (Figure 2B). Inspection of the MCIA model 
coefficients for the severity task revealed a remarkable contribu-
tion from multiomics factor 1 (Figure 2C and Supplemental Fig-
ure 1A). The MCIA and ensemble models showed performance 
on the mortality task comparable to that of the clinical model, as 
measured by the area under the receiver operating characteristic 
curve (AUROC) (MCIA: AUROC = 0.69; ensemble: AUROC = 
0.70; clinical: AUROC = 0.67) (Figure 2B). While MCIA and the 
clinical models displayed similar prediction performances for the 
mortality task, the MCIA model could provide insights into the 
immune program that distinguished TG4 and TG5. Key multiom-
ics factors for the mortality task included multiomics factor 4 as 
the most salient, followed closely by factors 1 and 2 (Figure 2C and 
Supplemental Figure 1A). The MCIA models also achieved high-
er prediction accuracy than did the clinical models for separating 
each TG group from the others using the aggregated predictions 
(Supplemental Figure 1C).

We further investigated whether the multiomics factors could 
significantly improve the prediction of COVID-19 disease progres-
sion while controlling for respiratory status upon hospital admission 
(3 = no supplemental oxygen, 6 = invasive mechanical ventilation 
and/or extracorporeal membrane oxygenation) (5). We derived 
a predicted risk from the MCIA model for each participant at the 
time of hospital admission (the geometric mean of the probabil-
ity of being critically ill and experiencing fatal illness, see Supple-
mental Methods) and evaluated its significance for predicting TGs 
while controlling for baseline respiratory status. Remarkably, the 
MCIA-derived risk score was associated with TGs (Figure 2D), even 
when evaluating only among those with moderately (baseline score 
in [3, 4], P = 6.9 × 10–8) and those with severely impaired baseline 
respiratory statuses (baseline score in [5, 6], P = 6.6 × 10–11), suggest-
ing that the baseline molecular signatures captured by MCIA factors 
provide additional insight into a COVID-19 course trajectory not 
fully captured by the baseline respiratory status.

Multiomics factors exhibit diverse associations with clinical pro-
files. Factor 1 and factor 4 were identified as the strongest con-
tributors to the severity and mortality tasks, respectively (Figure 
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Dysregulation of essential amino metabolism as an early hall-
mark of mortality among critically ill patients. The severity factor 
was characterized by increased plasma metabolites from trypto-
phan catabolism (kynurenine and its derivatives anthranilate and 
kynurenate; adj. P = 1.10 × 10–4), phenylalanine metabolism (phe-
nylalanine and its derivatives phenyllactate and N-acetylphenyl-
alanine; adj. P = 0.056), and histidine metabolism (precursors of 
glutamate hydantoin-5-propionate, formiminoglutamate, and 
1-methyl-4-imidazoleacetate; adj. P = 0.0247) (Figure 3, C and 
D). Notably, the observed metabolic dysregulations not only were 
associated with overall disease severity at baseline (Figure 3E, 
severity P < 0.05, Supplemental Table 6) but also demonstrated 
the most power in separating TG4 and TG5 at baseline among the 
pathways in Figure 3C (Figure 3E, mortality P < 0.05, Supplemen-
tal Figure 3A, and Supplemental Table 6). This early elevation was 
particularly interesting because participants in TG4 and TG5 had 
similar disease severities at the time of hospital admission (Figure 
1B). Furthermore, the metabolic dysregulations were persistent-
ly elevated in TG5 participants throughout hospitalization (Fig-
ure 3E, slope 5|4 P < 0.05, and Supplemental Table 6) and were 
associated with the diverging severity factor kinetics between 
TG4 and TG5 (Supplemental Figure 2C). These suggest that dys-
regulations of essential amino acid metabolisms, including the  

features (Supplemental Table 3). To characterize the biological 
dynamics underlying the severity factor, we used a minimum 
hypergeometric test (mHG) to assess the enrichment of known 
biological pathways among the high-contribution features of the 
factor, with enrichment being either positive or negative, corre-
sponding to pathways directly and inversely associated with the 
factor. The pathway databases are composed of many broad and 
redundant biological pathways with highly overlapping gene sets 
(30). To handle this redundancy, biological pathways significantly 
enriched (adj. P < 0.1) in the severity factor were clustered on the 
basis of shared leading-edge features and separated into 4 major 
functional categories: inflammation, T cell activity, cell death, 
and dysregulated metabolism of essential amino acids (Supple-
mental Figure 2A and Supplemental Table 5). The joint multiom-
ics enrichment was calculated by aggregating mHG P values from 
different omics within each functional category for prioritization 
(Supplemental Figure 2B; see also Supplemental Methods). The 
representative pathways from each of the 4 functional categories 
that reflected specialized biological functions with the most sig-
nificant aggregated P values were selected for further evaluation 
(Figure 3C). The highlighted functions have been associated with 
COVID-19 disease severity previously in other study cohorts, but 
understanding of their coordination remains a challenge.

Figure 1. Data overview and multiomics factor generation. (A) Table with the number of samples used in the integrative analysis separated by assay 
(rows) and scheduled time of collection (columns). Cells are shaded to reflect the relative number of multiomics samples available. (B) Plot of clinical TG 
assignments for all IMPACC cohort participants (n = 1,164) and clinical descriptions for each TG. The x axis represents days from hospital admission, and 
the y axis represents the ordinal respiratory status score (1, 2 = discharged, 3–6 = hospitalized, 7 = fatal). The shaded region denotes the IQR of each TG. 
(C) Preprocessed data for different assays were split into training and test cohorts. (D) Dimensionality reduction was performed via MCIA on the training 
cohort assays to construct multiomics factors and loadings. (E) Baseline factor scores were used to train a classifier for predicting the TG with the model 
selected via cross-validation. The classifier was used to predict the TG for the testing cohort factor scores. This figure was created with BioRender.com.
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IL6 (33), and TNF levels (34), all of which were significantly asso-
ciated (Supplemental Figure 4A). Additionally, the metabolic path-
ways exhibited strong negative associations with T cell and antigen 
presentation pathways in PBMC transcriptomics (Supplemental 
Figure 4A). Tryptophan deprivation has been shown to sensitize T 
cells to apoptosis and inhibit T cell proliferation (35–37), while the 
tryptophan catabolite kynurenine induces Treg development and 
suppresses cytotoxic T cell responses (38, 39). Similarly, phenylala-
nine metabolism has been implicated in regulating the suppression 
of T cell immune responses (40).

