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Introduction
Renal function is essential to maintaining systemic homeostasis. 
The kidneys filter the blood, maintain body pH, water, and elec-
trolyte balance, and contribute to the regulation of blood pressure. 
The kidneys produce urine as a byproduct of maintaining fluid and 
electrolyte balance. The volume and composition of the urine can 
provide insight into health status. Indeed, analysis of the urine is 
thought to be the oldest medical test, dating back to the ancient 
Babylonians and Sumerians who recorded their observations on 
clay tablets more than 6000 years ago (1). This practice was termed 
“uroscopy,” meaning the scientific examination of urine. Thou-
sands of years later, Hippocrates practiced uroscopy and believed 
that changes in the properties of urine were indicative of disease 
states. For example, from this time through the Middle Ages, med-
ical practitioners would taste urine in order to detect sweetness, 
which was indicative of diabetes mellitus. In the 11th century, the 
physician Ismail al-Jurjani noted that urine composition could be 
altered by food intake as well as by aging. Interestingly, Ismail pur-
portedly asked for a full 24-hour collection of urine and empha-
sized the importance of a good night’s sleep prior to the collection. 
This report provides perhaps the earliest hint at the incorporation 
of time as a biological variable in the practice of medicine.

It was documented as early as the end of the 19th century 
(reviewed in ref. 2) that urine volume varies over the course of a 
24-hour period, although this observation was largely attributed to 
differences in fluid intake in the active versus the rest phase. In the 

1950s, landmark studies by Mills and colleagues firmly established 
the rhythmicity of renal function (3–5). These investigators showed 
that urinary sodium, potassium, chloride, and phosphate were 
excreted with a 24-hour rhythmic pattern and that urine volume 
and pH varied over the 24-hour cycle as well. Importantly, these 
experiments were conducted under relatively constant conditions 
so that fluid and food intake, posture, and sleep stage were all con-
trolled. Thus, it could be concluded that the rhythmic variations 
were endogenous and not a result of behavior or posture. In the 
decades since, enormous strides have been made in understanding 
the molecular mechanisms underlying rhythmic renal function. 
The discovery of circadian clock genes, for which Hall, Rosbash, 
and Young were awarded the Nobel Prize in 2017, made it possible 
to study the molecular mechanisms of circadian rhythms (6).

The circadian system is conducted by the central clock, locat-
ed in the suprachiasmatic nucleus of the hypothalamus, through 
neuronal and humoral signaling to the “orchestra” of the body’s 
peripheral clocks, which include other regions of the brain and tis-
sue clocks such as the kidney. Indeed, the molecular machinery of 
the circadian clock is present in nearly every cell and tissue type in 
humans, and its mechanisms have been extensively reviewed (7, 
8). Briefly, the core components of the clock comprise transcrip-
tion factors that function in a transcription-translation feedback 
loop (Figure 1). In the positive arm, BMAL1 and CLOCK proteins 
heterodimerize and bind E-box response elements in the promot-
ers of target genes. These target genes include those encoding 
the PER and CRY proteins that function in the negative arm of 
the feedback system. PER and CRY feed back on and inhibit the 
activity of BMAL1 and CLOCK, thus decreasing the transcription 
of their own genes in addition to other target genes. This mecha-
nism contributes to the regulation of nearly half of all expressed 
genes in a tissue-specific manner and plays a major role in rhyth-
mic physiological function, including blood pressure rhythms and 

The reality of life in modern times is that our internal circadian rhythms are often out of alignment with the light/dark cycle 
of the external environment. This is known as circadian disruption, and a wealth of epidemiological evidence shows that 
it is associated with an increased risk for cardiovascular disease. Cardiovascular disease remains the top cause of death in 
the United States, and kidney disease in particular is a tremendous public health burden that contributes to cardiovascular 
deaths. There is an urgent need for new treatments for kidney disease; circadian rhythm–based therapies may be of 
potential benefit. The goal of this Review is to summarize the existing data that demonstrate a connection between 
circadian rhythm disruption and renal impairment in humans. Specifically, we will focus on chronic kidney disease, lupus 
nephritis, hypertension, and aging. Importantly, the relationship between circadian dysfunction and pathophysiology is 
thought to be bidirectional. Here we discuss the gaps in our knowledge of the mechanisms underlying circadian dysfunction 
in diseases of the kidney. Finally, we provide a brief overview of potential circadian rhythm–based interventions that could 
provide benefit in renal disease.
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understanding of the molecular mechanisms underlying these 
pathological states. It is important to note that the relationship 
between circadian disruption and disease states is bidirectional. 
In some cases, we do not know what comes first, the circadian 
malfunction or the disease state. However, we do know that cir-
cadian disruption and disease states constitute a vicious cycle in 
which each condition exacerbates the other. Finally, we discuss 
possible circadian-based interventions that might provide a ben-
efit for renal function.

