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Introduction
Recently, the tumor immune microenvironment (TIME) has attract-
ed increasing research attention (1). A growing body of literature 
highlights its crucial role in cancer progression and therapeutic 

responses (1–3). In particular, changes in abundance of lymphoid and 
myeloid cells, both as main components of the TIME, are closely cor-
related with prognosis and immunotherapy response in various can-
cers (4–9). Gastric cancer (GC) is the fifth most common malignancy 
and the third leading cause of cancer-related death worldwide (10). 
In recent years, immunotherapy has emerged as an additional treat-
ment option to improve the survival of patients (11–13). Important-
ly, an encouraging anti–PD-1 therapeutic outcome in GC has been 
reported by the Checkmate-649 trial (14). However, high variability 
in the benefit of immunotherapy has been observed in patients with 
GC, which indicates a remaining opportunity to improve individual 
decision making (14–17). Identification of the lymphoid and myeloid 
TIME at diagnosis can determine the response to immunotherapy 
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and myeloid immune context, or predict survival. Moreover, 
patients with available radiogenomics information (n = 42) were 
used to determine relationships between genomics characteriza-
tion and imaging appearance. Furthermore, patients treated with 
anti–PD-1 immunotherapy (n = 261) were used to investigate asso-
ciations between imaging biomarkers and therapeutic outcomes. 
The clinicopathological characteristics of patients in the training 
cohort (n = 242), internal validation cohort 1 (n = 160), internal 
validation cohort 2 (n = 512), external validation cohort 1 (n = 102), 
external validation cohort 2 (n = 1,123), and prospective valida-
tion cohort (n = 158) are listed in Table 1. Of these patients, 1,574 
(68.5%) were men, and 723 patients (31.5%) were women. The 
median age (interquartile range) for men was 58.0 (50.0–65.0) 
years, and the median age (interquartile range) for women was 
55.0 (43.0–63.0) years. Most patients (n = 1,651, 71.9%) had stage 
II or III disease.

Supplemental Table 1 (supplemental material available online 
with this article; https://doi.org/10.1172/JCI175834DS1) lists 
the detailed clinicopathological features of the immunotherapy 
cohort 1 (n = 198), immunotherapy cohort 2 (n = 63), and radioge-
nomics cohort (n = 42). Among the 2 immunotherapy cohorts, 149 
patients (57.1%) were men, and 112 patients (42.9%) were women. 
The median age (interquartile range) for men was 60.0 (52.0–
67.0) years, and the median age (interquartile range) for women 
was 51.0 (41.0–63.0) years. Almost all patients had stage III or IV 
disease, except for 17 patients with stage II GC. Immunotherapy 
as first-, second-, and third-line treatment was administered in 
147, 72, and 42 patients, respectively. The objective response (OR) 
rates in the immunotherapy cohort 1 and 2 were 32.3% and 19.1%, 
respectively. In the radiogenomics cohort, 36 patients (85.7%) 
were men, and 6 patients (14.3%) were women. The median age 
(interquartile range) for men was 68.0 (59.0–72.0) years, and the 
median age (interquartile range) for women was 66.0 (52.0–68.0) 
years. Most patients (n = 39; 90.5%) had stage II or III disease.

Lymphoid and myeloid immune context were significantly asso-
ciated with prognosis. This study initially evaluated the predictive 
power of the lymphoid and myeloid immune context, determined 
through IHC, for survival outcomes. The Kaplan-Meier plots of 
disease-free survival (DFS) and overall survival (OS) are shown 
in Figure 2. Patients with a high lymphoid immune score (LIS) or 
low myeloid immune score (MIS) had a better prognosis (DFS and 
OS) in the training cohort and 2 validation cohorts (P < 0.01 for all 
with statistical significance). The relationships between the LIS or 
MIS status and clinicopathological characteristics in each cohort 
are presented in Supplemental Tables 2 and 3. Multivariate Cox 
regression analyses also confirmed that, after adjusting for other 
clinicopathological variables, the LIS (HR: 0.183–0.362) and MIS 
(HR: 1.971–6.014) remained independent predictive factors for 
clinical outcomes (DFS and OS) (Supplemental Tables 4–7). Fur-
ther, the comparison of specific scores in each LIS or MIS status 
(i.e., 0 versus 1 in the LIS-low group; 2 versus 3 versus 4 in the LIS-
high group; and 1 versus 2 in the MIS-high group), did not reveal 
statistically significant differences in survival (all P > 0.1) (Supple-
mental Figures 1 and 2).

Development and validation of the radiomics imaging biomark-
ers. In the training cohort, using several artificial intelligence algo-
rithms, including max-relevance and min-redundancy (mRMR) 

(6–8, 18, 19). Previous studies reported a positive effect of the lym-
phoid immune context and a negative effect of the myeloid immune 
context on prognosis and immunotherapy response (6–8, 20). 
Hence, evaluation of the immune context may be helpful to inform 
individualized decision making for immunotherapy.

Currently, assessment of immune infiltration in the TIME 
mainly depends on immunohistochemical staining or bulk-tissue 
sequencing (21–24). Nevertheless, both methods require substan-
tial tissue specimens obtained from invasive procedures, which 
might not be appropriate for patients receiving neoadjuvant ther-
apy or those with metastatic disease. Moreover, tumor biopsies 
may be influenced by spatial heterogeneity within a small sample 
and fail to achieve longitudinal real-time dynamic monitoring of 
immune signaling. Therefore, this approach may be insufficient 
for the accurate evaluation of lymphoid and myeloid cells in the 
TIME (25–28). Thus, it was recently proposed that peripheral blood 
lymphoid and myeloid cells can be used to describe the TIME (29, 
30). However, considering the volatility of immune cells’ abun-
dance in peripheral blood and susceptibility to interference from 
individual and environmental factors, it cannot represent the real 
immune context. Thus, development and validation of a noninva-
sive approach for accurate and dynamic assessment of the immune 
context are clearly valuable and long overdue.

Radiomics is an emerging field that converts medical images into 
mineable quantitative data by acquiring multidimensional imaging 
features (31, 32). It is currently proposed as a digital biopsy for non-
invasive tumor evaluation (33, 34). Accumulating evidence has sug-
gested computed tomography (CT) image–based features are closely 
associated with temporal and spatial heterogeneity of the tumor and 
the TIME (34, 35). Particularly, the combination of intratumoral and 
peritumoral imaging features will increase our knowledge regard-
ing tumor biology and the immune microenvironment, followed by 
contribution to prognosis prediction and immunotherapy decision 
making (31, 33, 36), as they can better demonstrate diverse spectrum 
or activation status of tumor-infiltrating immune cells. On this basis, 
several studies have confirmed a strong relationship between imag-
ing features and tumor-infiltrating immune cells (36–38). However, 
to our knowledge, the noninvasive radiomics approach to evaluate 
lymphoid and myeloid immune context has not been reported, and 
studies on disclosing the association between genomics characteri-
zation and imaging appearance are lacking.