T cell lymphopenia is associated with increasing COVID-19 
severity. The severity factor was characterized by decreased sig-
natures of T cell activities in PBMC transcriptomics (e.g., the T 
cell receptor signaling pathway [adj. P = 7.6 × 10–7] and the antigen 
processing and presentation pathway [adj. P = 9.2 × 10–7], includ-
ing genes coding for the T cell receptor complex, such as CD4, 
CD3E, CD3G, and CD8A, genes involved in TCR signal transduc-
tion such as NFATC13 and LCK, and genes coding for the MHC 

overaccumulation of downstream products of essential amino 
acids such as kynurenine and phenylalanine substrates (Figure 
3F), may play a key role in COVID-19 severity and contribute to 
the sustainment of the broad immune dysregulation captured by 
the severity factor in fatal illnesses at later stages.

To further evaluate the potential contribution of metabolic 
dysregulation in plasma to the systemic immune dysregulation, we 
conducted an interomics association analysis for direct association 
of the plasma metabolites with dysregulated cytokines and biolog-
ical pathways (enriched pathway activities) from proteomics and 
transcriptomics assays across blood and nasal compartments (see 
Methods). Indeed, tryptophan, phenylalanine, and histidine path-
ways showed strong associations with high-contribution soluble 
proteins, with CD274, CD40, CX3CL1 (fractalkine), and IL15RA 
exhibiting the strongest average associations, even after con-
trolling for demographic covariates, TGs, and visits (adj. P < 0.01). 
(Supplemental Figure 4A). IDO1-driven tryptophan breakdown 
correlates with the release of HGF (31) and heightened IL10 (32), 

Figure 2. Multiomics factor prediction results. (A) Prediction schema (created with BioRender.com). (B) Box plots of Spearman correlations and AUROC 
values for the severity task [TG1, TG2/TG3, TG4/TG5 vs. Probability(TG4/5)] and mortality task [TG4, TG5 vs. Probability(TG5|TG4/TG5)] across boot-
strapped iterations for each baseline model for the testing cohort. Significance was calculated by standard normal approximation of bootstrapped 
differences between models. (*P ≤ 0.05 and ***P ≤ 0.0001). (C) Dot plot of coefficients for the MCIA prediction model, with dot size and color repre-
senting magnitude and direction, respectively. (D) Alluvial plot showing the distribution of testing cohort individuals in each TG linked to their initial 
baseline respiratory status. The line color represents the predicted risk from the MCIA model. (E) Dot plot of P values from linear mixed-effects models 
with enrollment site as a random effect. Sex and age were further adjusted as fixed effects when associating baseline factor scores with various baseline 
clinical measurements, complications during hospital stay, and comorbidities in the training cohort, with dot size and color representing significance and 
direction, respectively. Values are only shown for adj. P ≤ 0.05.
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class II molecules HLADPB1, HLADRA, and HLADMB) (Figure 
3, C and D). Reduced T cell–associated gene expression likely 
reflected the persistent T cell lymphopenia observed in TG5 par-
ticipants (Supplemental Figure 2C). To validate this finding, we 
used linear mixed-effects modeling to evaluate for relationships 
of whole blood CyTOF cell frequencies with the severity factor 
and confirmed that the factor was associated with lower circulat-
ing T cells (Figure 3G). These results were also corroborated by 
the clinical association of lower absolute lymphocyte counts with 
the factor (Figure 2G) and were consistent with a targeted analysis 
of transcriptomics signatures of T cells from the literature (41–43) 
(Supplemental Figure 3B). Additionally, PBMC transcriptomics 
signatures of Th1, Th2, and Th17 cell differentiation pathways 
exhibited a downward trend over time in TG5 after adjusting for 
T cell frequencies (Supplemental Figure 3C), potentially reflecting 
dysregulated T cell functions besides lymphopenia.

Interestingly, the severity factor was also positively enriched 
in cell death pathways including necroptosis (including the 
genes PLA2G4A, PYGL, and FTL, coding for inducers of ROS in 
PBMC transcriptomics; adj. P = 0.052) and apoptosis (includ-
ing the cathepsin genes CTSD and CTSB, and the gene coding 
for the cell death receptor FAS in PBMC transcriptomics; adj. P 
= 0.087). Apoptotic pathway activity was positively associated 
with increased levels of several high-contribution soluble pro-
teins involved in regulating cell death (Supplemental Figure 3D) 
such as CASP8 (44, 45), CD274 (PDL1) (46), and TNF (47) and 
was negatively associated with the CD4+/CD8+ T cell frequencies 
in whole blood measured by CyTOF (Figure 3G, daggers). Our 
results suggest that increased induction of apoptosis, which could 
be modulated by inflammatory cytokines (Figure 3D), might con-
tribute to the loss of circulating T cells observed in patients with 
the most severe disease (5).

These findings are also consistent with the negative associa-
tions between T cell pathways and elevated tryptophan metabo-
lism, which could reflect T cell apoptosis and dysregulated T cell 
signaling. Interestingly, increased protein levels of CD274 (PDL1), 
a ligand for the inhibitory receptor programmed cell death 1 (PD-1) 

on T cells (46), was the top associated feature with the observed 
metabolic pathways enriched in the severity factor (Supplemental 
Figure 4A). The interomics association among essential metabo-
lite dysregulation, CD274, and T cell pathway activity revealed an 
orchestrated suppression of T cell responses across the 3 assays 
(metabolomics, serum proteomics, and transcriptomics).

An inflammation and NET formation network associates with 
worse outcomes. The severity factor was positively enriched in 
diverse inflammatory pathways across proteomics and transcrip-
tomics of both the nasal and blood compartments. Within these, 
inflammatory markers previously associated with COVID-19 sever-
ity were among the high-contribution features of the severity factor 
(Figure 3D and Supplemental Table 3), including IL6, CXCL10, and 
CXCL8 (IL8) proteins in serum. Proinflammatory soluble proteins 
are known to modulate metabolism (48, 49), transcription (50, 51), 
and other cellular activities (52–54). Similarly, our analyses revealed 
strong associations of proinflammatory soluble proteins with tran-
scriptomic, proteomic, and metabolomic pathways and cellular 
compositions in blood (Supplemental Figure 4, A and B).