Circadian disruption in diseases of  
the human kidney
Chronic kidney disease. Chronic kidney disease (CKD) is defined 
as damage to the kidneys or decrease in renal function that is sus-
tained over at least 3 months. CKD is associated with disordered 
circadian rhythms of sleep, blood pressure, and proteinuria. In 
human subjects, worsening renal function is associated with later 
onset, shorter duration, and increased fragmentation of sleep (32). 
Consistent with these effects on sleep being due to kidney disease 
per se, rather than the effect of comorbidities, animal models of 
kidney disease, including subtotal nephrectomy in rats (33) and 
adenine model in mice (34), demonstrate abnormalities in sleep 
and activity. On the other hand, in patients with type 1 diabetes, 
circadian disruption precedes microalbuminuria or other clini-
cal evidence of kidney disease (35). Similarly, mice with genetic 
deletion of the circadian CLOCK protein are more vulnerable to 
adenine-induced CKD than wild-type mice (34). These observa-
tions suggest that circadian dysfunction might predispose to kid-
ney disease. Thus, CKD and circadian dysfunction might have a 
bidirectional relationship, with circadian disruption accelerating 
kidney dysfunction and kidney disease causing abnormalities in 
circadian rhythms.

CKD is also associated with non-dipping pattern of blood 
pressure, suggesting disrupted circadian rhythms of blood pres-
sure. Clinically, non-dipping is defined as less than 10% differ-
ence between night and day blood pressure. The prevalence of 
non-dipping hypertension in CKD varies from 60% to 80% and 
increases with worsening kidney function (36). In patients with 
CKD, non-dipping pattern of blood pressure is independently 
associated with an increased risk of death or progression to end-
stage renal disease (37). In a small study of 20 patients with end-
stage renal disease who received kidney transplantation and had 
ambulatory blood pressure monitoring performed before and a 
year after the transplant, the percentage of patients who were 
considered dippers rose from 15% at 1 month before transplanta-
tion to almost 40% a year after transplantation (38). The dipping 
status was influenced by the renal function after transplantation 
and the use of immunosuppressive medications. Although the 
data on whether nighttime dosing of antihypertensive medi-
cation reduces nocturnal blood pressure or restores nocturnal 
dipping are inconclusive (39–41), a randomized controlled trial 
of 661 patients with CKD, in which subjects were randomized 
to receive at least one of their antihypertensive medications at 
night, found that the risk of cardiovascular events was one-third 
in comparison with those who received all their medications in 
the morning (42). The reduction in cardiovascular events seemed 
out of proportion to that expected from the modest decrease in 

renal excretion rhythms (refs. 9–17 and Figure 1). In the kidney, for 
example, animal studies have demonstrated that genes encoding 
proteins involved in xenobiotic metabolism as well as various sodi-
um transport genes are regulated by the clock mechanism (18–20). 
In humans, a small study in healthy volunteers showed that pro-
tein levels of Na+-Cl− cotransporter (NCC) and prostasin in urinary 
exosomes varied over a 24-hour period (21), consistent with what 
has been shown using mouse models.