This study aims to develop and validate noninvasive imag-
ing biomarkers for evaluation of the lymphoid and myeloid 
immune context based on intratumoral and peritumoral CT 
radiomics features in patients with GC. Using the Shapley value 
and transcriptome sequencing data, we provided explanations to 
the imaging biomarkers and determined relationships between 
genomics characterization and imaging appearance. We further 
evaluated their predictive values on prognosis and anti–PD-1 
immunotherapy response.

Results
Clinicopathological characteristics. The present study included 
2,600 patients with GC from 9 independent cohorts at 4 differ-
ent centers. The overall study design is shown in Figure 1. Patients 
with available information on CT images and IHC or available 
follow-up data (n = 2,297) were selected to evaluate the lymphoid 
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than that in the LIS-low group within each cohort. In addition, the 
AUC (95% CI) for the MRS in distinguishing the myeloid immune 
status was 0.750 (0.689–0.810), 0.745 (0.667–0.822), and 0.736 
(0.640–0.831) in the training cohort, internal validation cohort 1, 
and external validation cohort 1, respectively, followed by a signifi-
cantly higher MRS observed in the MIS-high group than that in the 
MIS-low group. We also confirmed that the AUC values of these 2 
imaging biomarkers were higher than that of any single radiomics 
feature in the training and validation cohorts (Supplemental Figure 
4). The optimal cut-off value for LRS and MRS identified by Youd-
en’s index in the training cohort was –0.1293 and –0.2604, respec-
tively (Supplemental Table 8). Accordingly, patients were classified 
into different radiomics status: a LRS-low group (LRS < –0.1293) 
or a LRS-high group (LRS ≥ –0.1293), and a MRS-low group (MRS 
< –0.2604) or a MRS-high group (MRS ≥ –0.2604). The relation-
ships between the LRS or MRS status and clinicopathological char-

algorithm, collinearity reduction algorithm, the least absolute 
shrinkage and selector operation (LASSO) logistic regression algo-
rithm, the support vector machine-recursive feature elimination 
(SVM-RFE) algorithm, and multivariate logistic regression meth-
od (MLR), we constructed 2 imaging biomarkers, called lymphoid 
radiomics score (LRS) and myeloid radiomics score (MRS), to 
evaluate the lymphoid and myeloid immune context, respective-
ly. The detailed workflow and calculation formulas are shown in 
Supplemental Figure 3. The LRS radiomics biomarker included 7 
intratumoral and 4 peritumoral features, while the MRS radiomics 
biomarker included 10 intratumoral and 4 peritumoral features. As 
shown in Figure 3, the AUC (95% CI) for the LRS in distinguishing 
the lymphoid immune status was 0.773 (0.714–0.833) in the train-
ing cohort, 0.767 (0.690–0.843) in the internal validation cohort 1, 
and 0.765 (0.664–0.867) in the external validation cohort 1. More-
over, a significantly higher LRS was observed in the LIS-high group 

Figure 1. Study design for the discovery and validation of the radiomics imaging biomarkers for the lymphoid and myeloid immune context in gastric 
cancer. The training cohort, 2 internal validation cohorts (1 and 2), the prospective validation cohort, and the immunotherapy cohort 1 were recruited from 
Nanfang Hospital of Southern Medical University. Two external validation cohorts (1 and 2) were obtained from Sun Yat-sen University Cancer Center. The 
radiogenomics cohort was from the Cancer Immunome Atlas and the Cancer Genome Atlas database of the US. The immunotherapy cohort 2 was retro-
spectively registered from Guangdong Provincial Hospital of Chinese Medicine.
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Table 1. Clinicopathological characteristics of patients with GC in the training and validation cohorts

Variables Training  
cohort

Internal validation 
cohort 1

Internal validation 
cohort 2

External validation 
cohort 1

External validation 
cohort 2

Prospective validation 
cohort

No. of patients 242 160 512 102 1123 158

Median age (range) 57 (47–64) 57 (50–65) 56 (48–63) 59 (48–65) 57 (49–65) 57 (49–65)

Sex (%)
Men 159 (65.7) 114 (71.3) 351 (68.6) 73 (71.6) 773 (68.8) 104 (65.8)
Women 83 (34.3) 46 (28.7) 161 (31.4) 29 (28.4) 350 (31.2) 54 (34.2)

Tumor location (%)
Cardia 46 (19.0) 33 (20.6) 66 (12.9) 33 (32.4) 374 (33.3) 33 (20.9)
Body 46 (19.0) 36 (22.5) 90 (17.6) 22 (21.6) 236 (21.0) 30 (19.0)
Antrum 135 (55.8) 84 (52.5) 313 (61.1) 44 (43.1) 459 (40.9) 91 (57.6)
Whole 15 (6.2) 7 (4.4) 43 (8.4) 3 (2.9) 54 (4.8) 4 (2.5)

Lauren type (%)
Intestinal 114 (47.1) 72 (45.0) 232 (45.3) 38 (37.3) 380 (33.8) 52 (32.9)
Diffuse and mixed 128 (52.9) 88 (55.0) 280 (54.7) 64 (62.7) 743 (66.2) 106 (67.1)

Differentiation status (%)
Well 27 (11.2) 19 (11.9) 86 (16.8) 1 (1.0) 20 (1.8) 12 (7.6)
Moderate 56 (23.1) 42 (26.3) 113 (22.1) 19 (18.6) 174 (15.5) 29 (18.4)
Poor or undifferentiated 159 (65.7) 99 (61.9) 313 (61.1) 82 (80.4) 929 (82.7) 117 (74.1)

Tumor size (%)
≤ 4cm 121 (50.0) 77 (48.1) 341 (66.6) 53 (52.0) 440 (39.2) 107 (67.7)
> 4cm 121 (50.0) 83 (51.9) 171 (33.4) 49 (48.0) 683 (60.8) 51 (32.3)

CEA (%)
Normal 221 (91.3) 140 (87.5) 457 (89.3) 84 (82.4) 910 (81.0) 151 (95.6)
Elevated 21 (8.7) 20 (12.5) 55 (10.7) 18 (17.6) 213 (19.0) 7 (4.4)