Markers of NET formation were strongly enriched in the sever-
ity factor across multiple omics (including the protease cathepsin 
G [CTSG]; the histone H2AC20, H2AC1, and H2AC8 proteins in 
plasma; and genes encoding the neutrophil NADPH oxidase fac-
tors NCF1, NCF2, and NCF4 in PBMC transcriptomics; adj. P = 7.6 
× 10–7). In support of an increase in NET formation with increasing 
disease severity, the severity factor showed positive enrichment of 
upstream inducers of NET formation, such as IL-6 signaling (cyto-
kine IL-6 and the genes SOCS3 and STAT3 in the PBMC transcrip-
tomics; adj. P = 1.4 × 10–4), platelet activation (fibrinogens FGA, 
FGB, and FGG in plasma proteins [ref. 55]; adj. P = 0.02), and 
complement and coagulation (including the plasma proteins C2, 
CFb, and C1QC and genes coding for the complement receptor 1 
[CR1] and ITGAM in PBMC transcriptomics; adj. P = 2.5 × 10–6). 
Notably, the platelet activation pathway showed significant eleva-
tion in TG5 compared with TG4 at baseline (Figure 3E and Supple-
mental Figure 3A), supporting the possibility that platelet activa-
tion might trigger distinct kinetics of NETosis in TG4 versus TG5. 
Also enriched were intracellular pathways triggered during NET 
formation, such as actin degradation (actins ACTB and ATCG1 in 
the plasma proteins [ref. 56]) and TNF/NF-κB signaling (cytokine 
TNF and NF-κB target genes MMP9, FAS, JAG1; adj. P = 1.6 × 10–4), 
as were receptors expressed by and cytokines produced by neutro-
phils, including receptor IL15RA (57) and cytokines CXCL8 (IL8) 
and IL17A (58, 59) (Figure 3, C and D). Notably, CXCL8 is a neutro-
phil chemoattractant, indicating a potential increase in neutrophil 
production or greater recruitment in patients with more severe 
disease. These enriched inflammatory pathways were elevated 
over time uniquely in the mortality group, suggesting prolonged 
and unresolved inflammation associated with neutrophils preced-
ing death (Supplemental Figure 2C).

The enrichment of NET formation signatures also included 
ERK and p38 signaling pathways in transcriptomics, forming core 
inflammatory signaling pathways triggered by many high-con-
tribution cytokines grouped as “cytokines produced by macro-
phages” and “cytokines produced by neutrophils” (6) (Figure 
4A). Notably, among these cytokines, IL10, IL6, CXCL10, and 
CXCL7 were the most strongly associated with the severity factor 

Figure 3. The severity factor increased in severe COVID-19. (A) The 
severity factor scores across clinical TGs at baseline (severity adj. P = 1.4 × 
10–30, mortality adj. P = 0.049). (B) Longitudinal trajectory of the severity 
factor for different clinical TGs (mortality slope adj. P = 7.1 × 10–15). The 
shaded region denotes a 95% CI from a generalized additive mixed model 
of the fitted trajectory (thick black line), thin black lines show individual 
participant-fitted models, and light gray lines connect the participants’ 
time points. (C) Pathway enrichment of the severity factor. (D) Network of 
enriched pathways and selected high-contribution features. The full list of 
associated features is in Supplemental Table 5. (E) Heatmaps of differen-
tial expression tests for pathways in C that showed baseline separation 
between TG4 and TG5 with linear mixed-effects modeling. (F) Heatmap of 
differential expression tests of leading-edge metabolites from metabo-
lism pathways in E. (G) Regression coefficients from linear mixed-effects 
modeling between the severity factor and normalized cell frequencies 
from whole blood (CyTOF) of both parent and child populations. Daggers 
indicate a significant association between the reduction of a child cell 
population frequency, which is significantly associated with the severity 
factor and severity factor apoptosis signaling in PGX (mortality/severity = 
baseline mortality/severity task, slope5|4 = TG5 vs. TG4 longitudinally; *P 
≤ 0.05,**P ≤ 0.01,***P ≤ 0.001; joint = aggregated P value across omics).
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adj. P = 2 × 10–8 for the Ig complex in PPT; 1.48 × 10–9 for the Ig 
complex in PPG; 0.00637 for Ig production in PPT; 3.8 × 10–9 for 
Ig production in PPG). The mortality factor was also negatively 
associated with serum anti–spike IgG (Figure 5E, adj. P < 2.2 × 
10–16). Furthermore, this factor was negatively correlated with the 
frequency of total circulating B cells, particularly naive and transi-
tional B cell subsets measured by CyTOF (Figure 5F, adj. P = 4.59 
× 10–19), and total circulating B cells were also positively correlated 
with plasma Ig (Supplemental Figure 5B, adj. P = 2.34 × 10–8). The 
42 high-contribution PBMC genes were also negatively enriched 
for transcriptomic markers of B cells (Supplemental Figure 5C, 
adj. P = 3.00 × 10–10). These findings suggest that the mortality 
factor captures a lower level of B cell activity, plasma Igs, and anti–
spike IgG at the baseline in patients who died within the first 28 
days following hospitalization (Supplemental Figure 5, D and E). 
The decline in B cells could partially reflect increased apoptosis, 
especially of naive B cells, as suggested by the positive association 
with the apoptosis pathway constructed from the severity factor 
(Figure 5F, adj. P ≤ 0.05).

Dysregulated IFN responsiveness and cellular metabolic changes  
indicate mortality. Alongside the reduced Ig and B cell activity, 
the mortality factor exhibited a strong positive enrichment of 
IFN-stimulated genes (ISGs) in PBMC transcriptomics (OAS1 and 
OAS2, encoding viral RNA sensors, and IRF7, Figure 5D) and in 
nasal transcriptomics (MX1, RSAD2, LY6E, encoding antiviral 
immune genes). Further examination revealed that the lead-
ing-edge ISGs are enriched in antiviral rather than proviral func-
tions (60, 61). IRF-regulated and STAT-transcribed genes were 
also positively enriched in the mortality factor across both nasal 
and PBMC transcriptomics (Supplemental Figure 6A), confirm-
ing the propagation of IFN signal through transcriptional factor 
activity. Along with elevated JAK/STAT IFN signaling, known 
inhibitors of IFN signaling (IFN inhibitors) (62), including USP18, 
SOCS1, and PIAS4, were positively enriched in the mortality fac-
tor (P = 0.030), suggesting the possibility of dysregulated IFN 
responsiveness in critically ill patients.