The circadian system is thought to have evolved in order to 
provide an adaptive homeostatic advantage for organisms living 
on a planet with 24-hour periods of light and dark. The molecular 
clock components are highly conserved: humans share approx-
imately 30% homology with the BMAL1 homolog in bread mold, 
for example (22). Given the 24-hour, 7-days-a-week nature of mod-
ern life, disruption of the circadian system is increasingly common 
(23). Circadian disruption is defined as misalignment between the 
endogenous circadian rhythms of our internal body clocks and the 
external environment. Circadian disruption can occur acutely: a 
shift of just 1 hour due to daylight saving time is associated with 
an increase in adverse cardiovascular events (24). Epidemiological 
studies in this century have demonstrated that chronic circadian 
disruption, such as what occurs in shift workers, is a key risk factor 
for a number of pathologies, including cancer and cardiovascular 
disease. For example, shift workers have an increased risk of devel-
oping chronic kidney disease (25) and hypertension (26). Long 
working hours can cause circadian disruption and are associated 
with declining renal function (27). A recent meta-analysis demon-
strated a link between long-term night shift work and increased 
systolic blood pressure (28). Sleep disorders, such as obstructive 
sleep apnea, are associated with both hypertension and non-dip-
ping hypertension (29). There also seems to be a genetic relation-
ship between single-nucleotide polymorphisms (SNPs) in circadian 
clock genes and the prevalence of some diseases. A genome-wide 
association study of 1304 individuals across 424 British families 
revealed BMAL1 haplotypes that are associated with the hyperten-
sion phenotype (30). SNPs in clock genes are associated with phe-
notypic variance in systolic blood pressure (31).

In this Review, we describe evidence linking circadian disrup-
tion to the pathologies of chronic kidney disease, lupus nephritis, 
aging, and hypertension. We also discuss the limitations of our 

Figure 1. Transcription-translation feedback loop of the circadian clock. 
BMAL1 and CLOCK bind to E-box response elements in the promoters 
of target genes, which include Period and Cryptochrome. PER and CRY 
form the negative arm of this feedback loop. Ancillary loops of the 
transcription-translation feedback system involving nuclear receptors 
and posttranslational modifications exist but will not be discussed here. 
Also beyond the scope of this Review is a discussion of the non-canonical 
functions of clock proteins, such as the role of BMAL1 in the regulation of 
translation in the cytosol (161).
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a recent study of mice with adenine-induced kidney disease 
suggests that circadian rhythmicity of phosphate is disrupted 
only by a high-phosphate diet and induction of vascular calci-
fication (47). However, the molecular mechanisms underlying 
these observations remain to be elucidated, and whether circa-
dian disruption can lead to vascular calcification needs further 
study. Similarly, circadian rhythmicity has been observed in the 
levels or activity of most hormones involved in bone mineral 
metabolism (48, 49). Erythropoietin levels (50), reticulocyte 
counts (51), and parathyroid hormone (52) all exhibit circadian 
rhythmicity in human subjects. However, the role of circadian 
dysregulation in contributing to the development of long-term 
complications of CKD remains to be studied.

The signaling mechanisms that are perturbed in CKD can 
conceivably disrupt the kidney clock. However, disrupted sleep 
in human subjects with CKD and experimental evidence for dis-
turbed activity and central clock output from animal studies dis-
cussed earlier suggest that the central clock in the suprachiasmat-
ic nucleus is perturbed in kidney disease as well. This circadian 
dysfunction is likely to exacerbate the known complications of 
CKD (Figure 2A). Although the evidence for circadian dysfunction 
in CKD is compelling, the molecular mechanisms involved in the 
pathogenesis remain largely unknown.

Lupus nephritis. Although sleep disruption and fatigue are 
prominent complaints in patients with systemic lupus erythema-
tosus (SLE) and negatively affect quality of life (53–57), the role 

blood pressure, suggesting the possibility that restoration of cir-
cadian rhythms could have blood pressure–independent effects 
on the cardiovascular system.

The renin-angiotensin-aldosterone system is upregulated in 
CKD. Angiotensin II acting via its cognate receptor AT1 modulates 
the activity of the suprachiasmatic neurons in vitro (43). Whether 
AT1 activation modulates the central circadian clocks in vivo and 
contributes to circadian dysfunction in CKD is unknown. Further, 
gut dysbiosis and accumulation of uremic toxins in CKD might 
disrupt the circadian clock. The aryl hydrocarbon receptor, an 
environmental sensor that can bind uremic toxins, demonstrates 
rhythmic expression and forms a heterodimer with BMAL1 to 
modulate expression of circadian genes (44, 45). However, wheth-
er the aryl hydrocarbon receptor contributes to circadian dysfunc-
tion in CKD remains to be determined.

