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Introduction
Epithelial ovarian cancer is the leading cause of gynecological 
malignancy–related deaths (1). High-grade serous ovarian cancer 
(HGSOC) is the most prevalent form, which accounts for 70% to 
80% of all mortalities (2). HGSOC usually presents at an advanced 
stage with malignant ascites and widespread metastases through-
out the peritoneal cavity (3). The standard treatments for HGSOC 
are cytoreductive surgery followed by platinum and taxane–based 
chemotherapy (4). Although most HGSOCs are initially sensitive 
to first-line chemotherapy, acquired resistance to chemothera-
peutic agents almost inevitably develops within 5 years (3). Thus, 
resistance to platinum-based chemotherapy is a major challenge 
in the clinical management of epithelial ovarian cancer.

The peritoneal cavity and internal organs are lined by a mono-
layer of cobblestone-like mesothelial cells (5). Mesothelial cells also 
constitute a substantial proportion of cells within the ascites fluid of 
HGSOC (6). Studies have suggested that mesothelial cells function 
as a “double-edged sword” in ovarian cancer progression. On one 

hand, as the outmost layer of peritoneum, they function as a mechan-
ical barrier preventing attachment and invasion of cancer cells into 
the submesothelial extracellular matrix (ECM) (5). To gain access to 
the submesothelial layer, disseminated ovarian cancer spheroids use 
myosin-generated forces to drive mesothelial cell clearance (5, 7). 
On the other hand, cancer cell–mediated reprogramming activates 
mesothelial cells to express factors that promote ovarian cancer pro-
liferation, adhesion, migration, and invasion (8–10). Thus, mesothe-
lial cells are an important cellular component of the ovarian cancer 
microenvironment that facilitates tumor progression.

Osteopontin (OPN, also known as SPP1) is a multifunction-
al matricellular phosphoglycoprotein that is overexpressed in 
ovarian cancer. Clinically, OPN is a serum biomarker for ovarian 
cancer detection (11–13). In addition, elevated OPN in blood and 
ascites fluid is associated with platinum resistance and poor sur-
vival in ovarian cancer (14–16). OPN signals through CD44 and 
integrin receptors to activate multiple downstream signaling path-
ways, including PI3K/AKT, MEK/ERK, and JAK/STAT pathways 
(17–20). Functionally, OPN promotes metastasis, proliferation, 
stem-like phenotypes, chemoresistance, radiation resistance, and 
immune suppression in a variety of cancer types (21, 22). Howev-
er, the regulation and functional role of OPN in ovarian cancer 
are poorly defined. Here, we report that bidirectional signaling 
between ovarian cancer cells and mesothelial cells promotes 
ovarian cancer chemoresistance and stemness through OPN. Our 
findings reveal that mesothelial cells are an abundant source of 
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and CAM2) directly from the malignant ascites of ovarian cancer 
patients (Supplemental Table 1; supplemental material available 
online with this article; https://doi.org/10.1172/JCI146186DS1). 
Immunostaining confirmed that the primary mesothelial cells were 
positive for the mesothelial markers calretinin (8, 23, 24), cytoker-
atin, and vimentin (25) and were negative for markers of other cell 
types, including immune, endothelial, and fibroblast cells (Sup-
plemental Figure 1A). Primary mesothelial cells displayed a char-

OPN in the ovarian cancer microenvironment and that therapeu-
tic targeting of OPN may be an effective strategy for enhancing 
platinum sensitivity in ovarian cancer.

Results
Cancer-associated mesothelial cells promote ovarian cancer chemoresis-
tance. To investigate the contribution of mesothelial cells to platinum 
resistance, we isolated cancer-associated mesothelial cells (CAM1 

Figure 1. Cancer-associated mesothelial cells promote ovarian cancer platinum resistance. (A–F) Effect of primary CAM1 (A–C) or LP9 (D–F) coinjection on 
cisplatin response of primary OC8 HGSOC cells in vivo. OC8 cells or OC8 cells plus LP9 or CAM1 mesothelial cells were injected subcutaneously into female immu-
nodeficient mice and treated with or without cisplatin every 3 days for 3 cycles. Tumor growth curves are shown in A (n = 7–8 mice per group) and D (n = 5–7 mice 
per group). Representative xenograft images are shown in B and E. Xenograft weights at the end point are shown in C and F. Arrows show scheme of cisplatin 
treatment: magenta arrows for mesothelial cell–coinjected groups, black arrows for OC8 cell alone groups. (G–J) Representative images and quantification of 
cleaved caspase-3 (G and H) and γ-H2AX (I and J) immunofluorescence staining in OC8 and LP9 coinjected tumors. Scale bars: 100 μm. Quantification of positive 
cells (percentage of control) is based on 10 random fields from more than 3 tumors in each group. Each dot represents 1 field. Nuclei were stained with DAPI 
(blue). Data are presented as mean ± SEM. *P < 0.05; **P < 0.01; ***P < 0.001, 2-way ANOVA (A, C, D, and F) and 2-tailed Student’s t test (H and J).
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DNA damage (Figure 1, G–J). Similarly to what occurred in our 
findings above, coinjection of OVCAR8 ovarian cancer cells with 
LP9 mesothelial cells reduced the efficacy of cisplatin treatment 
in vivo (Supplemental Figure 1, C–E). It should be noted that the 
origin of the OVCAR8 ovarian cancer cell line is not clear (28). 
While OVCAR8 cells are p53 deficient and have been utilized as an 
HGSOC cancer cell line, OVCAR8 cells also have mutations that 
are associated with nonserous ovarian cancer (29–31). Together, 
these findings demonstrate that cancer-associated mesotheli-
al cells promote ovarian cancer cisplatin resistance in OC8 and 
OVCAR8 xenograft models.