The mortality factor was also enriched in acetylated peptides 
(4-hydroxyphenylacetylglutamine, phenylacetylglutamate, and 
phenylacetylglutamine) in the plasma metabolites (adj. P = 0.08) 
and cholesterol synthesis–related plasma proteins (adj. P = 1.75 × 
10–4), including APOC2, APOC3, APOA4, APOE, and LPA (Figure 
5, C and D). To comprehensively explore soluble markers contrib-
uting to the early separation between TG4 and TG5 in the mortal-
ity factor, we performed enrichment analysis of high-contribution 
metabolites and cytokines that also separated TG4 and TG5 at 
baseline (P < 0.05, Supplemental Table 8). We identified positive 
enrichment of pentose metabolism (including lyxonate, arabitol/
xylitol, arabonate/xylonate, adj. P = 0.07) and tyrosine metabo-
lism (including VMA, HVA, vanillactate, 3-methoxytyrosine, adj. 
P = 0.07), in addition to acetylated peptides, whose leading-edge 
metabolites showed separation between TG4 and TG5 at hospital 
admission (Figure 5G and Supplemental Table 8). An interomics 
association analysis further revealed significant associations 
between the 3 highlighted metabolomic pathways and proteom-
ics functions, including Ig complex reduction and cholesterol 
metabolism elevation, as well as soluble proteins CST5, CX3CL1, 
CCL25, CSF1, and KITLG (adj. P < 0.01, Supplemental Figure 6B).

and are known to elicit ERK and p38 signaling (Figure 4B). Along 
with enrichment of ERK and p38 signaling, we also noted signif-
icant enrichment of activator protein 1–regulated (AP-1–regulat-
ed) genes in the PBMC transcriptomics, and the transcriptional 
factor AP-1 is a downstream target of ERK and cytokine signaling 
(Supplemental Figure 3E). AP-1 has been previously highlight-
ed as a top feature of COVID-19–associated severity along with 
p38 and MAPK signaling (7). Receptors for the top 4 high-con-
tribution cytokines in the severity factor were detected in PBMC 
transcriptomics (Figure 4B), with IL6 receptor components pos-
itively enriched in the factor. However, other receptors such as 
CXCR3, the receptor for CXCL10, were weakly positively or neg-
atively associated with the severity factor, reflecting a potential 
reduction of certain cell types in the circulating PBMCs. Notably, 
reduced CXCR3 expression was consistent with lymphopenia, as 
suggested by reduced clinical absolute lymphocyte counts (Fig-
ure 2G). Such mixed correlations of receptors were also observed 
for other cytokines with high contribution to the severity factor 
(Supplemental Figure 4C).

To complement our pathway analysis, we investigated the 
association of the severity factor with immune cell frequencies 
in whole blood measured by CyTOF. We evaluated the overlap 
of severity factor high-contribution genes with transcriptomic 
markers of immune cells from blood and nasal tissue (41–43). 
Consistent with the enrichment of NET formation, the severity 
factor positively correlated with neutrophil frequencies in whole 
blood and was enriched for transcriptomic markers of neutrophils 
in the nasal transcriptomics (Figure 3G and Supplemental Figure 
3A). The severity factor was also positively correlated with mono-
cytes and significantly enriched in transcriptomic markers of 
monocytes (Supplemental Figure 3B), suggesting that monocytes 
may play a critical role in the inflammatory response identified 
and possibly promote NETosis.

The mortality factor reveals B cell and plasma Ig reduction as ear-
ly hallmarks of mortality among critical illness. The mortality factor 
was significantly higher at baseline for those who died within the 
first 28 days of hospitalization (TG5) compared with critically ill 
participants who survived (TG4) (Figure 5A, severity adj. P = 0.14, 
mortality adj. P = 0.049, Supplemental Table 4). Over time, the 
relative levels of the mortality factor dropped and were sustained 
at low levels in all groups (Figure 5B). Hence, this factor represents 
a mortality-related immune state at hospitalization and stratifies 
mortality for other critically ill patients.

The features with the highest contribution to the mortality 
factor were primarily plasma proteins and metabolites (Sup-
plemental Table 3), including 89 targeted plasma proteins, 289 
global plasma proteins, and 172 plasma metabolites. Only 14 
secreted cytokines/chemokines (of 92), 42 PBMC genes (of 
12,408), and 31 nasal genes (of 12,458) were highly contributing 
features to this factor (Supplemental Table 3). At baseline, there 
were 7 enriched pathways (adj. P < 0.1, Supplemental Table 7) 
that separated TG5 and TG4 in least 1 assay (P < 0.05, Figure 5C, 
Supplemental Figure 5A, and Supplemental Table 8).

The most prominent characteristic of the mortality factor was 
a reduction in Igs in the proteomics assays, including heavy- and 
light-chain variable regions and constant regions from multiple 
isotypes (e.g., IGHGs, IGHAs, IGHVs, IGKVs, IGLVs) (Figure 5D, 
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Creatinine was noted to have a strong positive correlation with 
acetylated peptides, cholesterol metabolism, tyrosine metabo-
lism, and pentose metabolism (ρ = 0.46, 0.24, 0.53, 0.53; adj. P = 
2.10 × 10–65, 6.69 × 10–18, 2.98 × 10–92, and 9.82 × 10–91, respectively, 
Supplemental Figure 6C).