CKD is associated with the development of long-term com-
plications such as hyperphosphatemia, secondary hyperpara-
thyroidism, vascular calcification, accelerated atherosclerosis, 
bone mineral disorders, and anemia. Serum phosphate levels 
exhibit a circadian rhythm in healthy individuals (46). While 
the afternoon peak is attenuated by a low-phosphate diet, the 
nocturnal peak appears to be independent of diet and modulat-
ed by unidentified endogenous factors. This raises the intrigu-
ing possibility that the circadian system might regulate serum 
phosphate levels. Although reports of altered rhythmicity of 
serum phosphate with CKD in human subjects are variable, 

Figure 2. Disruption of circadian rhythms in disease state. (A) Complications of CKD. Kidney disease is associated with disruption of peripheral and 
central circadian rhythms. The molecular clock modulates the levels or activity of serum phosphate, parathyroid hormone, erythropoietin (EPO), and other 
hormones that are known to exhibit diurnal rhythms. (B) Schema of progression of SLE to end-organ renal disease (lupus nephritis [LN]) and potential 
contribution from disturbed circadian clock. Genetically susceptible individuals develop SLE. During disease progression there is a complex crosstalk 
between multiple cell types involving both innate and adaptive immune systems. The antigen-presenting cells (APCs) present self-antigens from various 
sources to T lymphocytes, which results in generation of autoreactive T cells. These CD4+ T lymphocytes in turn instruct B cells to produce autoantibodies 
of different specificities that deposit as immune complexes (ICs) in the glomeruli. This leads to progressive glomerular pathology and local production of 
chemoattractants and matrix proteins, resulting in immune cell infiltration and tissue damage. Loss of glomerular permeability also leads to tubuloint-
erstitial injury, which is perpetuated by intrinsic tubular cell inflammatory phenotype and infiltrating immune cells and eventually leads to renal failure. 
Sleep fragmentation or genetic mutations in key clock proteins in SLE patients can potentially accentuate immune cell effector function. Furthermore, 
mutations in the renal intrinsic cells’ clock genes can render them susceptible to injury, as local injurious events unfold during the progression of LN.
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of LN Nrf2 suppresses LN through inhibition of oxidative injury 
and the NF-κB–mediated inflammatory response (92). Similarly, 
BMAL1-knockout macrophages are unable to sustain mitochon-
drial function, and display enhanced glycolysis as well as HIF-1α–
dependent metabolic reprogramming and inflammatory response 
(89). In an animal model of LN, renal macrophages switch toward 
glycolysis, secrete more IL-1β, and recruit neutrophils to damage 
the kidneys (93). Collectively, these findings pose several pertinent 
questions, like how local microenvironment dictates the function 
of macrophage molecular clock, particularly in LN.

Few studies have examined the effect of genetic deletion of 
clock proteins in mice with spontaneous or drug-induced lupus. 
Mice deficient in the circadian clock genes Cry1 and Cry2 have 
elevated serum IgG concentrations, serum antinuclear antibodies, 
and precipitation of IgG, IgM, and complement in glomeruli (94). 
This study also showed that CRY deficiencies enhance the rate of 
B cell maturation and stimulate B cell developmental in the spleen 
and peritoneal cavity, leading to an increase in autoantibody pro-
duction. Another study, by Palma et al., showed that NZB/W mice 
(spontaneous model of LN) subjected to sleep deprivation exhib-
ited an earlier onset of the disease, as reflected by the increased 
number of antinuclear antibodies, though the severity of the dis-
ease based on proteinuria and survival data was comparable (95). 
In contrast, using the same strain of mice, Mishra et al. recently 
reported significant differences in the renal expression of circa-
dian clock–associated genes and proteins in young and nephritic 
mice (96). The kidneys of young NZB/W mice displayed a normal 
circadian pattern of expression of Bmal1, Clock, Per, and Cry genes 
compared with the nephritic mice. There was also a significant 
reduction in BMAL1 protein expression at various time points in 
nephritic NZB/W mice compared with young mice.