CA19-9 (%)
Normal 207 (85.5) 141 (88.1) 424 (82.8) 88 (86.3) 908 (80.9) 144 (91.1)
Elevated 35 (14.5) 19 (11.9) 88 (17.2) 14 (13.7) 215 (19.1) 14 (8.9)

Depth of invasion (%)
T1 53 (21.9) 37 (23.1) 141 (27.5) 18 (17.6) 148 (13.2) 49 (31.0)
T2 29 (12.0) 14 (8.8) 76 (14.8) 14 (13.7) 130 (11.6) 25 (15.8)
T3 23 (9.5) 25 (15.6) 14 (2.7) 20 (19.6) 239 (21.3) 41 (25.9)
T4a 109 (45.0) 62 (38.8) 164 (32.0) 41 (40.2) 516 (45.9) 32 (20.3)
T4b 28 (11.6) 22 (13.8) 117 (22.9) 9 (8.8) 90 (8.0) 11 (7.0)

Lymph node metastasis (%)
N0 111 (45.9) 71 (44.4) 240 (46.9) 35 (34.3) 369 (32.9) 72 (45.6)
N1 42 (17.4) 28 (17.5) 113 (22.1) 14 (13.7) 177 (15.8) 22 (13.9)
N2 26 (10.7) 18 (11.3) 62 (12.1) 25 (24.5) 199 (17.7) 26 (16.5)
N3a 33 (13.6) 26 (16.3) 70 (13.7) 16 (15.7) 246 (21.9) 22 (13.9)
N3b 30 (12.4) 17 (10.6) 27 (5.3) 12 (11.8) 132 (11.8) 16 (10.1)

Distant metastasis (%)
M0 236 (97.5) 156 (97.5) 512 (100) 95 (93.1) 1029 (91.6) 155 (98.1)
M1 6 (2.5) 4 (2.5) 0 7 (6.9) 94 (8.4) 3 (1.9)

Stage (%)
I 73 (30.2) 41 (25.6) 129 (25.2) 28 (27.5) 204 (18.2) 57 (36.1)
II 50 (20.7) 43 (26.9) 123 (24.0) 14 (13.7) 277 (24.7) 40 (25.3)
III 113 (46.7) 72 (45.0) 260 (50.8) 53 (52.0) 548 (48.8) 58 (36.7)
IV 6 (2.5) 4 (2.5) 0 7 (6.9) 94 (8.4) 3 (1.9)

TNM, Tumor-Node-Metastasis. T (depth of invasion) is defined as the depth of invasion of the tumor cells into the stomach wall, including mucosa and 
submucosa (T1), muscularis propria (T2), subserosa (T3), serosa (T4a), and out of serosa (T4b). N (lymph node metastasis) classification is based on the 
number of lymph node metastases, including without lymph node metastasis (N0), 1-2 lymph node metastases (N1), 3-6 lymph node metastases (N2), 7-15 
lymph node metastases (N3a), and ≥ 16 lymph node metastases (N3b). M (distant metastasis) denotes the status of distant organ metastasis, including 
with metastasis (M0) or without metastasis (M1).
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Explanations via Shapley additive explanations and RNA-Seq. 
Risk estimates can be extracted from the prediction by Shap-
ley values (positively correlated with importance) then to allow 
explanation on the global level. Compared with other clinico-
pathological variables (mean Shapley value: 0.01–0.88), the LRS 
(mean Shapley value: 1.80–2.08) and MRS (mean Shapley value: 
1.60–1.95) were the most important features for the prediction of 
the lymphoid and myeloid immune context (Supplemental Figure 
5). We also found that the 4 radiomics imaging subtypes (1 [−/−], 
2 [+/−], 3 [−/+], and 4 [+/+]) were the most important features 
for the prediction of the lymphoid and myeloid immune context, 

acteristics in each cohort are listed in Supplemental Tables 9–12. 
Furthermore, the LRS and MRS statuses were incorporated into a 
combined imaging biomarker (LRS/MRS: low or high) including 4 
radiomics immune subtypes: 1 (−/−), 2 (+/−), 3 (−/+), and 4 (+/+). 
And the clinicopathological characteristics stratified by this com-
bined biomarker in all cohorts are reported in Supplemental Tables 
13–15. Although the determination of a cutoff for the CT biomark-
ers was not the aim of this study, comparative data of these cut-off 
values based on different methods (Youden’s index, median, upper 
quartile, or lower quartile) are presented in the Supplemental 
Materials and Supplemental Table 16.

Figure 2. Lymphoid and 
myeloid immune context 
were significantly associated 
with prognosis in the train-
ing and validation cohorts. 
(A) Disease-free survival; (B) 
Overall survival. Compari-
sons of the above survival 
curves were performed with 
a 2-sided log-rank test. LIS, 
lymphoid immune score; MIS, 
myeloid immune score.
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compared with other clinicopathological variables (Supplemental 
Figure 6A). And the imaging subtype 1 (−/−) was characterized by 
low infiltration of lymphoid cells and myeloid cells; the imaging 
subtype 2 (+/−) was characterized by high infiltration of lymphoid 
cells and low infiltration of myeloid cells; the imaging subtype 3 
(−/+) was characterized by low infiltration of lymphoid cells and 
high infiltration of myeloid cells; the imaging subtype 4 (+/+) was 
characterized by high infiltration of lymphoid cells and myeloid 
cells (Supplemental Figure 6B). Next, we performed GSEA and 
KEGG analyses using GSEA software to investigate the molecu-
lar signaling pathways associated with imaging biomarkers in a 
radiogenomics cohort. The results showed that the LRS-high and 
MRS-low groups were positively correlated with multiple tumor 
suppression–related pathways and immune activation–related 

pathways, such as the P53 pathway, apoptosis pathway, inflamma-
tory response pathway, antigen processing and presentation path-
way, and TNF signaling, while the LRS-low and MRS-high groups 
were positively correlated with multiple tumor promoting–related 
pathways and metabolism-related pathways, including MYC tar-
get signaling, E2F target signaling, and glucolipid metabolism 
(Figure 4 and Supplemental Figure 7). These findings suggested 
that the developed radiomics imaging biomarkers had potential 
predictive value for prognosis and therapeutic response.