The mortality factor reveals a dysregulated viral response immune 
cascade. A reduction of total plasma Igs and elevation of IFN- 
stimulated genes were the most prominent features of the mortal-
ity factor, together with strong negative associations with serum 
SARS-CoV-2 antibody titers and a robust positive association 
with nasal viral loads (Figure 5H). This suggests that a dysregu-
lated host immune cascade may have contributed to the failure 
of viral clearance in TG5. Notably, the total Ig level was strongly 

We note that the mortality factor was also negatively correlat-
ed with the platelet count on hospital admission (Figure 2F, adj. 
P = 2.36 × 10–11), which was consistent with the observed positive 
enrichment in complement and coagulation pathways in plasma 
proteomics (including FGA, FGB, C3, C4A, C4B, and C9, adj. P = 
0.007 [PPT], adj. P = 0.03 [PPG], Supplemental Table 7). Addi-
tionally, the mortality factor was positively enriched in partici-
pants with preexisting chronic kidney disease and renal complica-
tions during the hospital stay. Moreover, clinical laboratory testing 
demonstrated a positive correlation between the mortality factor 
and baseline clinical creatinine, a biomarker of kidney function, 
in addition to creatine being a high-contribution feature to the 
mortality factor in plasma metabolomics (Supplemental Table 3). 

Figure 4. Integrative multiomics network identifies upstream regulators and mediators of NET formation. (A) Broad elevation of transcriptomics 
and proteomics features in NET formation and complement in the severity factor. Pathway connections are from the Kyoto Encyclopedia of Genes and 
Genomes (KEGG) NET formation pathway. (B) Top cytokines in the severity factor, when bound to their receptors, trigger downstream signaling pathways, 
including ERK and p38 signaling pathways, and are important in NET formation.
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demonstrated elevation of apolipoproteins that can bind receptors 
capable of activating JAK signaling, possibly contributing to the 
heightened STAT activity (64) (Figure 6B).

Overall, our results suggest that mortality among critically ill 
patients could significantly associate with dysregulation of the 
host transcriptome, plasma metabolome, and proteome, as well as 
loss of circulating B cells, which was concomitant with a persistent 
viremia observed in the critically ill participants, who died as a 
result of the disease within the first 28 days.

Discussion
Our study represents an extensive evaluation of patients hospi-
talized with COVID-19, encompassing a wide range of omics. As 
participants were studied before the widespread availability of 
SARS-CoV-2 vaccines, our study provides a unique perspective on 
the naive viral response. The use of a previously published study 
involving a training cohort of 539 participants and validation with 
a newly introduced 613-participant test cohort, which varied in 
demographics, clinical laboratory testing (Supplemental Table 
2), and enrollment periods during the pandemic, enabled robust 
identification of multiomics factors associated with COVID-19 
severity and mortality. These factors outperformed previously 
studied clinical features (5), single-omics analytes, and several 
single-assay COVID-19 molecular signatures reported in the lit-
erature (65–67) in predictive modeling (Supplemental Figure 1I).

A key severity factor (factor 1) captured the severity trend 
among all hospitalized participants (TG1 vs. TG2/TG3 vs. TG4/
TG5) and distinguished participants in the critically ill group who 
survived during the first month (TG4) from those in the mortality 
group (TG5), with elevation over time uniquely in TG5 participants. 
In line with our prior work on clinical presentations of the TGs, the 
severity factor was significantly associated with older age, male 
sex, and comorbidities such as diabetes and hypertension. The fac-
tor illuminates a spectrum of immune changes across 6 omics plat-
forms extending beyond mere cellular alterations and captures an 
increase in metabolites related to tryptophan, phenylalanine, and 
histidine pathways; enhanced signatures of inflammation coagula-
tion and NET formation; heightened signatures of cell apoptosis; 
and a decrease in T cell signatures and circulating T cell numbers, 
which also showed strong associations with metabolic dysregula-
tions and proinflammatory soluble proteins (Figure 7A). Elevated 
serum concentrations of multiple circulating cytokines and chemo-
kines were associated with the severity factor, including elevation 
of 2 clusters of soluble proteins characterized by “cytokines pro-
duced by neutrophils” and “cytokines produced by macrophages,” 
as well as a negative association with the cluster “activators of 
cytotoxic NKs” (Supplemental Figure 4). Thus, the elevated longi-
tudinal trend in TG5 could reflect an unresolved dysregulation and 
elevation of inflammatory cytokines in fatal illness when the cyto-
toxic antiviral activities of T cells and NK cells were insufficient to 
reduce viral burden. The negative association with activators of 
cytotoxic NKs cluster was consistent with previous analysis results 
from the targeted serum proteomics assay alone, which identified 
this cytotoxic NKs cluster as a marker of recovery (6).

A joint investigation of molecular signatures’ baseline levels 
and kinetics in the severity factor revealed that essential amino  
acid metabolism dysregulation potentially contributed to its 

associated with the serum SARS-CoV-2 antibody titer levels and 
had an inverse relationship with viral load (Figure 6A and Supple-
mental Figure 6C, adj. P ≤ 0.05).

In contrast, both IFN pathway activity and IFN inhibitor lev-
els showed a strong inverse relationship with serum SARS-CoV-2 
antibody titers and total Igs and a positive correlation with viral 
loads in both nasal (Figure 6B and Supplemental Figure 6C) and 
PBMC (Supplemental Figure 7 and Supplemental Figure 6C) ISGs. 
The observed elevation of nasal ISGs in TG5 at baseline poten-
tially reflected virus-associated IFN production. After adjusting 
for viral load, nasal ISG levels became more comparable between 
TG4 and TG5 (Supplemental Figure 6D, P = 6 × 10–3 before adjust-
ment, P = 0.11 after adjustment, see Supplemental Methods). This 
adjustment accentuated the overall lower ISG expression levels in 
the TGs with more severe disease versus those with moderate dis-
ease (TG4/TG5 vs. TG1–3, Supplemental Figure 6D), consistent 
with the reduced IFN responsiveness among patients with severe 
disease observed in previous studies (13). Interestingly, type I IFN 
gene expression in nasal transcriptomics declined more rapidly 
in TG5 than in TG4, both before and after adjustment (Figure 6C 
and Supplemental Figure 6E, P = 9 × 10–3 before adjustment and P 
= 7 × 10–3 after adjustment). This substantially faster ISG decline in 
TG5 was accompanied by elevated expression of known inhibitors 
of IFN signaling (Figure 6D, adj. P = 0.0015), which was uniquely 
observed in TG5 and matched the viral load trend in TG5 (Figure 
6E). These observations supported the possibility of dysregulated 
IFN responsiveness among critically ill participants, which was 
unresolved in those who succumbed to infection, suggesting that 
higher viral loads could trigger elevated IFN signaling that may 
counterproductively turn on a negative feedback loop to suppress 
IFN signaling before the virus is cleared (62, 63) and contribut-
ing to mortality (Figure 6, B–E). Additionally, plasma proteomics 

