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Introduction
Mantle cell lymphoma (MCL) is an aggressive subtype of non- 
Hodgkin’s B cell lymphoma that has a median overall survival (OS) 
of approximately 5 years (1–7). MCL can generally be grouped into 
2 types based on clinical indications: aggressive conventional 
MCL (cMCL) and indolent leukemic nonnodal MCL (nnMCL) (2, 
5). Several clinical and molecular features are used to distinguish 

these 2 types of MCL, including involvement of lymph nodes, 
expression of SOX11 (2, 5), and somatic hypermutation on the B 
cell receptor (BCR) immunoglobulin heavy variable (IGHV) genes 
(1, 5, 8, 9). Due to significant heterogeneity in the clinical outcome 
of patients with MCL (3, 4, 10), differentiating patients who will 
have poor clinical outcomes from patients who will achieve dura-
ble response with standard therapies remains a challenge. The 
MCL International Prognostic Index (MIPI; refs. 7, 11–14) and 
tumor Ki67 (11) expression are used to stratify newly diagnosed 
MCL patients. However, these traditional prognostic markers 
have not enabled tailored therapeutic strategies for MCL. In the 
era of novel therapies for MCL (1, 15, 16), better prognostic and 
predictive models that account for the biologic heterogeneity of 
the disease are needed to stratify patients.

In the last decade, unbiased massively parallel sequencing of 
whole exomes (WES) and RNA-Seq of MCL have identified recur-
rent mutations (TP53, ATM, NOTCH1/2, CCND1, HNRNPH1, 
KMT2D) associated with MCL (6, 17–22) and genetic lesions 
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ability to evaluate clonal evolution of MCL in relation of disease 
progression to chemoimmunotherapy.

To address these limitations, we performed WES on 152 MCL 
tumor samples from 134 patients (Table 1). Longitudinally collected 
samples were available for 16 patients, and 48 samples had matched 
RNA-Seq data (Supplemental Figure 1; supplemental material avail-
able online with this article; https://doi.org/10.1172/JCI153283DS1).

Results
Mutated cancer driver genes and mutational signatures in MCL. Our 
samples were collected from 134 MCL patients (123 newly diagnosed 

(del[9p], ARID1A, SMARCA4) that contribute to resistance to 
chemoimmunotherapy or targeted therapies (21, 23–25). Howev-
er, several constraints have limited previous analyses. First, use 
of relatively small cohorts in studies that utilized an unbiased 
discovery approach (17, 21, 26) has curtailed the ability to define 
patterns of genetic lesions and their associations with clinical out-
comes. In a larger study (25), only 8 genes were assessed, allow-
ing limited evaluation of the prognostic importance of cooccur-
ring genetic alterations. Second, limited availability of matched 
RNA-Seq and WES data impeded connecting the genotype with 
phenotype. Finally, lack of longitudinal samples restricted the 

Table 1. Clinical characteristics of the 134 MCL patients with WES analysis.

Characteristics Total cohort (n = 134) Patients with standard regimen 
(n = 95)

Patients with other regimen  
(n = 39) P value

Median age at diagnosis, yr (range) 59 (37–80) 56 (37–65) 68 (47–80) <0.001
Sex, Male/female 3.5/1 3.3/1 3.9/1 0.739
Presence of B symptoms, n (%)A 64/134 (48) 46/95 (48) 21/39 (54) 0.568
Bone marrow involvement, n (%) 124/134 (93) 86/95 (91) 38/39 (97) 0.167
Nodal involvement, n (%) 86/127 (68) 62/92 (67) 24/35 (69) 0.899
Splenomegaly, n (%) 92/120 (80) 61/84 (73) 31/36 (86) 0.109
Elevated LDH, n (%) 56/132 (42) 37/93 (40) 19/39 (49) 0.343
Elevated β2-microglobulin, n (%) 54/81 (67) 36/56 (64) 18/25 (72) 0.496
MIPI score at diagnosis, n (%)
 Low risk
 Intermediate risk
 High risk

 
34/132 (26)
49/132 (37)
49/132 (37)

 
30/93 (32)
38/93 (41)
25/93 (27)

4/39 (10)
11/39 (28)
24/39 (62)

<0.001

Nanostring L-MCL16 assay, n (%)B

 cMCL
 nnMCL

38/48 (79)
10/48 (21)

27/35 (77)
8/35 (23)

11/13 (85)
2/13 (15)

0.571

Ki-67 index ≥30%, n (%) 26/57 (46) 20/44 (45) 6/13 (46) 0.965
Morphology, n (%)
 Classic
 Blastoid/pleomorphic

109/126 (87)
17/126 (13)

75/88 (85)
13/88 (15)

34/38 (89)
4/38 (11)

0.522

SOX11 positive, n (%) 102/125 (82) 76/89 (85) 26/36 (72) 0.085
IGHV unmutated, n (%) 114/134 (85)  81/95 (85) 33/39 (85) 0.924
Cytogenetics by FISH, n (%)
 17p Deletion
 13q Deletion
 11q Deletion

39/120 (33)
20/85 (24)
24/82 (29)

23/84 (27)
14/58 (24)
20/56 (36)

16/36 (44)
6/27 (22)
4/26 (15)

0.067
0.846
0.060

Karyotyping, n (%)
 <3 Aberrations
 ≥3 Aberrations 

 
74/89 (83)
15/89 (17)

 
56/68 (82)
12/68 (18)

18/21 (86)
3/21 (14)

0.719

Sequenced sample, n (%)C

 Bone marrow
 Peripheral blood
 Lymph node
 Other tissueD

89/152 (59)
35/152 (23)
19/152 (13)
9/152 (6)

57/112 (51)
28/112 (25)
18/112 (16)
9/112 (8)

32/40 (80)
7/40 (18)
1/40 (2)
0/40 (0)

0.001
0.333
0.026
0.065

With matched RNA-Seq, n (%) 48/134 (36) 35/95 (37) 13/39 (33) 0.700
Status at sampling, n (%)
 With treatment-naive samples
 With relapse samples
 With longitudinal samples

 
123/134 (92)
24/134 (18)
18/134 (13)

 
88/95 (93)
19/95 (20)
17/95 (18)

35/39 (90)
5/39 (13)
1/39 (3)

0.580
0.325
0.018

Follow-up data
 3-Year PFS, % (95% CI)
 3-Year OS, % (95% CI)

51 (41–61)
70 (60–79)

61 (49–72)
79 (69–88)

25 (9–41)
45 (26–65)

<0.001
0.001

AB symptoms, systemic symptoms of fever, night sweats, and weight loss that can be associated with lymphoma. BClot et al.(39). C152 MCL samples were obtained 
from 134 MCL patients. Longitudinal samples collected at initial diagnosis and relapse or first and second relapse were collected from 16 patients; for 1 patient, 2 
tumor samples were collected from bone marrow and lymph node at diagnosis. D3 From spleen, 2 from intestine, 1 cerebrospinal fluid and 3 from other organs. 