Cancer-associated mesothelial cells promote ovarian cancer cell 
chemoresistance through secreted factor(s). To determine whether the 
chemoprotective effect of cancer-associated mesothelial cells is 
mediated by secreted factors, we compared the platinum sensitivity 
of ovarian cancer cells cultured alone or in indirect coculture with 
that of cancer-associated mesothelial cells (Supplemental Figure 
2A). OC8 cells cocultured with LP9 mesothelial cells prior to tumor 

acteristic cobblestone-like morphology in culture without EGF 
stimulation, further supporting their mesothelial cell identity (Sup-
plemental Figure 1B and ref. 25). In addition, we obtained the pre-
viously characterized LP9 and LP3 mesothelial cells derived from 
ovarian cancer patient ascites fluid for our studies (26).

We first examined the impact of cancer-associated mesothe-
lial cells on ovarian cancer cell sensitivity to cisplatin in tumor 
xenograft studies. Female mice were subcutaneously injected 
with the previously characterized primary HGSOC cells (OC8) 
alone or together with CAM1 or LP9 mesothelial cells (27). We 
confirmed that CAM1 and LP9 mesothelial cells were not tumor-
igenic when injected alone into female Rag2–/–IL2rg–/– immunode-
ficient mice (data not shown, ref. 26). When tumors reached 100 
to 200 mm3, the mice were treated with cisplatin or vehicle. While 
cisplatin treatment inhibited the growth of OC8 tumors, cisplatin 
treatment did not affect the growth of OC8-CAM1 or OC8-LP9 
coinjected tumors (Figure 1, A–F). Coinjection of OC8 cells with 
LP9 mesothelial cells reduced cisplatin-induced apoptosis and 

Figure 2. Secreted factor or factors from cancer-associated mesothelial cells promote ovarian cancer chemoresistance. (A–C) Effect of LP9 coculture on 
cisplatin resistance of OC8 cells in vivo. Tumor cells were indirectly cocultured with or without LP9 mesothelial cells in vitro and then were injected subcu-
taneously into immunodeficient mice, followed by treatment with or without cisplatin every 3 days for 3 cycles. Tumor growth curve is shown in A (n = 6–9 
mice per group). Representative xenograft images are shown in B. Xenograft weights at the end point are shown in C. Arrows show scheme of cisplatin 
treatment: magenta arrows for mesothelial cell–conditioned groups, black arrows for unconditioned OC8 cell groups. (D and E) Effect of LP9 or LP3 cocul-
ture on the cisplatin sensitivity of OC8 cells. Cell viability is normalized to its untreated control and statistically compared with OC8 monoculture group (n 
= 3–5). (F) Percentages of annexin V+ apoptotic OC8 cells with or without LP9 preconditioning. Each group is statistically compared with OC8 monoculture 
group (n = 3). (G) Western blot analysis of cisplatin-induced apoptotic markers in OC8 after LP9 coculture. (H) Effect of conditioned media (CM) from 
HPMCs and cancer-associated mesothelial cells on OC8 cisplatin sensitivity. Cell viability is normalized to its untreated control and statistically compared 
with control media group (n = 3). Data are presented as mean ± SEM. **P < 0.05; ***P < 0.001, 2-way ANOVA (A, C–F, and H).
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As most ovarian cancer patients eventually succumb to resistance 
to multiple chemoreagents (3), we extended our studies to include 
additional chemotherapeutic agents utilized in the clinical man-
agement of ovarian cancer. We observed similar protective effects 
of LP9 and LP3 mesothelial cells on ovarian cancer cell sensitivity 
to carboplatin in both OC8 and OVCAR8 cells and to paclitaxel in 
OVCAR8 cells (Supplemental Figure 3, A–D).

injection were resistant to cisplatin treatment compared with OC8 
cells grown as single cultures (Figure 2, A–C). In addition, cancer-as-
sociated mesothelial cell (LP9, LP3, or CAM2) coculture reduced 
the cisplatin sensitivity of OC8 and OVCAR8 cells in vitro (Figure 2, 
D and E, and Supplemental Figure 2, B–D). LP9 coculture reduced 
cisplatin-induced cell apoptosis in OC8 and OVCAR8 cancer cells 
in vitro (Figure 2, F and G, and Supplemental Figure 2, E and F). 

Figure 3. Cancer-associated mesothelial cells promote ovarian cancer stemness through secreted factors. (A and B) Effect of LP9 coinjection (A, n = 20–22 
mice per group) or coculture (B, n = 24 mice per group) on OC8 tumor incidence in immunodeficient mice. (C and D) In vivo limiting dilution assays showing 
tumor formation rate (red portion) of LP9 coinjected (C) or in vitro cocultured (D) OC8 tumors at indicated cancer cell numbers (n = 4–5 mice per group). (E) 
Sphere-formation assay of OC8 cells after LP9 coculture. Representative sphere images and quantification of sphere number fold increase (n = 5). Scale bars: 
200 μm. (F) Real-time PCR analysis showing relative mRNA expression of the stemness markers NANOG, OCT3/4, SOX2, and ALDH1A1 in OC8 after LP9 cocul-
ture, as normalized to GAPDH mRNA (n = 3). Data are presented as mean ± SEM. *P < 0.05; **P < 0.01; ***P < 0.001, 2-tailed Student’s t test (E and F).
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to cancer stemness (32). To determine whether cancer-associated 
mesothelial cells induce ovarian cancer stemness, we compared 
the tumor incidence of ovarian cancer cells injected alone or 
together with cancer-associated mesothelial cells. LP9 and CAM1 
mesothelial cells enhanced the tumor-formation rate of OC8 and 
OVCAR8 xenografts (Figure 3A and Supplemental Figure 5, A and 
B). In addition, preconditioning OC8 cells with LP9 cells in vitro 
also enhanced OC8 tumor formation (Figure 3B). A gold standard 
assay to assess cancer stem cell (CSC) enrichment is the in vivo 
limiting dilution assay, which examines tumorigenic rate with 
serial dilutions of cancer cells (33). In this assay, the tumor for-
mation rate was higher at low cell numbers in OC8 cells that were 