Figure 5. Multiomics mortality factor enriched for antibodies, IFN sig-
naling, and cellular metabolic changes. (A) Mortality factor scores across 
clinical TGs at baseline (severity adj. P = 0.14, mortality adj. P = 0.049). (B) 
Longitudinal trajectory of the mortality factor for different clinical TGs. The 
shaded region denotes a 95% CI of the fitted trajectory (thick black line), 
thin black lines show individual participant-fitted models, and light gray 
lines connect the participants’ time points. (C) Functional pathway enrich-
ment of the mortality factor revealed downregulation of Igs, upregulation 
of the IFN response, cholesterol metabolism, and acetylated peptides. 
(D) Network of enriched pathways in C and top selected high-contribution 
features. The full list of associated features is given in Supplemental 
Table 7. (E) Spearman correlation test between the mortality factor and 
serum anti–spike IgG antibody using baseline samples; P values were 
calculated from a linear mixed-effects model controlling for TG, sex, and 
age. (F) Regression coefficients from linear mixed-effects modeling of the 
mortality factor with normalized cell frequencies from whole blood (CyTOF) 
of both parent and child populations. Daggers indicate a significant asso-
ciation between the reduction of a child cell population frequency, which 
is significantly associated with the mortality factor and severity factor 
apoptosis signaling in PGX. (G) Differential expression tests via mixed- 
effects modeling of leading-edge metabolites in highlighted metabolomic 
pathways. (H) Spearman correlation coefficient between the mortality 
factor and nasal SARS-CoV-2 quantitative PCR (qPCR) Ct using baseline 
samples; P values were calculated from a linear mixed-effects model 
controlling for TG, sex, and age (mortality/severity = baseline mortality/
severity task, slope5|4 = TG5 vs. TG4 longitudinally; *P ≤ 0.05, **P ≤ 0.01, 
***P ≤ 0.001; joint = aggregated P value across omics).
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transcriptomic pathways in the severity factor. For example, sig-
nificant associations observed between CD274 (programmed 
death ligand 1 [PD-L1]), T cell pathway activity, and dysregu-
lated tryptophan metabolism suggested a coordinated suppres-
sion of T cell responses across metabolomics, plasma/serum 
proteomics, and transcriptomics. Essential amino acid metabo-
lism dysregulation was significantly associated with TNF, IL6, 
IL10, HGF, and CD40, all of which were linked to IDO1-driven  

distinct kinetics between TG4 and TG5. These amino acids, 
and their metabolites, act as important protein building blocks, 
key energy sources in metabolic pathways (e.g., Krebs cycle), 
and modulators of immunity (68). Our analysis also suggest-
ed the immune-modulatory role of metabolites associated with 
the severity factor, shown via strong associations of essential 
amino acid dysregulation and high-contribution cytokines pro-
duced by neutrophils and macrophages, as well as protein and  

Figure 6. Virus-centered integrative multiomics network of the mortality factor. (A) Positive association of nasal SARS-CoV-2 viral load and inverse 
associations of total and SARS-CoV-2–specific antibodies were top features of the mortality factor. (B) JAK/STAT IFN signaling was positively associated 
with the mortality factor and viral load, and IFN signaling inhibitors were also positively associated with the mortality factor, potentially contributing to 
the dysregulation of IFN responsiveness and uncontrolled viral load in TG5 despite early ISG elevation. The elevation of apolipoproteins from the plasma 
proteomics may also have contributed to the heightened STAT activity. Longitudinal trajectories from generalized additive mixed-effects modeling of (C) 
hallmark IFN-α response genes in the NGX, (D) IFN inhibitors in the NGX, and (E) nasal SARS-CoV-2 viral load determined from RT-qPCR Ct.
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IFN signaling in the mortality group TG5. Notably, viral load 
remained high only in TG5 over time, suggesting failed control of 
viral clearance. The combined results from analyzing viral loads, 
Ig levels, and IFN signaling/inhibitor genes raise the possibili-
ty that, while IFN-induced viral clearance may be successful in 
patients with moderate disease (TG1–TG3), IFN responsiveness 
might be dysregulated, potentially due to elevated expression of 
IFN inhibitors driven by sustained high viral loads in the critically 
ill patients (TG4 and TG5). The observed dynamics of viral load, 
IFN, and antibodies supports the idea of early administration of 
antiviral and antibody therapies as an essential intervention to 
reduce mortality. The mortality factor stratified participants in 
TG4 versus TG5 primarily during the early stages of hospitaliza-
tion, indicating the importance of timely intervention, as support-
ed by clinical trial data on Paxlovid (80, 81). Several trials showed 
that early treatment with mAb therapies in outpatients reduced 
hospitalizations and severe disease when the mAb matched the 
virus variants in circulation (82–84). However, IVIG and conva-
lescent plasma therapies failed to meet their primary endpoints in 
several acute COVID-19 clinical trials, with their roles remaining 
inconclusive (85–89). One potential explanation for the failure 
may be related to the timing of administration of these therapies 
and patient inclusion criteria in the trials, both of which could be 
critical factors for intervention, as suggested by our analyses.

The mortality factor was strongly associated with specific 
disease comorbidities including chronic kidney disease, immu-
nosuppression, and hypertension, which relate to mortality factor 
high-contribution molecular markers such as creatinine. Addi-
tionally, acute renal disease, a frequent complication in critically 
ill patients, was linked to the mortality factor. This association 
may account for the observed increase in tyrosine and pentose 
metabolites, typically cleared by the kidneys, as well as the mor-
tality factor’s correlation with elevated creatinine and blood urea 
nitrogen (BUN) levels (90–92). The tyrosine metabolites (HVA, 
VMA, and VLA) are also byproducts of catecholamine biosynthe-
sis/degradation and are major terminal urinary metabolites con-
verted from l-dopa, dopamine, and norepinephrine, which may 
reflect the use of exogenous pressors in ventilated patients (Sup-
plemental Figure 3F). Furthermore, previous work has suggested 
that dopamine inhibits SARS-CoV-2 viral replication and stimu-
lates type I IFNs, with SARS-CoV-2 possibly disrupting dopamine 
pathways which could also result in increased catecholamine 
downstream byproducts (93, 94).