The Journal of Clinical Investigation   R E S E A R C H  A R T I C L E

3J Clin Invest. 2022;132(3):e153283  https://doi.org/10.1172/JCI153283



The Journal of Clinical Investigation   R E S E A R C H  A R T I C L E

J Clin Invest. 2022;132(3):e153283  https://doi.org/10.1172/JCI1532834

and Y205, were clustered within structural domains of TP53 that 
were distant from the DNA-binding interface. These mutations 
may affect the function of TP53 through different mechanisms 
compared with the ones that are unclustered. We further observed 
that the Δlpvalue of the WAPscore for the TP53 mutation was sig-
nificantly different between SOX11-negative and -positive patients 
(Figure 1B and Supplemental Figure 4B). This implies that the 
SOX11-positive patients tend to have mutations that cluster togeth-
er in the TP53 structure compared with SOX11-negative patients 
(Figure 1C). The hotspot mutations at the C47 and Y44 of CCND1 
affecting the weighted average proximity (WAP) score were not in 
direct contact with its binding partner CDK4, but in a loop region 
that packs between 2 helices and maintains a half helical turn in the 
loop (Supplemental Figure 4E). The significance was supported by 
the observation that both mutations can increase CCND1 protein 
stability and promote ibrutinib resistance in MCL (28).

To delineate the roles of recurrent mutations in MCL biology, 
we examined genome-wide CRISPR/Cas9 perturbation screen 
results from DepMap (https://depmap.org/portal/) for leukemia 
and lymphoma as well as our own CRISPR/Cas9 perturbation 
screen results in the MCL cell line JeKo-1. Silencing of SP140, 
SMARCA4, PCLO, TP53, and TRAF2 in JeKo-1 cells conferred a 
cell-growth advantage, while knockdown of these genes in other 
cell lines had modest or no impact on cell growth (Figure 1D and 
Supplemental Figure 3C), indicating that these genes may act as 
tumor suppressors in MCL.

Leveraging our WES data set, we identified 4 mutation sig-
natures prevalent in MCL using the MutationalPatterns pipeline 
(Supplemental Figure 5, A and B,and ref. 29). This includes an age- 
related signature involving C-to-T transitions at CpG sites; a c-AID 
signature characterized by increased C>T/G mutations at a known 
activation-induced cytidine deaminase (AID) hotspot (SBS84); 
an enzyme essential for somatic hypermutation of germinal cen-
ter B cells; and signatures 5 and 40, common signatures that were 
prevalent in most cancers and leukemia/lymphoma, respectively. 
The c-AID signature mainly comprised clustered mutations (Sup-
plemental Figure 5C). Of note, most of the signatures contributed 
by aging-related signature and signature 40 (range: 36.2%–100%, 
median 68.8%, Supplemental Figure 5D).

Copy number alterations in MCL. With this data set, we identi-
fied 20 recurrent somatic copy number alterations (SCNAs) (Fig-
ure 1A and Figure 2A; q value ≤ 0.1, frequency ≥ 10%). Of note, 
the tumor-only pipeline generated highly correlated SCNA calls 
in the 89 paired samples, which were well correlated with FISH 
results (receiver operating characteristic [ROC], P < 0.001 for 
del[17p], del[13q], del[11q]) (Supplemental Figure 6, A and B, and 
Supplemental Figure 7). In addition to previously reported SCNAs 
linked to OS (del[9p], del[17p], del[13q], and del(8p23.3]; refs. 18, 
30), we also identified driver SCNAs, including del(15q11–13) and 
amp[11q13.3) (Figure 1A).

To determine how SCNAs affect gene expression, we per-
formed an integrative analysis in samples with WES and RNA-Seq 
data (n = 48). We focused on identifying genes that showed signifi-
cant changes within the deleted or amplified regions by comparing 
samples with or without the lesions. Pathways that were significant-
ly affected by amplification included RNA catabolic and translation 
pathways (EIF4G1, RPL4, DDX6, PRL15) and the MYC pathway 

and 11 with relapsed disease, 15 nnMCL and 119 cMCL) with a broad 
range of clinical characteristics, including different MIPI risk as well 
as IGHV unmutated and mutated (Table 1 and Supplemental Tables 1 
and 2). The median follow-up time was 31.0 (range 4.5–107.3) months. 
The 3-year OS rate in the cohort was 69.6% (95 CI, 60.1%–78.5%).

We detected a median of 29 nonsynonymous mutations in pro-
tein-coding sequences per sample (range, 8–72), and a median muta-
tion burden of 1.35 mutations per megabase (Mb), which is similar 
to that previously reported in MCL and other hematologic cancers 
(Supplemental Figure 3, A and B, and refs. 17, 19, 21, 26). We identified 
33 recurrently mutated genes (mutated in >5 samples, mutation fre-
quency >3%, Figure 1A), which included known and novel recurrent 
mutations (LRP1B, PCLO, RYR2, PCDH10, OBSCN, TACC2, FAT3, 
LRP2, SVEP1, ZFHX4, MPDZ, DCDC1, IKBKB, ARID1A; Figure 1A).