Next we sought to determine whether human primary mesothe-
lial cells (HPMCs) derived from patients with benign disease have 
a similar protective effect on ovarian cancer cell platinum sensitiv-
ity (8). Compared with the conditioned media collected from can-
cer-associated mesothelial cells (CAM1, CAM2, LP9, and LP3), the 
conditioned media from 3 independent HPMCs did not affect ovar-
ian cancer cell (OC8, OVCAR8, CAOV3, or SNU119) cisplatin sensi-
tivity in vitro (Figure 2H and Supplemental Figure 4, A–C). Overall, 
our results demonstrate that cancer-associated mesothelial cells 
promote ovarian cancer chemoresistance through soluble factor(s).

Cancer-associated mesothelial cells promote ovarian cancer stem-
ness through secreted factor(s). Multidrug resistance has been linked 

Figure 4. Cancer-associated mesothelial cells promote ovarian cancer organoid formation through secreted factors. (A) Representative H&E images 
of ovarian cancer organoids in 3D. Scale bars: 100 μm (upper panels); 50 μm (lower panels). (B) Ovarian cancer organoid formation per 10,000 initially 
encapsulated EpCAM+ ovarian cancer cells with addition of paired CAM1-conditioned media or control media (n = 3). (C) Ovarian cancer organoid diameter 
(defined as cell clusters > 50 μm in diameter with lumen) with addition of paired CAM1-conditioned media or control media. Each point represents 1 organ-
oid. n.d., none detected. (D) Immunofluorescent staining of cytokeratin-8 (magenta) and EpCAM (green) in ovarian cancer organoids grown in CAM1-con-
ditioned media or in control media. Nuclei were stained with DAPI (blue). Scale bars: 50 μm. (E) Immunofluorescence of F-actin (red) and stemness marker 
ALDH1A1 (green) in ovarian cancer organoids grown in CAM-conditioned media or in control media. Nuclei were stained with DAPI (blue). Scale bars: 50 μm. 
Data are presented as mean ± SEM. ***P < 0.001, 2-tailed Student’s t test (B).
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coinjected or preconditioned with LP9 cells compared with OC8 
cells alone, suggesting that cancer-associated mesothelial cells 
promote ovarian cancer cell stemness through secreted factors 
(Figure 3, C and D). In vitro sphere formation correlates with the 
enrichment of ovarian CSCs (32). We observed that cancer-associ-
ated mesothelial cell (LP9 and LP3) indirect cocultures enhanced 
ovarian cancer cell (OC8 and OVCAR8) tumor-sphere formation 
when seeded under low-attachment conditions (Figure 3E and 
Supplemental Figure 5, C–E). At the molecular level, cancer-asso-
ciated mesothelial cell (LP9, LP3, and CAM2) indirect cocultures 

enhanced the expression of stemness 
markers, including NANOG, OCT3/4, 
SOX2 and, ALDH1A1 in ovarian cancer 
cells (OC8 and OVCAR8 cells; Figure 3F, 
Supplemental Figure 5, F–H, and refs. 
32, 34, 35). ALDH activity is a function-
al marker of ovarian CSCs (33, 36). LP9 
mesothelial cells increased the percent-
ages of ALDH+ OC8 and OVCAR8 cells 
in vitro (Supplemental Figure 5I) and 
in coinjected or preconditioned tumor 
xenografts (Supplemental Figure 5, J–L).

Finally, we utilized a 3D organ-
oid approach to determine whether 
patient-matched cancer-associated 
mesothelial cells facilitate the initiation 
and growth of primary ovarian cancer 
organoids. We sorted EpCAM+ cancer 
cells from ovarian cancer patient asci-
tes and cultured them in 3D hydrogels 

with the stimulation of patient-matched primary mesothelial 
cell–conditioned media. Strikingly, the patient-derived condi-
tioned media induced the formation of organoids with well-or-
ganized lumen structures compared with smaller, unorganized 
cell clusters in the samples with control media (Figure 4A). 
Moreover, the efficiency of ovarian cancer cell organoid forma-
tion and growth was markedly enhanced with the patient-de-
rived conditioned media compared with control media (Figure 
4, B and C). Organoids and cell clusters stained positive for 
EpCAM and the ovarian cancer marker cytokeratin-8, confirm-