Prognostic value of the radiomics imaging biomarkers. The radio-
mics imaging biomarkers of LRS (HR: 0.180–0.522, P < 0.001) 
and MRS (HR: 1.640–4.679, P < 0.004) were significantly associ-
ated with survival outcomes (DFS and OS) in the training cohort, 
2 internal validation cohorts, 2 external validation cohorts, and the 

Figure 3. Predicted performance of radio-
mics imaging biomarkers for lymphoid and 
myeloid immune context in the training 
cohort, internal validation cohort 1, and 
external validation cohort 1. (A) Receiver 
operating characteristic curves of the LRS for 
predicting the lymphoid immune context; (B) 
LRS of the high and low lymphoid immune 
context; (C) Receiver operating characteristic 
curves of the MRS for predicting the myeloid 
immune context; (D) MRS of the high and 
low myeloid immune context. The data are 
presented as the mean values with SEM. 
For statistical comparisons among different 
groups in the training cohort (n = 242), inter-
nal validation cohort 1 (n = 160), and external 
validation cohort 1 (n = 102), a 2 tailed t test 
(unpaired) was used. LRS, lymphoid radiom-
ics score; MRS, myeloid radiomics score.
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prospective validation cohort (Figure 5). The covariates in the mul-
tivariate Cox regression analyses included age, sex, tumor location, 
tumor differentiation, tumor size, Lauren type, CEA, CA19-9, che-
motherapy, and TNM staging. The multivariate analyses confirmed 
that LRS and MRS remained independent predictive factors for 
clinical outcomes (DFS and OS) after adjusting for these covari-
ates. (Table 2 and Supplemental Tables 17–22). We next observed 
that the proportional hazards (PH) assumption tests for the Cox 
regression models were valid for OS and DFS (Supplemental Figure 
8, P > 0.05). Moreover, survival curves showed that the combined 
biomarker (LRS/MRS) was the independent classifier for DFS (P < 
0.0001) and OS (P < 0.0001) in each cohort (Figure 6). Of these 
patients, the highest 5-year DFS and OS rates were observed in the 
imaging subtype 2 (+/−) (52.7% and 60.5%, respectively), followed 
by the subtype 4 (+/+) (39.0% and 45.1%, respectively) and subtype 
1 (−/−) (35.9% and 40.6%, respectively), while the 5-year DFS and 

OS rates in the imaging subtype 3 (−/+) (15.9% and 21.1%, respec-
tively) was the worst (P < 0.0001 for all). We observed a slight sur-
vival difference of imaging subtypes 1 and 4 in external validation 
cohort 1 compared with other cohorts, which may be due to a bias 
of small sample size in this cohort. Additionally, when stratified by 
other factors including TNM stage, age, sex, tumor size, location, 
histology, differentiation, CEA, and CA19-9, 2 radiomics imaging 
biomarkers and the combined biomarker maintained their statis-
tically significant predictive value for prognosis in these subgroups 
(Supplemental Figures 9–14). The aforementioned survival out-
comes (Supplemental Figure 15) were also confirmed in a cohort 
from the USA, and the relationships between these 3 imaging bio-
markers and clinicopathological variables are reported in Supple-
mental Table 23. Finally, the nomograms integrating the radiomics 
biomarkers and TNM stage for predicting prognosis of DFS and OS 
were developed (Supplemental Figure 16). As shown in Supplemen-

Figure 4. Radiogenomics interpretations on the relationship between genomics characterization and imaging appearance. (A) Molecular signaling pathways 
associated with LRS in the radiogenomics cohort (n = 42); (B) Molecular signaling pathways associated with MRS in the radiogenomics cohort (n = 42). The P 
value was calculated using permutation test, adjusted for multiple hypothesis testing. LRS, lymphoid radiomics score; MRS, myeloid radiomics score.
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Figure 5. Kaplan-Meier plots according to dichotomized LRS or MRS in patients with GC from the training and validation cohorts. (A) Disease-free survival; (B) 
Overall survival. Comparisons of the above survival curves were performed with a 2-sided log-rank test. LRS, lymphoid radiomics score; MRS, myeloid radiomics score.
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Predictive value of the radiomics imaging biomarkers for immuno-
therapy response. This study subsequently assessed the relationships 
between the radiomics imaging biomarkers and immunotherapy 
response in 2 independent cohorts from different centers. Interest-

tal Table 24, we found that the nomogram consistently improved 
the accuracy of prognosis prediction, with a C-index ranging from 
0.715–0.841, which was notably superior to the radiomics biomark-
ers (LRS and MRS) and TNM stage across all cohorts (P < 0.001).

Table 2. Multivariate cox regression analyses for DFS and OS in patients with GC

Variables Disease-free survival Overall survival
HR (95%CI) P HR (95%CI) P

Training cohort
LRS (high versus low) 0.593 (0.396–0.889) 0.011 0.481 (0.291–0.795) 0.004
MRS (high versus low) 1.891 (1.242–2.881) 0.003 2.203 (1.279–3.794) 0.004
Tumor size (> 4 cm versus ≤ 4 cm) 1.117 (0.725–1.722) 0.614 1.185 (0.705–1.992) 0.521
Differentiation (poor versus moderate versus well) 1.057 (0.741–1.508) 0.759 1.037 (0.656–1.641) 0.875
CEA (elevated versus normal) 1.204 (0.675–2.148) 0.529 1.094 (0.541–2.214) 0.802
Stage (IV versus III versus II versus I) 1.890 (1.400–2.551) < 0.001 2.582 (1.759–3.790) < 0.001
Chemotherapy (yes or no) — — 0.450 (0.276–0.733) 0.001

Internal validation cohort 1
LRS (high versus low) 0.473 (0.290–0.772) 0.003 0.531 (0.298–0.947) 0.032
MRS (high versus low) 2.272 (1.323–3.903) 0.002 3.082 (1.538–6.177) 0.002
Tumor size (> 4 cm versus ≤ 4 cm) 1.607 (0.009–2.584) 0.050 1.515 (0.867–2.649) 0.145
Stage (IV versus III versus II versus I) 1.808 (1.314–2.487) < 0.0001 2.594 (1.720–3.914) < 0.0001

Internal validation cohort 2
LRS (high versus low) 0.555 (0.436–0.707) < 0.0001 0.556 (0.424–0.727) < 0.0001
MRS (high versus low) 1.465 (1.137–1.887) 0.003 1.504 (1.131–2.001) 0.012
Age (years) (≥ 60 versus < 60) — — 1.403 (1.078-1.827) 0.010
Differentiation (poor versus moderate versus well) — — 1.188 (0.982–1.437) 0.077
CEA (elevated versus normal) 1.374 (0.968–1.952) 0.075 1.657 (1.126–2.439) 0.010
CA19-9 (elevated versus normal) 1.762 (1.305–2.379) < 0.001 1.622 (1.161–2.265) 0.005
Stage (IV versus III versus II versus I) 2.200 (1.844–2.624) <0.0001 2.360 (1.912–2.914) <0.0001