To determine which of the mutated genes are likely to contrib-
ute to lymphomagenesis, we used the clustering of mutations in 
protein structures (CLUMPS) algorithm (27) to identify clustering 
of mutations predicted to have significant impact on 3D protein 
structures or interference with protein’s binding partners. Muta-
tions in TP53 and CCND1 were found with significant clustering 
(P < 0.05), whereas mutations in ATM, SP140, and SMARCA4 
showed moderate clustering (Supplemental Figure 4A; P < 0.1). To 
determine how individual mutation affects the clustering P value, 
we systematically removed each mutation and recalculated the 
weighted average proximity (WAP) score and the resulting change 
in –log10 (P value), Δlpvalue (Figure 1B and Supplemental Figure 
4C). A positive Δlpvalue indicates that the mutation clusters with 
other mutations in the protein and that the removal of this muta-
tion adversely affects the CLUMPS score significance. Conversely, 
a negative Δlpvalue indicates that the mutation does not cluster 
significantly with other mutations. In TP53, we found both cate-
gories of mutations with positive and negative Δlpvalues (Figure 
1C). For example, mutations at R248 and I195 showed negative 
Δlpvalues, while mutations at R273 had positive Δlpvalues, indicat-
ing that these 2 groups of TP53 mutations may exert their effects 
in different ways. Two of the mutations with negative Δlpvalue, 
R248 and S241, were at the DNA-binding interface, suggesting that 
these mutations may interfere with the DNA recognition by TP53. 
In contrast, mutations with positive Δlpvalues, such as R158, V156, 

Figure 1. Recurrent somatic genetic alterations and mutation signatures in 
MCL. (A) Recurrent somatic mutations and CN alterations (rows) identified 
following WES of 134 primary samples (columns) obtained from patients 
with newly diagnosed (green) and relapsed (red) MCL. Samples were anno-
tated for prior treatment, MIPI risk, IGHV status, and Sox11 expression level 
when collected. Left: blue labels, recurrent CN deletion; red labels, recurrent 
CN amplification; black labels, somatic mutations; bold labels, novel CN 
alterations/mutations. Right: percentage of samples mutated. Top: total 
number of genetic alterations across the cohort. (B) Contributions of indi-
vidual mutations to the collective WAP score of TP53. The changes in WAP 
score P value due to removal of individual mutations are plotted as function 
of residue number. The radius of the circles around each point in the graphs 
represent the number of patients with that mutation. Color indicates SOX11 
expression. (C) TP53 dimer bound to DNA fragment, PDB ID: 3IGK. One of the 
monomers is shown in yellow, the other in gray. DNA is shown in orange. The 
mutations observed in SOX11+ and SOX11– patients are shown as magen-
ta and green, respectively. (D) β Scores from genome-wide CRISPR/Cas9 
screens of JeKo-1 of genes identified as having recurrent mutations.
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Figure 2. Recurrent SCNAs, cooccurring genetic events, and clinical association. (A) Significant CN amplifications (left, red) and deletions (right, blue). Left sides 
of the mirror plots show the incidence of significant focal CNA events. Right sides of the mirror plots show q values for each region. Genes located in the peak of 
relevant cytobands are listed. (B) Pairwise associations between recurrent genetic alterations found in the 134 MCL samples. Low and high cooccurrence are shown 
in blue and red, respectively. Intensity of the color reflects the odds ratio. Statistically significant association as determined by q value is marked by asterisks. (C) 
Number of samples with cooccurrence of the indicated genetic events in the cohort of 134 MCL samples. Significance of Fisher’s exact test indicated by q.
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(MYC, NME1). Pathways that were perturbed by deletion included 
DNA repair and cell cycle (ATM, CDKN1B, POT1) and RNA splicing 
(HNRNPK, NCBP1, SRSF1) (Supplemental Figure 6, C and D).

Our WES data set revealed significant relationships between 
several genetic alterations (Figure 2B). In addition to known cooc-
currence between TP53 mutation and del(17p), ATM mutation and 
del(11q), del(9p21.3) and del(17p) (Supplemental Figure 8, A–C), 
we also observed a high cooccurrence of del(9p21.3) with del(8p) 
(q < 0.001) and del(13q) (q = 0.004; Figure 2C). Moreover, we 
found low cooccurrence of genetic alterations such as mutations 
in TP53 and ATM or del(11q) (Supplemental Figure 8B; q < 0.05), 
indicating tumor cells harboring these events may originate from 
a different genetic trajectory.

Association of genetic features with clinical outcomes. We exam-
ined associations between genetic alterations and key MCL fea-
tures. Overall, we observed a high number of SCNAs associated 
with unmutated IGHV status and SOX11 expression (Supplemen-
tal Figure 9, A and B). The c-AID mutation signature was strongly 
associated with mutated IGHV status, while the aging signature cor-
related with unmutated IGHV and SOX11 expression (Supplemen-
tal Figure 9, C and D). Moreover, the number of SCNAs was able to 
predict clinical outcomes (Supplemental Figure 9, E and F).

We examined the prognostic significance of somatic muta-
tions. Mutations in SP140, SMARCA4, TRAF2, and PCDH10 were 
predictive of poor progression-free survival (PFS) (Figure 3, A and 
B). SP140 mutations occurred at 8% frequency in our cohort, and 9 

Figure 3. Associations of somatic mutations with clinical outcomes. (A) Lollipop diagrams of selected putative driver genes showing mutation subtype, 
position, and frequency. Bottom: y axis indicates the number of identified mutations in the COSMIC database. (B) Kaplan-Meier plots (with log-rank P 
values) of PFS and OS associated with presence and absence of selected mutations. (C) Samples with SP140 mutations or deletions did not overlap in the 
cohort. (D) Deletion of SP140 affected its gene expression. SP140 expression TPM value was extracted and plotted from MCL samples with SP140 deletion, 
mutation, or WT. *P < 0.05. (E) Forest plots of the multivariate analysis of MIPI risk groups and individual genetic factors for PFS and OS in our MCL cohort.
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out of 11 mutations were frameshift and nonsense mutations that 
resulted in a truncated form of SP140 (Figure 3A), highly suggestive 
of loss-of-function mutations. We further identified 10 samples 
(7.5%) harboring SP140 deletion (loss of 2q36.3–37.1), all of which 
showed downregulation of SP140 expression compared with sam-
ples lacking the deletion (Figure 3, C and D). Mutation or deletion 
of SP140 was predictive for shorter PFS and OS and associated with 
SOX11 expression, suggesting this gene may be a potential tumor 
suppressor in MCL (Supplemental Figure 9G and Supplemental 
Figure 10A). Consistent with previous publications (25, 31), the 
presence of TP53 or NOTCH1 aberrations was associated with 
shorter PFS (Supplemental Figure 10, B and C, and Figure 3E). Of 
note, TP53, NOTCH1, and PCDH10 mutations as well as the SP140 
mutation/deletion retained significance for PFS and OS when MIPI 
risk and IGHV mutation status were added (Figure 3E).