Figure 5. Cancer-associated mesothelial cells 
secrete OPN. (A) Cytokine array in conditioned 
media of HPMC1 and CAM1. Circles highlight 
cytokine of the highest increase in CAM1- 
compared with HPMC1-conditioned media 
in each individual color. (B) Quantification of 
OPN concentration in conditioned media from 
HPMCs and CAMs by ELISA (n = 2 or 3). (C) 
Volcano plot of RNA-Seq showing differen-
tial gene expression in CAMs versus HPMCs 
(GSE84829). (D) Real-time PCR analysis of 
relative mRNA expression of OPN in HPMCs 
and CAMs, as normalized to GAPDH mRNA 
(n = 3). (E) Immunofluorescence of OPN (red) 
and mesothelial cell marker calretinin (green) 
in total ascites cells from HGSOC patients. 
Arrowheads denote costained mesothelial 
cells. Nuclei were stained with DAPI (blue). 
Scale bars: 100 μm. (F) Percentages of total 
OPN-positive cells in paired calretinin+ and 
calretinin– ascites cells of ovarian cancer 
patients (n = 14). (G) Correlation of asci-
tes OPN concentration and calretinin+ cell 
percentages in total ascites cells of ovarian 
cancer patients (n = 14; Pearson’s correlation). 
(H) Correlation of OPN and calretinin expres-
sion in total ascites cells of ovarian cancer 
patients (n = 13; Pearson’s correlation). Data 
are presented as mean ± SEM. ***P < 0.001, 
2-tailed Student’s t test (F).
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ing their ovarian cancer epithelial origin (Figure 4D). Inter-
estingly, only the organoids treated with the patient-derived 
mesothelial cell–conditioned media expressed the ovarian CSC 
markers ALDH1A1 and CD44, suggesting the CSC population 

was enriched in these samples (Figure 4E, Supplemental Figure 
5M, and Supplemental Video 1). Collectively, our data suggest 
that cancer-associated mesothelial cell–derived factor or factors 
promote ovarian cancer stemness.

Figure 6. Ovarian cancer cells 
induce OPN expression in 
mesothelial cells through TGF-β 
signaling. (A) Real-time PCR 
analysis of relative OPN mRNA 
expression in HPMCs alone or 
cocultured with ovarian cancer 
cells, as normalized to GAPDH 
mRNA and statistically compared 
with HPMC cultured–alone group 
(n = 3). (B) ELISA quantification of 
OPN concentration in conditioned 
media from HPMCs alone or 
HPMCs cocultured with various 
ovarian cancer cells. Each group 
is statistically compared with 
HPMC cultured–alone group (n = 
3). (C) Real-time PCR analysis of 
relative TGFB1, TGFB2, and TGFB3 
expression in HPMCs or ovarian 
cancer cells, as normalized to 
GAPDH mRNA (n = 3). (D) ELISA 
quantification of TGF-β1 concen-
tration in conditioned media from 
HPMCs or ovarian cancer cells (n 
= 3). (E) ELISA quantification of 
OPN concentration in conditioned 
media from HPMCs treated with 
PBS or TGF-β1 (10 ng/ml) for 3 
days (n = 3). (F) ELISA quantifi-
cation of OPN concentration in 
conditioned media from HPMCs 
cultured in control media, HPMCs 
treated with ovarian cancer cell–
conditioned media, or HPMCs 
treated with ovarian cancer cell–
conditioned media plus SB431542 
(SB). Group with ovarian cancer 
cell–conditioned media plus 
SB431542 treatment is statisti-
cally compared with respective 
ovarian cancer cell–conditioned 
media treated–alone group. Data 
are presented as mean ± SEM. *P 
< 0.05; **P < 0.01; ***P < 0.001, 
1-way ANOVA (A, B, and F) and 
2-tailed Student’s t test (E).
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To identify proteins that may contribute to cancer-associated 
mesothelial cell–mediated chemoprotection, we first compared 
cytokines secreted by HPMC1 and CAM1 mesothelial cells using 
Ab cytokine arrays. Several cytokines were detected at higher levels 
in CAM1-conditioned media compared with the HPMC1-condi-
tioned media (Figure 5A), reinforcing the notion of a cytokine-rich 
microenvironment favored by CAMs (10). We noted that one of 
the cytokines with the greatest increase in CAM1-conditioned 
media was OPN (Figure 5A). We confirmed by ELISA that can-
cer-associated mesothelial cells (CAM1, CAM2, and LP9) secrete 
higher levels of OPN compared with HPMCs (HPMC1, HPMC2, 

Cancer-associated mesothelial cells secrete OPN in the ovarian can-
cer microenvironment. To identify cancer-associated mesothelial 
cell–derived factor or factors that promote ovarian cancer chemore-
sistance, we first fractionated LP9-conditioned media with 3, 10, and 
100 kDa cutoff filters to determine the effect of each fraction on OC8 
cisplatin sensitivity. Only the fractions of more than 3 kDa and more 
than 10 kDa maintained the chemoprotective effect of LP9-condi-
tioned media on OC8 cells (Supplemental Figure 6A). Furthermore, 
proteinase K digestion abrogated the protective effect, suggesting 
that protein or proteins between 10 and 100 kDa are responsible for 
LP9-mediated chemoresistance (Supplemental Figure 6A).