The finding that the disturbances in circadian rhythm and 
dysregulated expression of key clock genes and proteins are 
associated with progression of SLE and LN is becoming well 
documented. Collectively, genetic mutations and sleep distur-
bance may synergize with systemic and local inflammation to 
worsen LN (Figure 2B). Nevertheless, there are limited reports 
regarding the role of the circadian clock in progression of LN 
or other end-organ pathology associated with SLE. Given the 
known link between activation of the proinflammatory tran-
scription factor NF-κB and lupus (97), it is interesting to note 
that NF-κB has been linked to circadian disruption and altered 
clock gene expression in response to inflammation (98). A recent 
report showed that circadian disruption during inflammation 
could be ameliorated by NF-κB inhibition in a mouse model of 
obesity (99), raising the question of whether NF-κB inhibition 
could affect circadian disruption in LN. Whether disruptions in 
circadian rhythm affect SLE manifestations and whether the cir-
cadian clock is a target for treatment of lupus and its associated 
morbidities remain to be determined.

Hypertension. Because the kidneys play a critical role in blood 
pressure regulation, hypertension can be both cause and conse-
quence of renal damage. Circadian disruption is likely to exac-
erbate these effects since it is known to negatively affect human 
health. Shift work is becoming more common in the 21st century 
(28). It is estimated that about 20% of workers in Europe and the 
United States have a shift work schedule, defined as something 

of the circadian clock in SLE and lupus nephritis (LN), a common 
complication in patients with SLE, has not been explored in detail. 
We briefly discuss the general pathobiology of LN and summarize 
the current knowledge linking disturbances in clock cycle and SLE.

SLE is an autoimmune disease of unknown etiology that 
mainly affects women of reproductive age. LN is the most com-
mon end-organ manifestation of SLE and is the major cause of 
morbidity and mortality (58, 59). Immune complex deposits, com-
posed of antinuclear, anti-C1q, and cross-reactive antiglomerular 
autoantibodies (60–64), are found in the glomeruli (65, 66) and 
are considered the most common initiators of renal disease in 
SLE. This leads to local production of cytokines and chemokines 
that recruit leukocytes to perpetuate renal injury (67–69). The T 
and B lymphocytes from LN kidneys are clonally expanded, and 
the same T cell clones have been detected in the peripheral blood 
(70, 71). Macrophages infiltrate LN kidneys, and this is associated 
with poor outcomes (72–74). These intrarenal innate and adaptive 
immune responses can synergize with systemic autoimmunity 
and worsen overall outcomes. Although the circadian clock has 
been shown to regulate immune responses and macrophage func-
tion, the role of the circadian system in the development of SLE or 
LN has not been explored in detail.

Sleep disturbances are commonly reported in SLE patients (56, 
75, 76) and negatively affect quality of life (57). Early studies revealed 
that in patients with SLE, levels of circulating immune complexes 
drop during sleep, supporting a role for the circadian system in the 
regulation of immunological processes in SLE (77). The association 
between sleep quantity and incidence of SLE (78) was studied in a 
cohort of individuals at increased genetic risk for SLE (79) who did 
not meet diagnostic criteria for SLE (80) at their baseline visit. In a 
follow-up study using questionnaires and chart review, less than 7 
hours of sleep per night was independently associated with increased 
risk of developing SLE, suggesting a possible causal role for sleep dis-
turbances and perhaps circadian dysfunction in pathogenesis of SLE 
(78). In patients with chronic glomerulonephritis and SLE who were 
treated with the glucocorticoid prednisolone, the nighttime dip in 
blood pressure was lost, with the blood pressure lowest in the after-
noon, rising throughout the night, and peaking in the morning (81). 
Additional studies are needed to evaluate the role of this circadian 
disruption in disease progression.

Dysregulated immune responses are a cardinal feature of SLE/
LN, and immune cells display a circadian effector pattern. Pertur-
bations in immune cell circadian clock can influence outcomes of 
SLE/LN. In humans, natural regulatory T cell (Treg) number and 
function follow a rhythm across a 24-hour period. Sleep depriva-
tion abrogated this rhythm and impaired Treg function (82). These 
findings are noteworthy, as Tregs are dysregulated and function-
ally impaired in SLE (83, 84), raising the possibility that alterations 
in the circadian clock in SLE could impair Treg functions.