We then assessed the contribution of recurrent SCNAs to MCL 
progression. Consistent with previous observations (30, 32–35), 
loss of 17p13.3 (35%) and 9p21.3 (40%) predicted inferior PFS 
and OS (Supplemental Figure 11), and this remained significant in  
the multivariate analysis (Figure 3E). Recurrent SCNAs in this 
cohort including del(12p13.31), del(13q14.2), del(15q11–13), 
del(8p23.3), and amp(13q31) were also associated with shortened 
PFS and OS (Supplemental Figure 11), but this was not significant 
in multivariable analysis (Figure 3E). Del(9p21.3), del(1p21.1), 
del(11q22.3), del(13q14.2), and del(6q25.3) were associated with 
unmutated IGHV and SOX11 expression (P < 0.05; Supplemental 
Figure 9G). Most of the genetic alterations also remained signifi-
cant among patients who received the cytarabine-based regimen 
(Supplemental Figure 10, D and E).

We further gained insights into the contribution of the most 
frequent deletion in MCL, the chromosome 9 deletion. We first 
examined genes that may render cell-growth advantage through 
analysis of our CRISPR/Cas9 perturbation screen in JeKo-1 cells 
and found that many critical tumor suppressors were located on 
chr9, including CDKN2A, SMARCA2, FBXO10, and TOR1B (Fig-
ure 4A; z score ≥ 1). We next classified the WES samples with del(9) 
into 3 groups based on the deleted region: 9p–, 9q–, or large region 
(both 9p/9q) (Figure 4A). Del(9p) was more frequent (23/54) 
than del(9q) (14/54) or both (17/54; Figure 4A). These deletions 
also influenced gene expression as reflected by our unsupervised 
RNA-Seq analysis of MCL samples containing and lacking these 
deleted regions (Figure 4B). Consistent with a previous study (36), 
we found that 24 downregulated genes on chr9 were significantly 
associated with PFS and OS (Figure 4C; HR < 1; P < 0.05), and all 
3 types of deleted regions were predictive of inferior clinical out-
comes (Figure 4D, log rank paired comparison, P < 0.05) irrespec-
tive of the size and location of the deleted region.

Coordinate genetic signatures classify MCL into 4 subsets that have 
unique gene expression patterns and distinct clinical behavior. To iden-
tify genetic subtypes based on shared genetic features in MCL, we 
applied a nonnegative matrix factorization (NMF) consensus clus-
tering algorithm (37, 38) to 35 recurrent genetic alterations and dis-
covered 4 robust subsets of tumors characterized by distinct genetic 
signatures (Supplemental Figure 12A and Figure 5A). The 4 subtypes 
differed significantly in PFS and OS (Figure 5B; P < 0.001). Patients 
with the C1 subtype had a more favorable outcome than those with 
C2, C3, and C4 subtypes. Median PFS was not reached for C1 and 

was 41.2 months for C2, 30.7 months for C3, and 16.1 months for 
C4 (log rank, P < 0.001). Five-year OS rates for C1–C4 were 100%, 
56.7%, 48.7%, and 14.2%, respectively. Differences in survival of 
patients of the 4 subtypes also remained significant among patients 
who received the cytarabine-based regimen (Supplemental Figure 
12B). Moreover, molecular cluster was an independent risk factor 
when MIPI risk and IGHV mutation status were included in the 
multivariate analysis; however, this was mainly driven by C4 and C1 
(Supplemental Figure 12C; C4 vs. C1, P = 0.017).

To determine the robustness of these genetic clusters, we 
assessed whether these genetic alterations can stratify MCL 
patients using a published genetically well-annotated MCL cohort 
for validation (26) (Barcelona cohort, Figure 6, A–D). Projection 
of cluster features classified patients into 4 distinct clusters, with 
C1 having a favorable clinical course and C2 and C3 falling in 
between C1 and C4. There was significant statistical difference 
among clusters (P = 0.001), in which C1 versus C4 (P < 0.001), 
C2 versus C4 (P < 0.035), and C3 versus C4 (P = 0.014) reached 
significance in the pairwise test.

To explore phenotypic differences among the MCL genetic sub-
types, we performed an integrative analysis using matched RNA-
Seq data (n = 48) across the 4 subsets (Figure 7, C1–C4, n = 12, 11, 16, 
and 9, respectively). We first assessed whether the recurrent mutat-
ed genes identified from WES were expressed at the RNA level and 
discovered most of these mutations were highly expressed (Sup-
plemental Figure 13, A and B). Likewise, the frequent SCNAs also 
resulted in significant dysregulated gene expression (Figure 7A), 
which we further validated by reverse transcriptase PCR (RT-PCR) 
analysis of MCL samples containing and lacking the SCNAs (Sup-
plemental Figure 13C). Our analysis revealed that each genetic 
subset has a unique gene expression pattern (Figure 7B and Supple-
mental Figure 14A). Consistent with the differing cellular origins 
for the 2 types of MCLs (1, 5), C1 was enriched for gene expression 
signatures of memory B cells and C2, C3, and C4 appeared to have 
a signature of CCR6-negative light zone B cells or naive B cells (Fig-
ure 7, B and C, and Supplemental Figure 14A). We further tested a 
previous reported 16-gene signature that distinguished cMCL and 
nnMCL (39) and found that 35 out of 36 C2–C4 patients were classi-
fied as cMCL while 9 out of 12 C1 patients were classified as nnMCL 
(Supplemental Figure 14B).

C1. The C1 group included 16% of samples. Most of the C1 
samples were IGHV mutated and featured mutant CCND1, TP53, 
and amp(11q13). Most of the TP53 mutations in C1 had negative 
WAP scores (Supplemental Figure 4B). Patients with and without 
TP53 mutations had similar OS (P = 0.470, Supplemental Figure 
15, A and B). Those in the C1 group had the lowest SOX11 expres-
sion (Supplemental Figure 15C). Phenotypically, C1 was enriched 
with a memory B cell phenotype and active BCR signaling (Figure 
5A, Figure 7, B and C, and Supplemental Figure 14A). We observed 
enrichment of BCR signaling in the Barcelona cohort, although it 
was insignificant due to the small amount of available microarray 
gene expression data (Figure 6D).