Another interesting observation from comparing the severity 
and mortality factors is that “complement and coagulation” was a 
significantly enriched functional pathway in both factors despite 
their low correlation. Overlap between the factors could reflect 
different biological processes that influence the complement and 
the coagulation pathway activities. Although the 2 factors shared 
many leading-edge proteins, the severity factor was more strongly 
associated with classical complement-associated proteins (C1Q, 
C1R, C1S, C2), whereas the mortality factor had a more significant 
association with the alternative pathway (C3, FB, FD). The severity 
factor was enriched in inflammation, platelet activation, and NET 
formation, which are closely related to the complement and coag-
ulation cascades (95). Using baseline clinical laboratory measures, 
we observed that the severity factor was positively associated with 

tryptophan breakdowns (31–34). Interestingly, metabolites result-
ing from IDO1-driven tryptophan breakdowns, such as kynurenine, 
kynureninate, and 3-hydroxykynurenine, were highly elevated in 
the severity factor, suggesting functional activity of IDO1. Addi-
tionally, IDO1 participates in the phenylalanine catabolic path-
way, resulting in the formation of phenylpyruvate. The functional 
activity of IDO1 was also suggested by the positive correlation of 
phenylalanine pathway metabolites with HPD, FAH, and SLC16A1 
in PBMC transcriptomics, which are genes associated with the 
active conversion of phenylpyruvate from phenylalanine (69–71) 
(Supplemental Figure 3F). Furthermore, phenylalanine, tyrosine, 
and tryptophan metabolism has been previously reported to be 
dysregulated in patients with sepsis, suggesting this dysregulation 
may be elicited in response to multiple types of severe infections 
(72). These observations indicate that these metabolites could be 
evaluated clinically in early COVID-19 to assess disease severity, 
and intervention via modulation of nutrients may prove benefi-
cial, with several clinical trials currently underway in patients with 
COVID-19 to evaluate amino acid supplementation (73–75).

Another highlighted factor, the mortality factor (factor 4), was 
substantially higher at baseline in participants in TG5 compared 
with those in TG4, and captured an immune program of dysregu-
lated IFN signaling, an elevated nasal viral load, and a reduction 
in circulating B cells, bulk Ig, and SARS-CoV-2–specific serum 
IgG (Figure 7B). The mortality factor was significantly associated 
with older age and several comorbidities including chronic kid-
ney disease, solid organ/bone marrow transplant, hypertension, 
and chronic cardiac disease but, notably, was not significantly 
associated with sex. The levels of both SARS-CoV-2–specific IgG 
and total plasma Ig were reduced in the mortality factor and were 
negatively associated with viral load. These findings suggest that 
B cell immune responses were important for controlling the virus 
among critically ill patients during early infection. In addition, 
the overall reduction in circulating Ig in participants who did not 
recover could contribute to general inflammation, as intravenous 
Ig (IVIG) therapy suppresses inflammatory pathology (76–78). 
Thus, the reduction of B cell activity and circulating Ig in patients 
who died from COVID-19 during the first month of hospitaliza-
tion might not only have allowed higher viral replication in criti-
cal illness, which could have fueled additional inflammation, but 
could have also potentially promoted inflammation indirectly, 
resulting in tissue damage.

Antiviral ISG activity increased with the mortality factor 
and was positively associated with viral load, consistent with a 
virus-induced increase in type I IFNs (79). Remarkably, while 
ISG levels were relatively higher in the mortality group TG5 com-
pared with TG4 at baseline, the expression of IFN-inhibitory  
genes in the upper respiratory tract was also elevated in TG4 and 
TG5 at baseline, which could suggest suppression of effective 
IFN signaling in critically ill patients. In addition to the elevated 
IFN-inhibitory genes in TG4 and TG5 at baseline, TG4 and TG5 
had a higher proportion of participants with anti-IFN antibodies, 
which are associated with COVID-19 severity and can inhibit IFN 
and STAT signaling (17) (Supplemental Figure 6, F and G). When 
evaluated longitudinally, IFN-inhibitory genes were uniquely ele-
vated in TG5, which could also contribute to the faster decline in 
ISGs in TG5 compared with other groups, leading to inadequate 
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identified in other cohorts with a full spectrum of COVID-19 sever-
ity (7, 28, 99–101). Similarly, vaccination and varying SARS-CoV-2 
strains, both of which were not evaluated in the present study, 
may further alter the observed severity and mortality signatures. 
Furthermore, as nasal transcriptomics may not be reflective of the 
lower respiratory tract, additional work exploring omics directly 
from the lower respiratory tract may help elucidate how infection 
was contributing to the systemic changes observed in this study. 
In addition, the present study did not explore other questions of 
interest, including differences in immune responses by age, sex, 
COVID-19–associated comorbidities, medication, and post-acute 
sequelae of COVID-19, which were planned for future follow-up 
work. Still, the IMPACC deep multiomics immunophenotyping 
data present a uniquely rich resource for further investigations, 
including those not covered by this study. For example, while the 
severity factor showed many significant pathways in the enrich-
ment analysis, we focused on the specialized biological functions 
that were corroborated by multiple assays except for metabo-
lism functions due to the limitation of existing knowledge bases. 
Broader or single data set–restricted pathways, unexplored here, 
could illuminate additional complex aspects of COVID-19.

Methods
Sex as a biological variable. Our study examined male and female par-
ticipants. The cohort included 704 (61%) men and 448 (39%) women. 
We found that male sex was significantly associated with the severity 

D-dimer, PTT and PT, suggesting a relationship with coagulop-
athy in patients with COVID-19 (96). In contrast, the mortality 
factor was negatively associated with platelet count and demon-
strated no significant association with D-dimer, PT, or PTT. These 
associations collectively suggest that impaired coagulation is asso-
ciated with severe disease, whereas prolonged thrombocytopenia 
may be predictive of mortality. Our findings contribute mecha-
nistic evidence to the evolving concept of “immunothrombosis,” 
which refers to the complex interplay between immune cells, 
complement, coagulation factors, and NETs that are important in 
COVID-19–associated coagulopathy (12, 97, 98).