External validation cohort 1
LRS (high versus low) 0.298 (0.142–0.623) 0.001 0.240 (0.104–0.553) 0.001
MRS (high versus low) 3.144 (1.430–6.914) 0.004 4.012 (1.668–9.651) 0.002
Tumor size (> 4 cm versus ≤ 4 cm) 2.722 (1.320–5.613) 0.007 3.183 (1.420–7.136) 0.005
CA19-9 (elevated versus normal) 3.251 (1.505–7.022) 0.003 2.956 (1.321–6.615) 0.008
Stage (IV versus III versus II versus I) 1.953 (1.272–2.999) 0.002 1.821 (1.181–2.808) 0.007
Chemotherapy (yes versus no) 0.999 (0.506–1.973) 0.998 1.252 (0.602–2.643) 0.538

External validation cohort 2
LRS (high versus low) 0.761 (0.635–0.912) 0.003 0.746 (0.621–0.896) 0.002
MRS (high versus low) 1.301 (1.081–1.566) 0.005 1.358 (1.125–1.639) 0.001
Age (years) (≥ 60 versus < 60) 1.271 (1.066–1.516) 0.008 1.289 (1.079–1.540) 0.005
Tumor size (> 4 cm versus ≤ 4 cm) 1.185 (0.977–1.438) 0.085 1.218 (0.999–1.484) 0.051
Differentiation (poor versus moderate versus well) 0.886 (0.663–1.184) 0.412 — —
Lauren type (diffuse or mixed versus intestinal) 1.321 (1.032–1.691) 0.027 1.237 (1.021–1.498) 0.030
CEA (elevated versus normal) 1.141 (0.929–1.402) 0.208 1.122 (0.911–1.382) 0.278
CA19-9 (elevated versus normal) 1.301 (1.064–1.591) 0.010 1.333 (1.089–1.632) 0.005
Stage (IV versus III versus II versus I) 2.028 (1.791–2.297) < 0.0001 2.017 (1.777–2.288) < 0.0001

Prospective validation cohort
LRS (high versus low) 0.406 (0.193–0.851) 0.017 0.391 (0.163–0.940) 0.036
MRS (high versus low) 2.185 (1.058–4.515) 0.035 2.874 (1.191–6.934) 0.019
Age (years) (≥ 60 versus < 60) — — 2.546 (1.210–5.360) 0.014
Tumor size (> 4 cm versus ≤ 4 cm) 1.880 (0.985–3.587) 0.055 1.946 (0.917–4.129) 0.083
CA19-9 (elevated versus normal) 2.179 (0.912–5.209) 0.080 1.658 (0.672–4.093) 0.272
Stage (IV versus III versus II versus I) 2.386 (1.456–3.909) 0.001 1.972 (1.175–3.309) 0.010
Chemotherapy (yes versus no) 0.907 (0.429-1.917) 0.798 — —

LRS, lymphoid radiomics score; MRS, myeloid radiomics score.
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[−0.647, −0.100], and −0.154 [−0.807, 0.499]) and SD group (−0.303 
[−0.695, 0.089], and −0.436 [−1.011, 0.136]), while the MRS in the 
PR group (−0.377 [−0.796, −0.042], and −1.028 [−1.884, −0.173]) 
and CR group (−0.851 [−1.514, −0.188]) was significantly lower than 

ingly, as shown in Figure 7A, we found that the LRS in the PR group 
(mean [95%CI] in immunotherapy cohort 1 and 2 was 0.377 [−0.078, 
0.833], and 1.023 [−0.025, 2.082]) and the CR group (0.641 [0.145, 
1.138]) was significantly higher than that in the PD group (−0.373 

Figure 6. Kaplan-Meier analyses of prognosis according to the combined imaging biomarker (LRS/MRS: low or high) with 4 radiomics immune subtypes: 1 (−/−), 
2 (+/−), 3 (−/+), and 4 (+/+) in patients with GC. (A) DFS in the training cohort, 2 internal validation cohorts; 2 external validation cohorts, and prospective validation 
cohort; (B) OS in the training cohort, 2 internal validation cohorts; 2 external validation cohorts, and prospective validation cohort. Comparisons of the above survival 
curves were performed with a 2-sided log-rank test. LRS, lymphoid radiomics score; MRS, myeloid radiomics score; DFS, disease-free survival; OS, overall survival.
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respectively) or MRS-low group (51.7% and 33.4%) had a high-
er OR rate than those in the LRS-low group (16.2% and 9.1%) or 
MRS-high group (24.4% and 10.3%), which was also confirmed in 
the entire cohort (P < 0.001) (Figure 7B and Supplemental Tables 
25 and 26). Moreover, a highly heterogeneous outcome on OR rate 

that in the PD group (0.312 [0.118, 0.506], and 0.418 [−0.211, 1.048]) 
and SD group (0.223 [−0.251, 0.697], and 0.056 [−0.584, 0.695]) in 
2 immunotherapy cohorts (all P < 0.03).

More interestingly, we found that patients in the LRS-high 
group (40.8% and 30.0% in immunotherapy cohorts 1 and 2, 

Figure 7. Predictive value of 
radiomics imaging biomarkers 
for therapeutic response and 
clinical outcomes in patients 
treated with anti–PD-1 immu-
notherapy. (A) LRS and MRS of 
different responses to anti–PD-1 
immunotherapy in immunother-
apy cohort 1 (n = 198) and 2 (n = 
63). The data are presented as 
the mean values with SEM. For 
statistical comparisons among 
different groups, a 2 tailed t test 
(unpaired) was used.; (B) The 
ratio of different immunothera-
py responses among subgroups 
of imaging biomarkers in the 
immunotherapy cohort 1 (n = 
198) and 2 (n = 63); (C) The ratio 
of different immunotherapy 
responses from 2 radiomics 
imaging biomarkers (LRS and 
MRS) and their combined 
biomarker (LRS/MRS) with 4 
subtypes in the entire cohort 
(n = 261). Data was compared 
by the κ2 test; (D) Prognostic 
value of the radiomics imaging 
biomarkers for progression-free 
survival in patients treated with 
anti–PD-1 immunotherapy; (E) 
Prognostic value of the radiom-
ics imaging biomarkers for OS in 
patients treated with anti–PD-1 
immunotherapy. Comparisons 
of the above survival curves 
were performed with a 2-sided 
log-rank test. ns, P > 0.05; *P < 
0.05; **P < 0.01; ***P < 0.001; 
****P < 0.0001. LRS, lymphoid 
radiomics score; MRS, myeloid 
radiomics score.
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to varied outcomes in terms of tumor progression and diverse 
responses to anticancer therapies (39, 40). Previous studies have 
shown an association between radiomics and CD8+ T cells (36, 
41). Nevertheless, the use of radiomics for the evaluation of the 
lymphoid and myeloid immune context has not been reported 
thus far. The present study confirmed that 2 biomarkers inte-
grated by radiomics features from intratumoral and peritumoral 
areas could characterize the lymphoid and myeloid immune con-
text. Interestingly, all imaging features (including shape, inten-
sity, and texture) differed completely between the 2 biomarkers. 
These finding demonstrated the specificity and landmark of 
the features for recognizing the lymphoid and myeloid status. 
In turn, these large distinctions may be result of differences in 
the morphology, function, and distribution of lymphocytes and 
myelocytes. Moreover, based on radiogenomics data, we exam-
ined the potential relationships between the imaging biomarkers 
and tumor-, immune-, and metabolism-related signaling to better 
unscramble the imaging biomarkers.