C2. The C2 group included 23% of samples. Of 31 samples in C2, 
28 harbored del(11q) (minimal deleted region contains ATM), while 
19 of these 28 samples had a cooccurring ATM mutation. Consis-
tent with these genetic lesions, genes involved in DNA replication, 
DNA repair, and hyperproliferation were all upregulated (Figure 
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Figure 4. Deletion of chromosome 9 was associated with poor survival. (A) Chromosome 9 deletion in samples from our cohort. Top: blue line indicates percent-
age of MCL samples with chromosome 9 deletion at the location. Known tumor suppressors and oncogenes present on chromosome 9 are color coded based on 
their z score in the CRISPR/Cas9 screen in JeKo-1 cells. Bottom: deletions in 9p (purple), 9q (blue), or large regions (dark red) in samples from our cohort. Homozy-
gous minimal 9p deletions are marked in red. CCF (Supplemental Methods) of chromosome 9 deletion is shown in gray scale. (B) Unsupervised clustering analysis 
of gene expression in chromosome 9 distinguishes MCL samples with deletions in different region. (C) Volcano plot of genes on chromosome 9 that are differen-
tially expressed between MCL samples that have and do not have chromosome 9 deletions. Downregulated genes that were significantly associated with shorter 
PFS and OS are indicated in red (Cox’s regression HR <1, P < 0.05). (D) Kaplan-Meier plots of PFS and OS according to type of chromosome 9 deletion.
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contrast with C2, we observed significant downregulation of genes 
implicated in TNF-α signaling via the NF-κB pathway and IFN-γ 
response, but with activated NOTCH signaling. Additionally, BCR 
signaling, MYC targets, and IL-2 STAT5 signaling were all down-
regulated in C3 in both discovery and validation cohorts (Figure  
6D and Figure 7, B and C).

7B). Expression of genes involved in TNF-α signaling via the NF-κB 
pathway and IFN-α and IFN-γ response was significantly enriched 
in both discovery and validation cohorts (Figure 6D and Figure 7B).

C3. The C3 group included 32% of samples. Besides enriched 
NOTCH1 mutations, the C3 group also harbored mutations in NSD2 
(WHSC1), KMT2D, and SP140 as well as amp(13q) and del(6q). In 

Figure 5. Coordinate genetic signatures group MCL into 4 clusters associated with clinical outcome. (A) Nonnegative matrix factorization (NMF) consensus 
clustering was performed using all somatic mutations and SCNAs in the 134 MCL samples (columns). Clusters 1 to 4 are shown with their associated landmark 
genetic alterations (boxed for each cluster). Left bar graph shows the correlation of genetic alterations associated with each cluster (q value, Fisher’s exact test). 
Nonsynonymous mutations, black; low-level deletion (1.0 ≤ CN ≤ 1.7 copies), light blue; high-level deletion (CN ≤ 1.0 copies), dark blue; low-level amplification 
(3.7 ≥ CN ≥ 2.3 copies), orange; high-level amplification (CN ≥ 3.7 copies), red. Header shows cluster association (C1, black; C2, green; C3, blue; C4, red), clinical 
group (cMCL, yellow green; nnMCL, light green), Sox11 expression (negative, green; positive, brown), MIPI risk (high risk, dark pink; intermediate risk, median 
pink; low risk, light pink), pathology status (blastoid or pleomorphic, crimson; classic, bright lilac), and treatment regimen (standard cytarabine-based aggressive 
regimen, dark blue; other regimen, light blue). (B) Kaplan-Meier plots of PFS and OS of patients grouped into the 4 clusters. *P < 0.05, log-rank test.
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Figure 6. Molecular cluster and gene expression signature validated in Barcelona cohort. (A) Sample inclusion description in the validation cohort. (B) Projec-
tive nonnegative matrix factorization consensus clustering was performed using genetic alterations identified from our discovery cohort (Figure 5A). Clusters 
1–4 are shown with their associated landmark genetic alterations (boxed for each cluster). Header shows cluster association (C1, black; C2, green; C3, blue; C4, 
red). (C) Kaplan-Meier plots of OS of patients grouped into the 4 clusters. P indicates log-rank test. Number indicates samples included in each cluster. (D) 
Integration of genetic and transcriptomic analyses identified gene expression signatures for each genetic subset. The heatmap was generated using normal-
ized enrichment score (NES). Asterisks indicate the significance level of the enrichment.
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Five out of 11 patients whose samples showed drastic evolution (4 
cases from C1 or C3 to C4, 1 case from C1 to C2) also had a cluster 
change, while all 5 patients whose samples showed modest or no 
evolution retained the same cluster status (Supplemental Figure 
17). Patients whose samples showed cluster changes had poor sur-
vival after relapse even though their relapse interval appeared to 
be longer (Supplemental Figure 16, E and F), showing that genetic 
heterogeneity drives the progression of disease.

Discussion
In the past decade, numerous studies have profiled genome-wide 
genetic alterations, gene expression, and epigenomic changes in 
MCL (17, 19, 21, 23, 24, 26, 31, 45–48). These studies not only gen-
erated insights into the molecular features (2, 30) and mechanisms 
of pathogenesis (21, 26), drug resistance (23, 24), and the cellular 
origin of subsets of MCL (26, 48), but also revealed the vast genet-
ic complexity and phenotypic heterogeneity present within MCL, 
which has become a barrier to connecting genotype with disease 
phenotype in MCL. Here, starting with a large WES data set along 
with matched transcriptome data, we classified MCL into 4 clusters 
based on shared genetic lesions and determined their gene expres-
sion signatures as well as associations with clinical outcomes. We 
further studied clonal evolution patterns prevalent in MCL and 
inferred the order of genetic lesions in the development of MCL.