Figure 7. Cancer-associated mesothelial cells promote ovarian cancer cell chemoresistance and stemness through OPN. (A) Effect of exogenous OPN on 
cisplatin sensitivity of OC8 cells. Cell viability is normalized to its untreated control and statistically compared with the group without OPN treatment (n = 
3–5). (B and C) Sphere-formation assay of OC8 after OPN exposure. Representative sphere images and quantification of sphere-number fold increase are 
shown (n = 10). Scale bars: 200 μm. (D) Real-time PCR analysis showing relative mRNA expression of stemness markers NANOG, OCT3/4, SOX2, and ALD-
H1A1 in OC8 cells after OPN exposure, as normalized to GAPDH mRNA (n = 3). (E) Cell viability of OC8 cells treated with cisplatin after coculture with LP9 
control knockdown (shControl) or LP9 shOPN. Cell viability is normalized to its untreated control and statistically compared with the LP9 shControl group 
(n = 6). (F) Sphere-formation assay of OC8 after coculture with LP9 shControl or LP9 shOPN. Quantification of sphere-number fold increase is shown (n = 
6). Each group is statistically compared with the LP9 shControl group. (G) Real-time PCR analysis showing relative mRNA expression of stemness markers 
NANOG, OCT3/4, SOX2, and ALDH1A1 in OC8 with LP9 shControl or LP9 shOPN coculture, as normalized to GAPDH mRNA and statistically compared with 
the LP9 shControl group (n = 3). Data are presented as mean ± SEM. *P < 0.05; **P < 0.01; ***P < 0.001, 2-way ANOVA (A and E), 2-tailed Student’s t test 
(B and C), and 1-way ANOVA (F and G).
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portion of total ascites cells (8.56%–80.81%; Figure 5E and Sup-
plemental Table 2). The majority of OPN-expressing cells in the 
ascites fluid were calretinin positive, indicating that mesothelial 
cells are a major source of OPN in malignant ascites (Figure 5F). 
We further quantified secreted OPN levels in paired cell-free asci-
tes with total ascites cells and found a strong correlation between 
calretinin-positive mesothelial cells and OPN concentration with-
in the malignant ascites of individual patients (Figure 5G). Real-
time PCR and array-profiling analyses confirmed a positive cor-
relation between OPN and calretinin mRNA expression in ascites 
cells and peritoneal and omental metastases (Figure 5H, Supple-
mental Figure 6, J and K, and refs. 39, 40). In addition, high OPN 
expression in peritoneal metastatic lesions was associated with 
poor patient survival (Supplemental Figure 6L and ref. 40). Taken 
together, these data suggest that mesothelial cells are an abundant 
source of OPN in the ovarian cancer microenvironment.

Ovarian cancer cells induce OPN expression in mesothelial cells 
through TGF-β signaling. Since mesothelial cells in the ovarian can-
cer microenvironment secrete higher levels of OPN than HPMCs, 
we hypothesized that ovarian cancer cells induce OPN expression 
and secretion in mesothelial cells. Indeed, indirect coculture of 
HPMCs (HPMC1, HPMC2, and HPMC3) with HGSOC cells (OC8, 
CAOV3, and SNU119) increased OPN expression and secretion in 
HPMCs (Figure 6, A and B).

TGF-β is a potent inducer of OPN expression (41–43) and has 
been shown to activate mesothelial cells to promote ovarian can-
cer metastasis (9, 37, 44). To determine whether ovarian cancer 
cells induce OPN expression in mesothelial cells via TGF-β signal-
ing, we first compared the expression of the TGFB1-3 isoforms in 
mesothelial cells and ovarian cancer cells by real-time PCR anal-
ysis. TGFB1 was the only isoform that was consistently higher in 
ovarian cancer cells compared with HPMCs (Figure 6C). ELISA 
confirmed higher levels of secreted TGF-β1 by HGSOC cells (OC8, 
CAOV3, and SNU119) compared with HPMCs (HPMC1, HPMC2, 
and HPMC3; Figure 6D). Treatment with recombinant human 
TGF-β1 was sufficient to increase OPN secretion by HPMCs (Fig-
ure 6E). Moreover, the TGF-β receptor inhibitor SB431542 reduced 
OPN secretion in ovarian cancer cell–conditioned HPMCs (Figure 
6F). These data suggest that ovarian cancer–derived TGF-β1 sig-
naling induces OPN expression and secretion by mesothelial cells.

OPN signaling is necessary and sufficient for mesothelial 
cell–mediated ovarian cancer chemoresistance and stemness. To 
determine whether OPN is necessary and sufficient to promote 
cancer-associated mesothelial cell–mediated ovarian cancer 
chemoresistance and stem-like phenotypes, we treated OC8 
and OVCAR8 ovarian cancer cells with recombinant human 
OPN and assessed their chemosensitivity and stem-like phe-
notypes. Exogenous OPN enhanced cisplatin resistance of OC8 
and OVCAR8 cells (Figure 7A and Supplemental Figure 7A). In 
addition, OPN treatment increased OC8 and OVCAR8 sphere 
formation and the expression of the stemness markers, includ-
ing NANOG, OCT3/4, SOX2, and ALDH1A1 (Figure 7, B–D, and 
Supplemental Figure 7, B–D). OPN knockdown, which did not 
impact LP9 cell viability (Supplemental Figure 8, A and B), 
reduced the ability of LP9 mesothelial cells to promote OC8 and 
OVCAR8 cell cisplatin resistance (Figure 7E and Supplemental 
Figure 8, C and D). As a control, the addition of OPN to LP9 

and HPMC3; Figure 5B). In addition, OPN mRNA expression was 
increased in cancer-associated mesothelial cells compared with 
HPMCs (Figure 5, C and D, and ref. 37).

Next, we compared OPN levels between cancer-associat-
ed mesothelial cells and ovarian cancer cells. Using cytokine Ab 
microarrays, we found that OPN was among the top cytokines 
increased in LP9-conditioned media compared with OVCAR8-con-
ditioned media (Supplemental Figure 6B). We confirmed by ELISA, 
real-time PCR analysis, and high-resolution single-cell microscopy 
that cancer-associated mesothelial cells express and secrete higher 
levels of OPN compared with ovarian cancer cells (Supplemental 
Figure 6, C–G). Collectively, these findings demonstrate that can-
cer-associated mesothelial cells express higher levels of OPN com-
pared with HPMCs and ovarian cancer cells.