The present study found that IHC-based lymphoid immune 
context was positively associated with prognosis, while IHC-based 
myeloid immune context was negatively associated with prognosis 
in GC, which was consistent with previous findings in gastrointes-
tinal cancers and other cancers by Galon Jerome and Pitett Mikae 
(42, 43). Besides, an important advantage of the present study 
was the noninvasive qualitative characterization of lymphoid and 
myeloid immune context from CT images. Previous works relied 
on manual assessment of lymphoid and myeloid components by 
the pathologist from tissue samples, which was found to be inva-
sive, time consuming, and high cost (25, 26, 28). Moreover, the 
histological approaches may be affected by spatial heterogeneity 
within a small biopsy sample. Although a recent study used radio-
mics analysis to estimate CD8 expression and predict immunother-
apy response, the research only evaluated the association between 
radiomics and lymphoid component, and the radiomic signature 
of CD8 was only tested in a small cohort, while we validated our 
signature by assessing the clinical outcomes of 2,600 patients (36). 
To our knowledge, this is the largest study to develop a noninva-
sive qualitative model for lymphoid and myeloid immune context 
based on routine CT images, and validate its clinical relevance in 
the prospective and immunotherapy cohorts in GC.

The genomic and molecular differences were usually observed 
within different sex, age, and TNM stage of GC. Whole genome 
sequencing demonstrated that men had more somatic structural 
variants than women (44). Patients with young age and late stage 
presented with more aggressive neoplasms, and MSI-H was more 
associated with older patients with GC (44, 45). Given the differ-
ence in demographic information and clinical features among the 
radiogenomics cohort, immunotherapy cohort, and other cohorts 
in the present study, further works to explore their genomic pro-
files are required, and revealing genomic differences correlates 
with imaging appearance are important. Furthermore, due to high 
rates of Helicobacter pylori infection, high-salt diet, and other rea-
sons, the incidence of GC was higher in East Asia, where approx-
imately half of the total cases worldwide occurred (10). However, 
tumors located in the proximal third of the stomach, poor histo-
logical differentiation, and advanced disease were more common 
in Western regions, which could explain the survival difference 

was also observed among the 4 imaging subtypes: 1 (−/−) with 
27.3%, 2 (+/−) with 53.3%, 3 (−/+) with 10.2%, and 4 (+/+) with 
30.0% (P < 0.0001), which was also confirmed in each immuno-
therapy cohort (Figure 7C and Supplemental Tables 25 and 26). 
Furthermore, following stratification according to treatment lines 
and treatment types, similar results were obtained regarding the 
predictive ability of the 2 imaging biomarkers or the combined 
biomarker for immunotherapy response (Supplemental Figure 17 
and Supplemental Table 27).

We next compared the performance of CT imaging biomark-
ers and PD-L1 for predicting the immunotherapy response. We 
found that the combined positive score (CPS) of PD-L1 expres-
sion, a clinically approved biomarker of immunotherapy response, 
showed a quite modest ability in predicting immunotherapy 
response, with an AUC of 0.648 (95% CI, 0.567–0.729). Howev-
er, the combination of LRS and MRS presented with a higher AUC 
of 0.727 (95% CI, 0.657–0.798) compared with CPS. Importantly, 
when CPS, LRS and MRS were combined into an integrative mod-
el, a significant improvement in the accuracy of immunotherapy 
response prediction was observed (AUC: 0.780 [0.715–0.845], P < 
0.001) compared with CPS (Supplemental Figure 18).

Finally, as shown in Figure 7, D and E, Kaplan-Meier plots of 
progression-free survival (PFS) and OS confirmed the prognostic 
value of 2 radiomics imaging biomarkers (LRS and MRS) and the 
combined biomarker (P < 0.001 for all). In addition, in subgroup 
analyses of TNM staging and treatment lines, these biomarkers 
remained the statistically significant classifiers for survival pre-
diction (Supplemental Figure 19).

Discussion
The TIME is increasingly recognized as the key regulator of tumor 
progression and major determinant of all types of anticancer ther-
apy (1–3). Tumor-infiltrating lymphoid and myeloid cells play cru-
cial roles in the immune context (4–9). Moreover, considering the 
increasing application of immunotherapy in cancer, a thorough 
understanding of the immune status of patients is useful to evaluate 
the response to treatment (6, 8, 18, 19). This study initially identified 
that the IHC-based lymphoid and myeloid immune context was 
significantly associated with tumor prognosis. However, estimating 
the lymphoid and myeloid immune context through tissue biopsy 
is characterized by several disadvantages (25, 26, 30). Therefore, 
we constructed and validated 2 CT imaging biomarkers (LRS and 
MRS) for the noninvasive evaluation of the lymphoid and myeloid 
immune context, respectively. Radiogenomics analysis revealed 
that the imaging biomarkers were closely correlated with tumor-re-
lated, immune-related, and metabolism-related signaling pathways. 
Importantly, as a potential supplement for the IHC-based lymphoid 
and myeloid immune context, the imaging biomarkers showed pre-
dictive value for prognosis (DFS, PFS, and OS) and immunotherapy 
response. Further, based on these 2 imaging biomarkers of LRS and 
MRS, we developed a combined imaging classifier (LRS/MRS: low 
or high) with 4 radiomics immune subtypes: 1 (−/−), 2 (+/−), 3 (−/+), 
and 4 (+/+), which was also significantly associated with clinical 
outcomes and therapeutic response.

Lymphocytes and myelocytes are both major components of 
the immune microenvironment. These cells markedly differ in 
morphology, distribution, and function; hence, they are linked 
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have advantages as a potential alternative for histological exam-
ination to facilitate clinical prognostic judgments and individual-
ized immunotherapy decision making.