Our cluster analyses have a few implications. First, C1 is highly 
enriched for nnMCL and C2–C4 are mostly cMCL. Whereas cMCL 
may present with similar clinical symptoms, it fell into 3 distinct 
genetic subsets, which were all accompanied by coordinated dys-
regulated cellular pathways. This analysis provides clues for future 
biomarker-driven clinical trial designs that align particular treat-
ments (e.g., Bruton’s tyrosine kinase inhibitors) with patients most 
likely to benefit (e.g., patients whose tumors were classified as C3 
or C4 with downregulation of BCR pathway signaling). Based on 
the “Goldilocks” model of BCR singling and B cell survival, B cell 
survival is dependent on the tuning of BCR signaling such that it is 
neither overly strong nor overly weak (49). Within this context, cells 
with inherent increased BCR signaling would be anticipated to be 
less sensitive to a BTK inhibitor such as ibrutinib, as these cells do 
not meet the minimum threshold of BCR signaling needed for cell 
survival. In fact, MCL cell lines, including JeKo and Mino, which 
carry complex copy number (CN) variations and mutations (like-
ly to be C3–C4; https://depmap.org/portal/), are sensitive to BTK 
inhibitor while JVM2 (genetic feature similar to C1) is insensitive to 
BTK treatment (50). Second, our results emphasize the influence 
of distinct genetic features on the clinical outcomes. Despite the 
different treatment regimens and patient population (Chinese and 
European descent) between our discovery and validation cohorts, 
all MCLs fell into 4 distinct clusters. These molecular clusters open 
a door to precision medicine, as they can serve as stepping-stones 
between genetic discovery and its application to clinical practice. 
Finally, selection of treatment for MCL based on individual genetic 
alteration may not be optimal because clinical response is deter-
mined by a cluster of genetic factors. TP53 mutations are good 
examples illustrating this scenario, as mutant TP53 was associat-
ed with inferior clinical courses in both previous reports (51, 52) 
and our analysis (Supplemental Figure 10B). In particular, C1 and  
C4 all harbored TP53 mutations (36% and 63%); however, the 

C4. The C4 group included 28% of samples. This subtype har-
bored the most SCNAs, including deletions del(17p), del(13q), and 
del(9p) and mutations TP53 and TRAF2 (Figure 5A). Mutations in 
TP53 were enriched for positive WAP score and predicted for poor 
survival in C4 (Supplemental Figure 15A). Phenotypically, C4 had 
gene signatures of the active MYC pathway, hyperproliferation, 
and light zone CCR6-negative B cells in both discovery and val-
idation cohorts (Figure 6D and Figure 7, B and C). C4 was associ-
ated with the highest incidence of blastoid or pleomorphic MCL 
(25.0%, P = 0.016) and SCNAs (P < 0.001; Supplemental Figure 
15, C and D), but had the lowest contribution to the clustered cAID 
mutation signature (P < 0.001; Supplemental Figure 15E). Consis-
tent with this, C4 had the worst clinical outcome, with median PFS 
and OS of 16.1 and 30.0 months, respectively.

Temporal ordering of genetic events and clonal evolution during 
progression of MCL. To understand intratumoral heterogeneity and 
identify the relationship of clonal and subclonal genetic events, we 
used the ABSOLUTE algorithm (40) to determine cancer cell frac-
tion (CCF) for each of the genetic lesions from our 134 patients. We 
classified a mutation or SCNA as clonal when the CCF was greater 
than 0.9 and subclonal otherwise (41–43). In total, we identified 
516 clonal and 173 subclonal events. Del(11q22.3), del(9p21.3), 
and ATM mutations tended to be clonal events, while mutations in 
NSD2, PCLO, KMT2C, and LRP1B were more likely to be subclon-
al events (Figure 8A; P < 0.05).

We further inferred temporal relationships between pairs 
of genetic events. We first identified instances in which a clon-
al event was found together with a subclonal event within the 
same sample, as these pairs reflected the acquisition of one lesion 
(clonal) followed by another (subclonal). We obtained 22 clonal 
and subclonal pairs and constructed a temporal map of the evolu-
tionary trajectories of MCL based on the connections (Figure 8B). 
Both mutations and SCNAs could be early events (all started with 
IGH-CCND1 translocation), with 6 points of departure involving 
mutated ATM, CCND1, del(1p), del(11q), amp(8q), and del(9q) 
(Figure 8B). The number of clonal events, but not of subclonal 
events, was associated with clinical outcomes (PFS and OS, P < 
0.001; Figure 8C and Supplemental Figure 16, C and D), high-
lighting the initiating genetic events and complex genetics driv-
ing the clinical outcomes.

To assess clonal evolution in relation to disease progression, 
we analyzed CCFs for each alteration in 33 longitudinally collected 
samples from 16 patients (Supplemental Figure 16A) and used Phy-
logicNDT to cluster dynamic changes and construct a phylogeny 
tree over the time points (Figure 9, A–C, Supplemental Figure 17, 
and ref. 44).We observed 3 patterns of tumor evolution upon treat-
ment: (a) no clonal evolution, no change in number of clones, CCF 
change < 0.2 (n = 1 pair); (b) modest clonal evolution, 0.2 ≤ CCF 
change ≤ 0.5 (n = 4 pairs); (c) drastic clonal evolution, CCF change 
> 0.5 (n = 11 pairs) (Figure 9D). Although the time intervals between 
collection of first and second samples were essentially identical 
between drastic evolution and modest or no evolution (Figure 9E; 
30.0 vs. 28.1 months, P = 0.861), drastic evolution showed a higher 
number of clusters and was significantly associated with poor sur-
vival (Figure 9, E and F, median survival from second sampling 17.1 
months vs. not reached, P = 0.023), revealing a strong association 
between clonal evolution and increased disease aggressiveness. 
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Several studies reported the clonal evolution in MCL with the 
implication that heterogeneous genetic alterations associated with 
MCL relapse (8, 23, 47). Our study revealed that branched evolu-
tion is a common feature upon chemotherapy and predictive of 
clinical outcomes, which suggests that intratumor heterogeneity 
forms the fuel for relapse and drug resistance. Although mutant 
TP53/del(17p) was reported to be associated with disease relapse 
(25), we only observed frequency of del(9p) and amp(3q) arise in 
response to therapies (>20% CCF changes in 50% of samples) 
(Supplemental Figure 16B). Large cohorts of sample analyses are 
needed in order for us to fully understand the genetic events and 
role of clonal evolution in driving MCL.