Ovarian cancer cells disseminate through the malignant asci-
tes to peritoneal tissues, most often to the omentum. To investi-
gate whether mesothelial cells in the omental metastatic microen-
vironment express OPN, we costained omentum from tumor-free 
donors and HGSOC patients with the mesothelial marker calreti-
nin and OPN. Calretinin and OPN were coexpressed at the outer 
layer of omentum near tumor cells, suggesting that mesothelial 
cells at metastatic sites produce OPN (Supplemental Figure 6, 
H and I). In contrast, mesothelial cells lining the omentum from 
tumor-free donors showed lower levels of OPN staining (Supple-
mental Figure 6, H and I). We further expanded our analysis of 
OPN expression to the malignant ascites cells from patients with 
advanced-stage epithelial ovarian cancer (Figure 5E and Sup-
plemental Table 2). Consistent with previous reports (6, 38), we 
found that calretinin-positive mesothelial cells were a substantial 

Figure 8. Cancer-associated mesothelial cells promote ovarian cancer 
cell chemoresistance and ABC drug transporter activity through OPN, 
CD44, and PI3K/AKT signaling. (A and B) Effect of the anti-CD44 
blocking Ab and/or integrin-blocking RGD peptide on LP9-conditioned 
media–mediated cisplatin resistance (A) or sphere-formation increase 
(B) of OC8 cells. Each group is statistically compared with LP9-condi-
tioned media plus control Ab plus RGE group (n = 3 or 4). (C) Western 
blot showing PI3K/AKT signaling in OC8 cells cocultured with LP9 
shControl or LP9 shOPN cells. (D) Western blot showing PI3K/AKT 
signaling in OC8 cells treated with exogenous OPN and/or anti-CD44 
blocking Ab. (E) Effect of PI3K/AKT pathway inhibitor LY294002 on 
OPN-mediated cisplatin resistance of OC8 cells. Each group is statis-
tically compared with exogenous OPN–alone group (n = 4). (F) Fold 
increase of relative mRNA expression of ABC transporters in OC8 with 
LP9 coculture versus OC8 monoculture, as normalized to GAPDH mRNA 
in real-time PCR analysis (n = 3). (G and H) Multidrug resistance assay 
detecting the activity of major types of ABC transporters (MDR1, MRP, 
and BCRP) in OC8 cells treated with LP9-conditioned media and/or anti-
OPN Ab. Cyan histograms show dye retention of untreated cell, and red 
histograms show dye retention of respective inhibitor-treated cells in 
G. The same untreated cells in cyan are used in each row of histograms. 
Multidrug resistance activity factor (MAF) indicative of corresponding 
ABC drug transporter activity is shown in H and statistically compared 
with LP9-conditioned media plus control Ab group (n = 3). (I and J) 
Multidrug resistance assay detecting ABC transporter activity in OC8 
cells treated with LP9-conditioned media and/or anti-CD44 blocking Ab 
(I) or the PI3K/AKT inhibitor LY294002 (J). MAF indicates corresponding 
ABC protein activity and is statistically compared with LP9-conditioned 
media or LP9-conditioned media plus control Ab group (n = 3). Data are 
presented as mean ± SEM. *P < 0.05; **P < 0.01; ***P < 0.001, 2-way 
ANOVA (A, B, E, and H–J) and 2-tailed Student’s t test (F).
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ness marker expression in OC8 and OVCAR8 cells (Figure 7, F 
and G, and Supplemental Figure 9, A–D). These data suggest 
that OPN is a key factor driving mesothelial cell–mediated ovar-
ian cancer chemoresistance and stemness.

OPN knockdown–derived (shOPN-derived) conditioned media 
largely restored the chemoprotective effect of LP9-conditioned 
media on OC8 cells (Supplemental Figure 8C). OPN knockdown 
also inhibited LP9-mediated tumor-sphere formation and stem-

Figure 9. Therapeutic inhibition of OPN enhances the efficacy of cisplatin in human and mouse ovarian cancer xenografts. (A and B) Effect of preincubation with 
an anti-OPN Ab in the absence or presence of LP9-conditioned media on cisplatin sensitivity of OC8 subcutaneous tumors in immunodeficient mice (n = 7 mice 
per group). Tumor growth curves are shown in A. Xenograft weights at the end point are shown in B. Arrows show scheme of cisplatin treatment every 3 days for 3 
cycles: magenta for LP9-conditioned media with control Ab groups, black for other groups. (C and D) Representative images (C) and quantification of cisplatin-DNA 
adduct immunofluorescence staining (D) in tumors of OC8 model. Quantification of positive cells (percentages of control media with control Ab group) is based on 5 
random fields from 3 tumors in each group. Each dot represents 1 field. Nuclei were stained with DAPI (blue). Scale bars: 100 μm. (E and F) Representative images of 
tumor metastases (highlighted by white circles in E) in female C57BL/6J mice injected intraperitoneally with ID8 cells and then treated with a mutant OPN aptamer 
(mut apt) as control, cisplatin, OPN aptamer (OPN apt), or combination therapy (n = 9 mice per group). Tumor weight, tumor number, ascites volume, and omentum 
weights at the end point are shown in F. Each group is statistically compared with control group in F. Data are presented as mean ± SEM. *P < 0.05; **P < 0.01; ***P 
< 0.001, 2-way ANOVA (A and B), 2-tailed Student’s t test (D) and 1-way ANOVA test (F).
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upregulate ABC transporter expression and drug efflux in prostate 
cancer cells (53). Thus, we hypothesized that cancer-associated 
mesothelial cell–secreted OPN promotes ovarian cancer chemo-
resistance by inducing ABC transporter activity in ovarian can-
cer cells. We first examined ABC transporter gene expression in 
ovarian cancer cells cocultured with cancer-associated mesothe-
lial cells. Several ABC family transporters that are associated with 
ovarian cancer poor prognosis, including multi-drug resistance 
protein 1 (MRP1, ABCC1; ref. 54), MRP4 (ABCC4; ref. 55), MRP6 
(ABCC6), and breast cancer resistance protein (BCRP, ABCG2; 
refs. 56, 57), were induced in OC8 and OVCAR8 cells cocultured 
with LP9 mesothelial cells (Figure 8F and Supplemental Figure 
14F). In flow cytometry–based multidrug resistance assay analysis, 
LP9-conditioned media decreased the retention of the EFLUXX-
ID fluorescent dye (58) in OC8 and OVCAR8 cells in an OPN-de-
pendent manner, indicating that cancer-associated mesothelial 
cells promote ovarian cancer cell drug efflux through OPN signal-
ing (Figure 8, G and H, and Supplemental Figure 14G). Moreover, 
we found that the enhanced drug efflux in LP9-conditioned ovar-
ian cancer cells was dependent upon ABC drug transporter activi-
ty, suggesting that enhanced ABC transporter activity contributes 
to cancer-associated mesothelial cell and OPN-mediated ovarian 
cancer cell chemoresistance (Figure 8, G and H, and Supplemental 
Figure 14G). Treatment with either the CD44-blocking Ab or the 
PI3K/AKT inhibitor LY294002 rescued the multidrug-resistant 
phenotype induced by LP9-conditioned media (Figure 8, I and J, 
and Supplemental Figure 14, H and I). Together, these findings 
suggest a model in which cancer-associated mesothelial cells 
secrete OPN and enhance platinum drug efflux through the acti-
vation of CD44/PI3K-AKT/ABC drug transporter activity.