Our integrative longitudinal analysis formulates mechanistic 
hypotheses concerning temporal coordination, elucidating the 
heterogeneity in disease progression among hospitalized patients. 
Our expansive analysis across training and validation cohorts cor-
roborates these hypotheses. Although this study does not facilitate 
further validation through functional assays, it establishes a sub-
stantive foundation for future in-depth investigations of detailed 
mechanisms behind disease heterogeneity.

Limitations. All participants in the IMPACC cohort were hos-
pitalized for COVID-19 as part of the study design (23); therefore, 
our immune programs (MCIA factors) were not constructed using 
profiles from individuals with mild COVID-19 or healthy individ-
uals and may be biased toward those with more severe COVID-19. 
However, many of our highlighted functions, such as NET forma-
tion, T cell lymphopenia, and tryptophan catabolism, have been 

Figure 7. Summary of highlighted host immune programs. (A) The severity factor identified an integrated multiomics cascade associated with dis-
ease severity, characterized by dysregulated metabolisms, e.g., essential amino acid (aa) metabolism, elevated inflammatory soluble proteins and 
transcripts, an elevated signature of coagulation and NETosis, and reduced T cell circulation and signaling in patients with more severe disease. The 
dysregulated metabolisms potentially served as early modulators of this broadly dysregulated immune state. The links in this panel reflect hypoth-
eses formulated on the basis of our findings. (B) The mortality factor revealed a virus-centered multiomics immune state as an early hallmark of 
mortality among the critically ill patients (ICU, ventilation, or mortality), including reduced Igs and B cell circulation, dysregulated IFN responsive-
ness, as suggested by elevated IFN inhibitor levels in both nasal and PBMC transcriptomics, along with persistently elevated viral loads in patients 
with fatal illness. This figure was created with BioRender.com.
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Study approval. NIAID staff conferred with the Department of 
Health and Human Services Office for Human Research Protections 
(OHRP) regarding the potential applicability of the public health sur-
veillance exception (45CFR46.102) to the IMPACC study protocol. 
The OHRP concurred that the study satisfied the criteria for the pub-
lic health surveillance exception, and the IMPACC study team sent 
the study protocol and the participant information sheet for review 
and assessment to the IRBs at the participating institutions. Twelve 
institutions elected to conduct the study as public health surveil-
lance, whereas 3 sites with prior IRB-approved biobanking protocols  
elected to integrate and conduct the IMPACC study under their insti-
tutional protocols (The University of Texas at Austin, IRB 2020-04-
0117; UCSF, IRB 20-30497; Case Western Reserve University, IRB 
STUDY20200573) with informed consent requirements. Participants 
enrolled under the public health surveillance exclusion were provided 
information sheets describing the study, samples to be collected, and 
plans for data deidentification and use. Those who opted not to partic-
ipate after reviewing the information sheet were not enrolled. In addi-
tion, participants did not receive compensation for study participation 
while they were inpatients and were subsequently offered compensa-
tion during outpatient follow-ups.

Data availability. Data files are available at ImmPort Shared 
Data under accession number SDY1760 and in the NLM’s Database 
of Genotypes and Phenotypes (dbGaP) under accession number 
phs002686.v1.p1. All impacc-public-code analysis codes have been 
deposited in Bitbucket (https://bitbucket.org/kleinstein/impacc-
public-code) and are publicly available. DOIs are included in Sup-
plemental Table 11, which lists the key resources. Data required to 
re-create both the main and supplemental figures are included in 
the Supporting Data Values file.
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within 72 hours of hospitalization (visit 1) and on days 4, 7, 14, 21, 
and 28 after hospital admission for 1,152 participants, amounting to 
3,077 sampling events. The levels of plasma proteomics (global and 
targeted; PPG and PPT, respectively), serum proteins (SPT), plasma 
metabolites (PMG), and nasal and PBMC mRNAs (NGX and PGX, 
respectively) were measured. The cohort was divided into training 
(n = 1,493) and test (n = 1,584) sets. The MCIA model was construct-
ed from the preprocessed training multiomics data set, which was 
used on the test cohort for validation. The MCIA factors were identi-
fied and analyzed to comprehensively characterize the cross-tissue, 
multiomics immunological signatures that were associated with the 
severity and mortality. The measurements of nasal viral load and 
serum SARS-CoV-2 antibody titers as well as whole blood CyTOF 
for the same cohort were used to validate the immunological signa-
tures and to develop further mechanistic insights into immune pro-
grams of COVID-19 severity and mortality. More details regarding 
the study cohort, sample processing, and batch correction can be 
found in the Supplemental Methods.

Statistics. Multiple comparisons were accounted for via Benja-
mini-Hochberg correction by default, with adj. P values of less than 
0.05 considered significant unless otherwise stated. Linear mixed- 
effects modeling was used for differential analysis of baseline mul-
tiomics factors, selected pathway activities, and individual analytes 
across TG groups, after adjusting for sex and age as fixed effects and 
enrollment site as a random effect. Generalized mixed-effects mod-
eling was utilized to investigate differential kinetics across conditions 
using samples from all visits after further adjusting for participant 
ID as a random effect. Unless otherwise specified, these sets of fixed 
and random effects for baseline and longitudinal samples were the 
default for all mixed-effects modeling. Linear mixed-effects regres-
sion was also adopted to generated interomics association P values 
using all visit samples. Models additionally adjusted for visit number 
and TG groups when investigating selected pathways and analytes 
from 2 assays used in MCIA factor construction to alleviate the strong 
coselection effects. High-contribution features for each assay were 
defined as the features whose absolute coefficients (from regressing 
features to factors) were 0.2 or greater and had adj. P values of signif-
icance (adj. P ≤ 0.01). Functional enrichment analysis for multiomics 
factors was performed using high-contribution features with a mHG 
test and a variety of publicly available databases, with only those with 
an adj. P value of less than 0.1 considered. The pathway activities 
were calculated as a weighted sum of a selected set of features in a 
pathway. See Supplemental Methods for detailed descriptions of all 
statistical analyses and models.
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