In summary, this integrative analysis provides a framework 
for assessing unappreciated genetic heterogeneity in the clinically 
defined subtypes of MCLs and forms the basis for designing preci-
sion therapies for aggressive MCL, with genetic factors and onco-
genic pathways as tractable targets.

Methods
Samples and genomics studies. Diagnostic biopsy and/or blood samples 
representing 152 MCL tumors were obtained from 134 MCL patients. 
Ninety-five patients received a standard high-dose cytarabine-based 
aggressive regimen (Supplemental Figure 1B), while others received 
nonaggressive treatment (Supplemental Methods). Tumor cells were 
collected from bone marrow, blood, and lymph nodes (125 cryopre-
served and 27 formalin-fixed, paraffin-embedded [FFPE]), with 102 
(67.1%) having matched germline tissue (Supplemental Table 1). Thir-
ty-three were longitudinal tumor samples collected from 16 patients at 
diagnosis (pretreatment), at progression, or at relapse following treat-
ment (Supplemental Table 2).

WES libraries were prepared using Agilent SureSelect Human All 
ExonV6 (Agilent Technologies) and sequenced on the Hiseq 4000 
platform (Illumina). Raw reads were aligned to the human reference 
genome (GRCh37/hg19) using the Burrows-Wheeler aligner (57). 
Somatic single nucleotide variations (SNVs) and SCNAs were called 
using GATK best practice somatic mutation and somatic CN variant dis-
covery pipelines (58, 59), respectively. A tumor-only pipeline was used 
to filter a panel of normal samples (16,196 normal samples, Supplemen-
tal Methods; ref. 60) from the GATK4 pipeline results for samples with-
out matched normal tissue, which yielded comparable mutation calls in 
paired samples (Supplemental Figure 2). MutationalPatterns (29) was 
used to determine de novo mutation signatures. The CLUMPS meth-
od (27) was used to assess the significance of mutational clustering in 
a given 3D structure. Details of the calculation of the WAP score were 
described previously (27). The ABSOLUTE algorithm was used to cal-
culate the tumor purity, ploidy, and CCF for SNV and SCNA (40). Sta-
tistical methods were adapted to infer the order of genetic alterations 
(43). Phylogenetic analysis was performed on longitudinally collected 
samples using the PhylogicNDT package (61).Detailed methods are 
available in the Supplemental Methods.

CRISPR library screen. The genome-wide CRISPR library screen 
was carried out using the Human GeCKO v2 Library, 2-plasmid sys-
tem (a gift from Feng Zhang, Broad Institute of MIT and Harvard, 
Cambridge, Massachusetts, USA; Addgene, 1000000049) and fol-
lowing the protocol as described (62). Briefly, the library contains 
122,417 unique sgRNAs targeting the human genome with 6 sgRNAs 
per gene. The entire library, together with helper plasmids pMD2.g 

association of mutant TP53 and clinical outcome depends on the 
cooccurring genetic events (Figure 5A and Supplemental Figure 
15A) and mutation sites (Figure 1, B and C, and Supplemental 
Figure 4B). We observed that TP53 mutations lost their adverse 
prognostic significance in C1 patients, which was validated by the 
Barcelona cohort (Supplemental Figure 15B). This led us to consid-
er whether the mutation sites may influence the function of TP53 
protein. Based on our CLUMP analysis, some of the mutations 
(e.g., R273, positive Δlpvalue, enriched in SOX11-positive samples; 
Figure 1B) clustered together in the protein structure, while others 
(e.g., R248, negative Δlpvalue, more enriched in SOX11-negative 
samples; Supplemental Figure 4B) did not cluster that well. In sup-
port of our notion from CLUMP analysis, two recent publications 
reported that both R248 and R273 act in a dominant negative man-
ner, but have different levels of impact on the function of TP53 in 
myeloid leukemia (53, 54), adding an extra layer of complexity for 
the genetic cluster. It is anticipated that integrated characterization 
of changes in MCL genetic clusters and gene expression follow-
ing treatment with differing therapeutic interventions will further 
improve the design for precision medicine in MCL.

The genetic heterogeneity in MCL also has an impact on clin-
ical outcomes and disease trajectory. As previously reported (26), 
we also confirmed that a high number of SCNAs is associated with 
inferior OS (Supplemental Figure 9F). SCNAs tend to be clonal 
events, and the higher number of clonal driver events is predictive 
of poor survival. It appears that MCL may originate from several 
different genetic traits, each arising from one or a combination 
of genetic lesions. Each trait has different intermediate and later 
genetic events, suggesting a stepwise acquisition of traits (Figure 
8B). In nearly all MCL, t(11;14) is a foundation event, although it 
by itself does not lead to MCL (55). We postulate that the second 
hit could be a genetic trait-starting event, such as mutations in 
ATM and CCND1, del(11q) and del(9p) (Figure 8B). An example 
supporting this idea is that B cell–specific inactivation of ATM (one 
of the traits in our study) synergizes with ectopic cyclin D1 expres-
sion to promote pregerminal center lymphoma in mice (56).

Figure 7. Integrative analysis of genome and transcriptome reveals a 
unique gene expression signature in each cluster. (A) Recurrent somatic 
mutations, SCNAs, and gene expression associated with SCNAs. Top panel: 
x axis shows the chromosome location of recurrent somatic mutations; y 
axis indicates the frequency of mutations detected in our MCL cohort (n = 
134). Genes shown in purple have a mutation incidence of greater than 5%. 
Bottom panel: left y axis indicates proportions of CN deletion (DEL) and 
amplification (AMP). Each dot represents a gene at its chromosome location. 
Genes with absolute CN < 1.7 or > 2.3 were defined as deleted or amplified, 
respectively. Genes with a deletion incidence > 10% are shown in blue, and 
genes with an amplification incidence > 10% as red. (B) Integration of genet-
ic and transcriptomic analyses identified unique gene expression signatures 
for each genetic subset. The Hallmark and KEGG gene sets and Signature 
database were used for Gene Set Enrichment Analysis. The heatmap was 
generated using normalized enrichment score (NES). Red indicates an 
upregulated pathway in the cluster compared with other clusters, while blue 
indicates a downregulated pathway. Asterisks indicate the significance level 
of the enrichment. (C) Proposed model for the 4 MCL subgroups. Clusters 
1–4 were all associated with distinct genetic events and gene expression sig-
natures. C1 had indolent disease and carried memory B cell gene signature. 
C2–C4 had more aggressive clinical courses and expressed CCR6-negative 
light zone or naive B cell gene signature.
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puromycin) and 14 and subjected to high-throughput sequencing to 
determine sgRNA abundance. MAGeCK (63) software was used to 
quantify sgRNA depletion or enrichment.