Therapeutic targeting of OPN improves the efficacy of cisplatin 
in human and mouse ovarian tumor xenografts. To determine the 
therapeutic potential of the anti-OPN neutralizing Ab to restore 
cisplatin sensitivity in mesothelial cell–conditioned ovarian can-
cer cells, we compared the cisplatin sensitivity of ovarian cancer 
cells cultured with cancer-associated mesothelial cell–condi-
tioned media alone or together with an anti-OPN neutralizing 
Ab. The anti-OPN Ab increased the cancer-associated mesothe-
lial cell–primed ovarian cancer cell sensitivity to cisplatin in vitro 
(Supplemental Figure 15, A and B). Moreover, the anti-OPN Ab 
reduced the tumor-formation rate, enhanced the efficacy of cis-
platin, and increased cisplatin-modified DNA in OC8 xenografts 
preconditioned with LP9-conditioned media (Figure 9, A–D, and 
Supplemental Figure 15C). This observation is consistent with our 
in vitro studies showing OPN regulation of ABC drug transporters 
in ovarian cancer cells (Figure 8H).

To determine whether OPN blockade could enhance the effi-
cacy of cisplatin treatment in a more physiologically relevant mod-
el, we utilized the ID8 syngeneic murine model of ovarian cancer 
peritoneal metastasis. The ID8 ovarian cancer model is widely uti-
lized as a model of ovarian cancer, as it metastasizes throughout 
the peritoneal cavity, significantly affects the bowel, and forms 
ascites similar to that seen in HGSOC patients (59). However, it 
should be noted that, at the molecular level, the ID8 model does 
not harbor mutations commonly associated with HGSOC, includ-
ing Trp53, Brca1, Brca2, Nf1, or Rb1 (60). Similarly to what occurs 
with ascites of ovarian cancer patients, the ascites fluid in the ID8 

OPN signaling increases ovarian cancer chemoresistance through 
the activation of the CD44 receptor, PI3K-AKT signaling, and ABC drug 
transporter activity. We hypothesized that the ability of CAM-secreted 
OPN to promote chemoresistance relies on downstream signals trans-
duced via CD44 and/or integrin receptors on ovarian cancer cells (22). 
We first examined CD44 and integrin family expression levels on the 
surface of OC8 and OVCAR8 cells and found that the percentages of 
OC8 and OVCAR8 cells that were positive for CD44 increased follow-
ing LP9 coculture (Supplemental Figure 10, A, D, and E). Real-time 
PCR analysis confirmed an increase in CD44 mRNA expression in 
LP9-cocultured OC8 and OVCAR8 cells (Supplemental Figure 10F). 
Several integrin family members, including αVβ1, αVβ3, αVβ5, α5β1, αVβ6, 
and α8β1, bind to OPN in an Arg-Gly-Asp (RGD) sequence–dependent 
manner (45, 46). Thus, we evaluated cell-surface expression of integ-
rins αV and β1, which are present in all of these RGD-dependent inte-
grin heterodimers. Both integrin αV and β1 subunits were expressed by 
the majority of OC8 and OVCAR8 cells in the absence or presence of 
LP9 coculture (Supplemental Figure 10, B, C, G, and H).

To determine which receptor or receptors contribute to 
OPN-mediated chemoresistance, we determined the cisplatin sen-
sitivity of ovarian cancer cells conditioned with LP9 media in com-
bination with a control, anti-CD44 blocking Ab and/or a competi-
tive inhibitor (RGD peptide) targeting the RGD-dependent integrin 
receptors. In the OC8, CAOV3, and SNU119 cells, blocking CD44 
was sufficient to reverse LP9-mediated cisplatin resistance, while 
the integrin-inhibiting RGD peptide did not affect LP9-mediated 
ovarian cancer cell cisplatin resistance (Figure 8A and Supplemental 
Figure 11, A and B). In the OVCAR8 model, both CD44 and integrin 
inhibition reduced LP9-mediated chemoresistance (Supplemental 
Figure 11C). CD44 blockade also repressed ovarian cancer cell cis-
platin resistance induced by exogenous OPN (Supplemental Figure 
12, A–D). In addition to reducing cancer-associated mesothelial-me-
diated chemoresistance, CD44 blockade with the anti-CD44 block-
ing Ab reduced LP9-mediated ovarian cancer cell sphere formation 
(Figure 8B and Supplemental Figure 13, A–C). Together, these find-
ings suggest that CD44 signaling in ovarian cancer cells plays an 
important role in mediating the chemoprotective effect of cancer- 
associated mesothelial cells and OPN.