Macrophages are the harbingers of renal disease in LN and 
have been implicated in the pathology of several spontaneous and 
induced models of murine LN (73, 85–87). It is well documented 
that a circadian clock in macrophages controls their inflammatory 
responses as well as mitochondrial metabolism (88–91). The circa-
dian clock protein BMAL1 regulates IL-1β in macrophages via nucle-
ar factor erythroid 2–related factor 2 (Nrf2) (90). Nrf2 expression is 
increased in glomeruli of patients with LN, and in mouse models 
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tion tended to be older (>50 years of age) and have higher night-
time blood pressure (5–6 mmHg). These findings support the idea 
that the loss of renal excretion rhythms is associated with aging and 
may negatively affect blood pressure dipping. This study clearly 
demonstrates the utility of using timed urine collections as a way 
to assess rhythmic renal function. Given the strong association 
between renal sodium excretion and blood pressure, this method 
could also provide a means to identify those at risk for hyperten-
sion-associated end-organ damage.

Aging. It is well established that kidney function decreas-
es with increasing age (108–110). Age-related renal structural 
changes are observed independent of comorbidities. Kidney 
mass declines after age 50, with an accompanying decline in 
the number of functional glomeruli and nephrons (111–113). 
The incidence of both nephrosclerosis and glomerulosclerosis 
is significantly higher in patients above 70 years old, even when 
examining biopsies from normotensive individuals (114–117). 
The structural changes that occur in the aging kidney are accom-
panied by alterations of renal physiology. Glomerular filtration 
rate (GFR) declines with increasing age, but the rate at which 
GFR decreases with age is still uncertain, as different studies 
report varying degrees of GFR decline (111, 118–122). A decrease 
in renal blood flow is also observed with increasing age, which is 
also associated with an increase in renal vascular resistance and 
filtration fraction (123, 124). Dysregulation of electrolyte han-
dling has also been observed among the elderly. Older adults 
have reduced lithium clearance compared with young subjects, 
despite the fact that the sodium excretion is similar (123). This 
suggests that proximal tubule reabsorption of sodium seems 
to increase with age, but distal nephron sodium reabsorption 
decreases, which could contribute to the higher rate of salt-sen-
sitive blood pressure among the elderly (125, 126).

In addition to overall changes in kidney structure and func-
tion, circadian rhythms in behavior, sleep/wake cycle, and oth-
er physiological parameters are negatively affected in older 
populations (127). Changes in sleeping patterns are extremely 
common among aging adults (128). As age increases, the sleep/
wake cycle shifts and individuals tend to fall asleep and wake up 
earlier than younger individuals (129, 130). Cortisol, which has 
been demonstrated to regulate rhythms in peripheral clocks, has 
an altered rhythm of production in older adults (131, 132). Night-
time cortisol seems to increase with age in both men and women, 
but an increase in the morning acrophase of cortisol is observed 
only in women (133). These changes in cortisol are likely relat-
ed to the age-related sleep cycle changes, but may also affect 
renal rhythms. Multiple studies in varying aging populations 
have demonstrated that renal diurnal rhythms deteriorate with 
age. Electrolyte excretion rhythms have been shown to dampen 
with increasing age (134). Compared with patients in the 25 to 
35 age range, healthy subjects in the 60- to 80-year-old group 
had a reduced day-to-night ratio of water, electrolyte, and solute 
excretion (135). Additionally, older individuals showed reduced 
24-hour sodium and potassium excretion, despite solute excre-
tion and urine volume similar to those in the younger group.

A common symptom associated with aging is nocturia, which 
is defined as waking up one or more times at night to urinate (136). 
The prevalence of nocturia increases with age in both men and 

other than a “9 to 5” schedule. Shift work is associated with various 
adverse health effects, including increased prevalence of hyper-
tension. A meta-analysis of 45 studies, including a total of 117,252 
workers, found that there was a significant increase in both systol-
ic and diastolic blood pressure in permanent night workers (28). 
Rotational shift work was associated with a significant increase in 
systolic blood pressure only. There was no significant association 
between shift work and hypertension in this study, but the aver-
age worker age was below 40 years old. Data from Korea showed 
that among factory workers taking antihypertensive medications, 
blood pressure control was worse in night shift workers compared 
with day shift workers (OR 0.74, 95% CI 0.68–0.80; ref. 100). This 
finding remained significant even after adjustment for age, sex, 
obesity, exercise, smoker status, and alcohol intake. Studies like 
these demonstrate the risks associated with disruption of normal 
circadian patterns of behavior and physiology.