Consensus clustering of genetic alterations. All recurrent mutat-
ed genes (frequency ≥5%), IGHV mutational status, and significant 
regions of SCNAs (GISTIC2.0, q value ≤ 0.1, and frequency ≥ 10%) 
were assembled into a gene matrix, and NMF consensus clustering 

and psPAX2, was then transfected into HEK 293T cells, and lentiviral 
supernatants were collected after 2 days, followed by spin infection at 
1200g in 2 replicates of doxycycline-inducible Cas9-expressing JeKo-
1 cells for 1 hour in the presence of 8 μg/ml polybrene. Transduced 
cells were selected by puromycin for 3 days, and doxycycline (1 μg/
ml) was added to induce Cas9 expression, followed by culturing for an  
additional 14 days. Genomic DNA was harvested on days 0 (day 3 in 

Figure 8. Clonal driver events associated with clinical outcomes. (A) CCF values for each sample affected by a recurrent genetic alteration across all 134 
samples. Median CCF values are shown (top, bars represent the median and interquartile range for each genetic alteration). Alterations with a CCF value 
of greater than 0.9 were defined as a clonal event. The cumulative proportion of a recurrent genetic alteration found as clonal (blue) or subclonal (red) in 
the cohort is shown in bottom plot. (B) Computational inference of temporal order of genetic alterations in MCL. Arrows indicate when paired clonal and 
subclonal genetic alterations were found in the same sample. Dashed lines indicate the temporal order was found in 3 or more samples; solid lines that 
the temporal order was found in 5 or more samples. (C) Kaplan-Meier plot of PFS according to the number of clonal driver events.
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Figure 9. Clonal evolution pattern in MCL and its association with clinical outcome. (A–C) Depiction of tumor clonal evolution from diagnosis to relapse in 
a representative patient (MCL34). (A) Dynamic changes in genetic alterations during disease progression. Representative genetic alterations for each cluster 
are listed in the plot. (B) Clonal evolution estimated using PhylogicNDT. The mean CCF and 95% CI of each cluster are indicated. (C) Fish plot showing the 
clonal evolution process. The width of each time point indicates the clonal fractions of each subclone population. (D) Joint distributions of CCF values of 
genetic alterations across 2 (or more) time points (ND, newly diagnosed; P, progression; R, relapse; R1, first relapse; R2, second relapse) were estimated using 
clustering analysis. Each line corresponds to cluster of genetic alterations (range 3–33) and illustrates the dynamic changes in CCF at the different time points 
for clusters. We classified any CCF increase or decrease greater than 0.5 between 2 time points for any cluster as extreme evolution. CCF changes between 0.2 
and 0.5 or less than 0.2 were classified as moderate evolution or no evolution, respectively. (E) Sample interval and number of clonal clusters in patients with 
either extreme evolution or with modest or no evolution. (F) Kaplan-Meier plot of survival from either first sampling (left) or second sampling (right).
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was used to identify genetic clusters as previously reported (38). Brief-
ly, all genetic lesions were scored based on the following attributes: 
nonsilent mutations, 1; IGHV mutation, 2; low-level CN deletion (1.0 
≤ CN ≤ 1.7 copies), 1; high-level deletion (CN < 1.0 copies), 2; low-level 
amplification (2.3 ≤ CN ≤ 3.7 copies), 1; high-level amplification (CN 
> 3.7 copies), 2. The NMF consensus clustering algorithm was used 
to assign samples into different clusters. Both cophenetic coefficient 
and silhouette values for K = 2 to K = 10 were calculated to determine 
the best solution, as shown in Supplemental Figure 12A (K = 4). Fish-
er’s exact test was used to identify markers for each cluster by testing 
whether the frequency of variants in one cluster was higher than in 
other clusters. P values for multiple comparisons were adjusted using 
the Benjamini-Hochberg correction. Genetic alterations with q < 0.1 
were defined as markers. The main cluster algorithm code can be 
accessed at GitHub (https://github.com/broadinstitute/DLBCL_Nat_
Med_April_2018/tree/1c5dcd2f7b859f8b7839f4e1d9725e455b14df4d 
with commit ID 1c5dcd2f7b859f8b7839f4e1d9725e455b14df4d). The 
results were visualized as a heatmap using R package ComplexHeat-
map 2.4.2 (64). In the Barcelona cohort, we adopted the single-cell 
projective nonnegative matrix factorization (scPNMF) (65) method to 
project features extracted from the discovery cohort. The parameter –K 
15, method = KL was used and samples were assigned into a nearest 
cluster of discovery cohort based on UMAP. Thirty-three samples with 
matched gene expression profiling data available were used to validate 
our expression features in different clusters.

Integrative genomics and transcriptomics pathway analysis. RNA-
Seq libraries were generated with the NEBNext UltraTM RNA Library 
Prep Kit (New England Bio) and sequenced on the HiSeq platform 
(Illumina). Raw reads were aligned to the human reference genome 
(GRCh38/hg38) using STAR (66), and expression levels of mRNAs 
were normalized to transcript per million (TPM). To directly compare 
pathway expression for each cluster, the log2-transformed TPM values 
for all genes in the gene set were averaged to provide a signature val-
ue for each sample and then the value for samples assigned to each  
cluster was calculated as the cluster average expression of the  
signature. These values were linearly transformed, and the F test was 
used to compare each cluster.

Statistics. Survival curves were estimated using the Kaplan-Meier 
method, and log-rank test was used to assess statistical significance for 
PFS and OS between cohorts. Multivariate Cox’s regression analysis 
was used to assess the independent prognostic impact from MIPI risk, 
IGHV mutational status, and individual genetic factors for outcomes in 
the MCL cohort. Student’s t test or Mann-Whitney U test was used to 
evaluate differences between continuous variables.

Study approval. All samples were obtained from MCL patients. 
Written, informed consent was obtained from all participants, in 
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