However, although the predictive value of CT biomarkers for 
immune context and immunotherapy response is acceptable, it 
still cannot fully classify the immune context and treatment out-
comes. In addition to the association between CT signatures and 
tumor immune context found in this study, it is widely accepted 
that H&E images and RNA-Seq also contain information of tumor 
microenvironment and therapeutic responses (18, 19, 58). Our 
team primarily focused on the advancement of machine learning 
and deep learning methodologies for the analysis of multimodal 
data, such as radiology, H&E images, and RNA-Seq. Our future 
objective is to seamlessly integrate this imaging signature with 
H&E and genomics information to effectively predict the immune 
context and treatment outcomes.

The primary limitation of this study is its retrospective nature. 
Although a prospectively collected cohort was included in this 
analysis, a randomized controlled trial is warranted, particu-
larly focusing on immunotherapy. The second limitation is this 
study included a small number of patients who were not of Asian 
descent, necessitating validation by other diverse populations and 
ethnic groups in a large cohort. The third point is that CT imag-
es were achieved from various scanners in different institutions, 
which may limit the reliability of the data. A rigorously designed 
randomized controlled trial is urgently need.

In conclusion, this study suggests 2 radiomics imaging bio-
markers (LRS and MRS) and their combined classifier with 4 
imaging subtypes could accurately evaluate the IHC-derived lym-
phoid and myeloid immune context, which are closely correlat-
ed with clinical outcomes and immunotherapy response in GC. 
It may allow the optimization of individual decision making and 
need future prospective evidence.

Methods
Sex as a biological variable. Sex as a biological variable was reported 
in the present study. We investigated the independent role of imaging 
biomarkers in male and female subgroups.

Study design and patients. The overall study design is shown in 
Figure 1. This study included 9 independent cohorts from 4 cen-
ters of 2,600 patients with GC. The training cohort (242 patients), 2 
internal validation cohorts (validation cohort 1 with 160 patients and 
validation cohort 2 with 512 patients), and a prospective validation 
cohort (158 patients) were recruited from Nanfang Hospital of South-
ern Medical University, Guangzhou, China between 2005 and 2019. 
Two external validation cohorts (validation cohort 1 with 102 patients 
and validation cohort 2 with 1,123 patients) were recruited from Sun 
Yat-sen University Cancer Center, Guangzhou, China between 2008 
and 2012. The radiogenomics cohort (42 patients) was acquired from 
The Cancer Immunome Atlas (TCIA) and The Cancer Genome Atlas 
database (TCGA), both constructed in the US (2022). Two anti–PD-1 
immunotherapy cohorts (immunotherapy cohort 1 from Nanfang 
Hospital of Southern Medical University with 198 patients, and immu-
notherapy cohort 2 from Guangdong Provincial Hospital of Chinese 
Medicine with 63 patients) were retrospectively registered from June 
2019 to February 2022. The inclusion and exclusion criteria are pre-
sented in the Supplemental Methods.

between the 2 populations (10, 46, 47). Additionally, the evi-
dence did not indicate any systematic differences in distribution 
of molecular subtypes, including the TCGA and ACRG subtypes, 
between patients from East Asian or more Western regions (48, 
49). Of note, the radiogenomics cohort was based on the US popu-
lation. Thus, potential population differences related to etiologies, 
subtypes, and molecular information of GC and their impact on 
radiomics performance requires further investigation. Further, 
the imaging appearance associated with genomic characteristics 
was concluded in a small radiogenomics cohort. Additional stud-
ies are warranted to fully assess these observations. In the future, 
we intend to validate the robustness of these findings.

Following extensive research on the TIME, several important 
immune subtypes or TIME subtypes based on the genome and 
transcriptome sequencing were identified (50, 51). To our knowl-
edge, the radiomics immune subtype has not been reported yet. 
Consistent with the previously identified immune subtypes, the 
present study proposed a combined imaging classifier (LRS/MRS) 
including 4 radiomics immune subtypes: 1 (−/−), 2 (+/−), 3 (−/+), 
and 4 (+/+), characterized by diverse molecular features, immune 
infiltration, clinical outcomes, and therapies responses. The imag-
ing subtype 2 (+/−) — characterized by an immune activation 
status: high infiltration of lymphoid cells and low infiltration of 
myeloid cells — was associated with the best prognosis and immu-
notherapy response, followed by the imaging subtype 4 (+/+) — 
characterized by an immune stabilization status: high infiltration 
of lymphoid cells and myeloid cell — and imaging subtype 1 (−/−) 
— characterized by an immune desert status: low infiltration of 
lymphoid cells and myeloid cells — while the prognosis and thera-
peutic response in the imaging subtype 3 (−/+) — characterized by 
an immune suppression status: low infiltration of lymphoid cells 
and high infiltration of myeloid cells — was the worst.

Recently, immunotherapy has led to brilliant results in var-
ious cancers, such as melanoma and non-small cell lung cancer 
(52, 53). However, for GC, the therapeutic outcomes are unsat-
isfactory, with an OR rate of only 10% to 26% among advanced 
disease (15, 16, 54). Although several markers, including 
PD-1, EBV, MSI, and TMB, have been proposed for predicting 
response to immunotherapy, their sensitivity and specificity 
are limited and warrant further investigation (16, 55–57). These 
facts suggest an opportunity for the identification of patients 
who could benefit from immunotherapy. Knowledge of the 
immune microenvironment is helpful in assessing the response 
to anticancer treatment. The imaging biomarkers proposed in 
this study can evaluate the immune microenvironment and pre-
dict response to immunotherapy, which may provide assistance 
for clinical decision making.

The current histological approaches for evaluation of immune 
context and therapeutic outcome require access to tissue, which 
might not be sufficient in patients who receive neoadjuvant thera-
py or have metastatic disease. Additionally, when done in a small 
biopsy, this approach is subject to sampling bias due to intratumor 
spatial heterogeneity. On the one hand, our CT biomarkers can 
provide additional assistances for histological diagnosis without 
increasing costs and damage, thus effectively enhancing the clini-
cians’ decision-making. On the other hand, in situations where tis-
sue access is limited or inaccessible, the developed CT biomarkers 
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This study extracted 584 radiomics features (292 at the intratumor 
and 292 at the peritumor) from the region of interest on each patient’s CT 
imaging. The imaging features included 8 shape features, 14 first-order 
intensity features, and 270 second- or higher-order textural features. To 
evaluate the stability of radiomics features, CT images were reviewed by 
the aforementioned radiologists. The inter- and intra- observer repro-
ducibility of ROI-based features were evaluated according to intra- and 
interclass correlation coefficients (ICCs). More detailed descriptions 
are given in the Supplemental Methods. The study design followed the 
Image Biomarker Standardization Initiative guidelines (59).