Many patients diagnosed with essential hypertension have 
a normal day/night pattern of blood pressure rhythms, but the 
overall mean arterial pressure is shifted up. Hypertensive patients 
with a reduced day/night rhythm of blood pressure are classified 
as having non-dipping hypertension. The prevalence of non-dip-
ping hypertension is difficult to estimate since it requires the use 
of 24-hour ambulatory blood pressure monitoring. It is of para-
mount importance to increase the use of this method, however, as 
non-dipping hypertension is a critical risk factor for adverse car-
diovascular outcomes (reviewed in ref. 101). Early studies demon-
strated that restricting dietary sodium could restore the nocturnal 
dip of individuals with sodium-sensitive blood pressure (102). 
Patients with essential hypertension and an intact blood pressure 
dip at night maintain urinary sodium excretion rhythms on a high-
salt diet, whereas patients with a non-dipping phenotype lose their 
rhythms of urinary sodium excretion (103). Sodium restriction sig-
nificantly improved the rhythms of both urinary sodium excretion 
and blood pressure in the non-dipping hypertension group, but 
had no effect on the dipper group.

Timed urine collections provide an opportunity to assess circa-
dian disruption in a noninvasive manner. The loss of the nighttime 
dip in blood pressure has been linked to disruption of rhythms in 
urinary sodium excretion (103). It should be noted that a recent 
study in mice showed that the blood pressure rhythm could be 
inverted by restriction of food intake to the inactive period, and this 
effect occurred in the absence of changes in the diurnal pattern of 
urinary sodium excretion (104). In a pathophysiological setting, it 
was recently shown that restricting food intake to the active period 
restored the normal blood pressure rhythm in non-dipping, diabet-
ic mice (105). In a clinical study, 642 Chinese adults with primary 
hypertension underwent 24-hour ambulatory blood pressure mon-
itoring, and 24-hour urine sodium excretion was measured along 
with morning urine sodium concentration (106). Both 24-hour uri-
nary sodium excretion and morning urinary sodium concentration 
had a positive association with blood pressure. Healthy individuals 
excrete more sodium during the day than during the night. In a 
cross-sectional study with over 1000 patients in Switzerland, Del 
Giorno et al. paired 24-hour ambulatory blood pressure data with 
night and day urine collections to assess the relationship between 
blood pressure dipping, day/night ratios in sodium excretion, and 
age (107). Patients with the lowest ratio of day/night sodium excre-
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women, with around 60% of people older than 70 waking up two 
or more times nightly to urinate (137, 138). Nocturia pathophysiol-
ogy in the elderly involves many different factors, but significant 
contributions arise from age-related changes in the kidney, such 
as reduced ability to concentrate urine (139) and the inability to 
excrete solutes shortly after a meal (140). Compared with age-
matched non-nocturic patients, older nocturic patients not only 
had larger nighttime urine volume, but also excreted significant-
ly more sodium, chloride, and potassium at night (141, 142). The 
nocturic patients excreted half of their total 24-hour sodium with-
in the nighttime period, whereas the non-nocturic patients excret-
ed twice the amount of sodium during the daytime compared with 
the nighttime. No differences were observed in urine aldosterone 
excretion rates between the two groups. Furthermore, decreased 
day-to-night ratios (altered diurnal rhythms) of diuresis in older 
men with nocturia are associated with higher nighttime mean arte-
rial pressure (143). The alteration of circadian rhythms in patients 
with nocturia is associated with sleep disturbances, depression, 
arterial hypertension, and increased mortality and morbidity 
(144, 145). Despite the negative effects of nocturia, often patients 
do not report their symptoms to their physician because they con-
sider nocturia to be part of the normal aging process (146).