Construction of the radiomics imaging biomarkers. Followed the 
mRMR method to remove redundant features, the LASSO logistic 
regression and the SVM-RFE algorithms with 5-fold cross-valida-
tion were performed to select overlapping features. Next, the MLR 
was used to construct the radiomics imaging biomarkers. This study 
developed 2 CT imaging biomarkers (LRS and MRS) for evaluating 
the lymphoid and myeloid immune context, respectively. The optimal 
cut-off value for LRS and MRS was determined by the Youden’s index 
in the training cohort, which maximized the sum of sensitivity and 
specificity. Further, the LRS and MRS were integrated into a combined 
imaging biomarker [LRS/MRS: low (−) or high (+)] including 4 radio-
mics immune subtypes: 1 (−/−), 2 (+/−), 3 (−/+), and 4 (+/+). Receiver 
operating characteristic (ROC) curves were used to assess the ability 
of imaging biomarkers to distinguish lymphoid and myeloid immune 
context respectively, and compared using the AUC.

SHAP interpretation and transcriptome analysis. The Shapley addi-
tive explanations (SHAP) was performed to interpret the importance of 
imaging biomarkers and other clinicopathologic characteristics in pre-
diction of the lymphoid and myeloid immune context. Moreover, gene 
set enrichment analysis (GSEA) was conducted to determine relation-
ships between genomics characterization and imaging appearance.

Association with prognosis and immunotherapy response. We evalu-
ated the prognostic value of 2 imaging biomarkers and their combined 
biomarker in all cohorts, as well as in subgroups defined by clinico-
pathological characteristics. Kaplan–Meier curves with the log-rank 
test were used to assess the DFS and OS. Univariate and multivariate 
Cox analyses were performed to evaluate the prognostic value of the 
imaging biomarkers independently from other clinicopathological 
characteristics. The PH assumption was checked for the Cox regres-
sion models by constructing test statistics based on Schoenfeld residu-
al in the model construction. If the global P < 0.05, the PH assumption 
was violated; otherwise, the assumption was valid. Furthermore, the 
imaging biomarkers and statistically significant variables identified in 
the multivariate analysis were integrated into a nomogram to improve 
the predictive power for DFS and OS, and Harrell’s concordance index 
(C-index) was utilized to evaluate the discriminatory ability.

Next, we investigated the value of 2 imaging biomarkers (LRS and 
MRS) and their combined biomarker (4 imaging subtypes) for the pre-
diction of anti–PD-1 immunotherapy response. The immunotherapy 
responses included complete response (CR), partial response (PR), 
stable disease (SD), or progressive disease (PD) (evaluated every 6 
weeks) according to the response evaluation criteria in solid tumors 
(RECIST) version 1.1 (60). PD-L1 levels were represented as the com-
bined positive score (CPS), which was defined as 100 × the number 
of PD-L1–stained cells (tumor, lymphocytes, and macrophages) divid-
ed by the number of tumor cells. Moreover, PFS and OS were further 
evaluated using the imaging biomarkers.

Clinicopathologic data was acquired from the medical record sys-
tem, including age, sex, tumor location, tumor differentiation, tumor 
size, Lauren type, carcinoembryonic antigen (CEA), cancer antigen 
19-9 (CA19-9), and tumor-nodemetastasis (TNM) staging. The TNM 
staging was reclassified according to the 8th edition of the AJCC 
Cancer Staging Manual of the American Joint Committee on Cancer 
(AJCC)/International Union Against Cancer. The immune checkpoint 
inhibitor (ICI) drugs include Nivolumab, Pembrolizumab, Sintilimab, 
or Toripalimab. Details on treatment regimens and patterns were list-
ed in the Supplemental Methods. For patients without immunothera-
py, DFS was defined as the time from surgery to disease progression or 
death due to any cause, and OS was defined as the time from surgery 
to death due to any cause or the last date of follow-up. For patients 
with immunotherapy, PFS was defined as the time from the initiation 
of anti–PD-1 immunotherapy to disease progression or death due to 
any cause, and OS was defined as the time from anti–PD-1 immuno-
therapy to death due to any cause or the last date of follow-up. The 
study adhered to NIH guidelines.

IHC staining and quantification of the lymphoid and myeloid 
immune context. IHC staining for formalin-fixed paraffin-embed-
ded human samples was performed, as previously described (3, 22). 
Tumor and adjacent tissues were incubated with CD3 and CD8 anti-
bodies to calculate the number of lymphocytes, as well as CD66b 
antibody to determine the number of myelocytes. Further details are 
provided in Supplemental Methods. The median count was selected 
for the qualitative analysis of these immune cells in intratumoral and 
peritumoral areas in the training cohort, with a score of 0 recorded 
when below the median or a score of 1 recorded when greater than or 
equal to the median. The median count was also applied to the vali-
dation cohorts. Next, for each patient, the lymphoid immune context 
(also termed lymphoid immune score, range: 0–4 score) and myeloid 
immune context (also termed myeloid immune score, range: 0–2 
score) were determined by adding the qualitative scores of the cor-
responding immune cells in the intratumoral and peritumoral areas. 
Thereafter, the LIS status was divided into 2 groups: LIS low (a total 
score of 0–1 in the intratumor and peritumor) and LIS high (a total 
score of 2–4 in the intratumor and peritumor). In addition, the MIS 
status was divided into 2 groups: MIS low (a total score of 0 in the 
intratumor and peritumor) and MIS high (a total score of 1–2 in the 
intratumor and peritumor). The LIS and MIS from all patients were 
independently scored by 2 pathologists who were blinded to the clini-
cal data. A third pathologist was consulted to reach a consensus when 
different opinions arose between the 2 primary pathologists. Further 
details are provided in the Supplemental Methods.

CT acquisition, image processing, and features extraction. Portal 
venous-phase CT images were achieved from the picture archiving and 
communication system (Carestream, Canada). Details on the acqui-
sition parameters and image preprocessing are provided in the Sup-
plemental Methods. Two radiologists with 13 and 12 years of clinical 
experience in the interpretation of abdominal CT images, respectively, 
manually delineated the primary tumor on the CT images using the 
ITK-SNAP software (version 3.6). Besides the center, we also created 
a peripheral ring surrounding the primary tumor with a thickness of 3 
mm (automated dilation of the tumor boundaries by 2 mm on the out-
side and shrinkage of the tumor boundaries by 1 mm on the inside). 
This outline was used to capture information from tumor’s invasive 
margins. Air cavities, large vessels, and adjacent organs were excluded.
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