Clinically, it is critical to determine the mechanisms behind 
dysregulation of the circadian clock in the aging kidney to 
improve quality of life and treatment strategies. For example, 
in a retrospective study using the US Renal Data System Dialy-
sis Morbidity and Mortality Waves III/IV database, researchers 
examined the impact of the time of day at which dialysis was 
administered in a population of patients older than 60 years 
(147). Elderly patients who underwent dialysis in the morning or 
in the evening had a lower risk for mortality compared with those 

who received dialysis in the afternoon. Interestingly, time of day 
of dialysis did not seem to have an effect on mortality in patients 
younger than 60. These results are similar to those of an earlier 
study that reported increased survival of elderly end-stage renal 
disease patients who underwent dialysis in the morning versus 
the afternoon (148). Interventions and lifestyle changes such as 
exercise (149) have been hypothesized to help maintain renal 
rhythms, but this is a poorly researched area that could greatly 
benefit from additional studies. Additionally, the mechanisms 
that contribute to altered circadian rhythms in the elderly are 
still poorly understood and warrant further research. DNA meth-
ylation and histone modifications change with age, primarily 
in response to environmental stimuli as shown by studies with 
monozygous twins (150). These epigenetic changes may contrib-
ute to altered circadian rhythms in the elderly.

Circadian therapeutics and the future
It is well established that loss of circadian rhythms in phys-
iological functions can lead to disease. The evidence that this 
phenomenon occurs in patients with kidney disease is growing. 
As basic research brings us closer to understanding the patho-
physiological mechanisms by which circadian disruption causes 
disease, the potential for circadian rhythm–based interventions 
is increasing. Using timed light therapy as an intervention, one 
small randomized controlled trial found that night shift work-
ers had improved nighttime blood pressure dip with treatment. 
This increase in the nighttime blood pressure dipping status 
was associated with a decrease in serum glucose during oral 
glucose tolerance testing. There were no changes in serum 
insulin, melatonin, or cortisol, but plasma catecholamine lev-
els were reduced (151). Early time-restricted feeding (all meals 
before 3 pm) in prediabetic men lowered blood pressure and 
increased insulin sensitivity (152). In a study including both 
male and female patients, a 10-hour self-selected window for 
eating resulted in lower blood pressure as well as a reduction 
in hemoglobin A1c (153). In terms of treating patients with end-
stage kidney disease, home dialysis and nocturnal dialysis offer 
attractive options for improving quality of life and potentially 
survival (154, 155). Whether some of the benefits are due in part 
to restoration of circadian rhythms is an intriguing possibility 
that merits further study. Preclinical rodent studies suggest that 
circadian clock modulatory compounds may have benefit in car-
diovascular disease (156). There is growing interest in “drugging 
the clock,” which could include optimizing the timing of medi-
cation delivery as well as small molecules that influence clock 
protein function, in humans in several different diseases (157). 
With the increasing availability of circadian rhythm–based ther-
apeutics, it is becoming more and more important that we gain a 
more complete understanding of the mechanisms by which the 
circadian clock system regulates physiological function and how 
circadian disruption contributes to pathophysiology.

In the future, adoption of circadian-based therapies will 
require development of tests to assay the extent of circadian dis-
ruption to facilitate diagnosis and assess response to therapy. The 
use of timed urine collections could shed light on the incidence 
of circadian disruption and help assess the effectiveness of circa-
dian-based therapies in a noninvasive manner. Measurement of 

Figure 3. Proposed reciprocal relationship between circadian disruption 
and kidney disease. Circadian disruption may lead to renal disease, but 
kidney disease itself may cause circadian disruption. These pathological 
states may exacerbate each other. This vicious cycle may represent an 
opportunity for circadian rhythm–based interventions as novel therapies 
to restore circadian rhythms and physiological function.
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clock gene expression in blood samples may also be useful as a 
prognostic and diagnostic biomarker in patients on dialysis, those 
with CKD, or those with or at risk for acute kidney injury (158–160). 
Although the potential to use circadian principles in the treatment 
or management of kidney disease is growing (Figure 3), the mech-
anisms by which disrupted circadian rhythm mediates and perpet-
uates renal injury remain to be elucidated, as basic research in this 
area is still in the early stages. Given the physiological and clinical 
significance of circadian rhythms to human health, more detailed 
examination of the circadian clock in models of renal disease is 
necessary and is expected to bring a deeper understanding of 
renal versus systemic circadian homeostasis.
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