OPN has been reported to induce cancer progression via CD44 
receptor and PI3K/AKT signaling (18, 47–50). We found that LP9 
cocultures activated PI3K/AKT signaling in ovarian cancer cells in 
an OPN-dependent manner (Figure 8C and Supplemental Figure 
14A). In addition, recombinant human OPN induced PI3K/AKT 
signaling in ovarian cancer cells and CD44 blockade with the anti-
CD44 blocking Ab reduced PI3K/AKT activation by OPN (Figure 
8D and Supplemental Figure 14B). To determine whether PI3K/AKT 
signaling contributes to OPN-induced chemoresistance, we deter-
mined the cisplatin sensitivity of ovarian cancer cells treated with 
human recombinant OPN and the PI3K/AKT inhibitor LY294002 
(51). LY294002 restored cisplatin sensitivity in OPN-treated ovarian 
cancer cells (OC8, OVCAR8, CAOV3, and SNU119; Figure 8E and 
Supplemental Figure 14, C–E). In summary, these data suggest that 
CD44 and PI3K/AKT signaling play a role in mediating OPN-in-
duced chemoresistance of ovarian cancer cells.

It is well established that enhanced drug efflux mediated by 
the ATP-binding cassette (ABC) transporters contributes to ovar-
ian cancer cell chemoresistance (52). OPN has been reported to 
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of the BCL-2/BAX ratio, or upregulation of ABC transporter 
expression (53, 72–74). In ovarian cancer, OPN expression cor-
relates with poor patient prognosis and therapeutic failure (15), 
but its cellular source and molecular mechanism are unclear. 
Here, we define a mechanism by which mesothelial cell–derived 
OPN paracrine signaling promotes ovarian cancer chemoresis-
tance through the activation of the CD44 receptor on the surface 
of ovarian cancer cells, PI3K/AKT signaling, and downstream 
ABC drug efflux transporter activity.

Accumulating evidence supports a role for ovarian CSCs in 
intraperitoneal metastasis, chemoresistance, and tumor recur-
rence (75, 76). Based on their intrinsic stem-like properties, CSCs 
are thought to initiate tumor formation, metastasis, and multi-
drug resistance (77). In HGSOCs, CSCs are enriched within asci-
tes fluid and express intracellular detoxifying scavengers, such 
as aldehyde dehydrogenase 1 family member A1 (ALDH1A1), 
canonical stem cell markers, including NANOG, OCT3/4, and 
SOX2, and drug efflux transporters, such as ABCG2 (32, 33, 78, 
79). CSC populations exist in a plastic state and are dynamically 
shaped by signal cues from the tumor microenvironment (77, 80). 
In HGSOCs, recent studies have highlighted a role for stromal 
cells within the peritoneal cavity, including fibroblasts (36, 81), 
mesenchymal stem cells (82), adipocytes (83), macrophages (81, 
84), and myeloid-derived suppressor cells (35), in CSC expansion 
and maintenance. Here, we found that mesothelial cells secrete 
OPN to enrich for ovarian cancer cells with stem cell properties. 
Notably, we observed that mesothelial-derived OPN induced 
the expression and activity of the functional ovarian CSC mark-
er ALDH1A1. Recent studies have shown that IL-6/STAT3, DNA 
methyltransferase 1 (DNMT1), BRD4, and β-catenin signaling 
promote ALDH1A1 expression in ovarian cancer cells (36, 79, 85). 
Future studies are needed to explore how mesothelial cells in the 
ovarian cancer microenvironment promote ALDH1A1 expression 
in ovarian cancer cells.

Finally, our findings indicate that therapeutic targeting of 
OPN may be an effective strategy for enhancing the efficacy of cis-
platin for the treatment of metastatic ovarian cancer. We demon-
strate that therapeutic inhibition of mesothelial-secreted OPN 
with OPN-neutralizing Abs is sufficient to reduce tumor formation 
and enhance the efficacy of cisplatin treatment in human ovari-
an cancer xenografts. Anti-OPN treatment was associated with 
increased cisplatin-modified DNA in the tumor xenografts, con-
sistent with our in vitro studies showing reduced ABC drug efflux 
transporter activity in ovarian cancer cells treated with the anti-
OPN neutralizing Ab. These findings suggest a model in which 
therapeutic targeting of mesothelial cell–derived OPN enhances 
cisplatin response by increasing the drug concentration and DNA 
damage inside ovarian cancer cells. In addition, we show that 
administration of an OPN-targeted aptamer increased the effi-
cacy of cisplatin in a syngeneic murine model of ovarian cancer 
peritoneal metastasis. Indeed, OPN blockade through the use of 
neutralizing Abs or aptamers has also been shown to be efficacious 
in mouse models of metastatic breast cancer and glioblastoma (17, 
61, 86), implicating OPN as an actionable drug target. Boumans et 
al. recently demonstrated the safety of a humanized OPN-neutral-
izing Ab in phase I and multiple-dose phase IIA clinical trials for 
the treatment of rheumatoid arthritis (87). Whether OPN-neutral-

murine model of ovarian cancer contained OPN-positive mesothe-
lial cells (Supplemental Figure 15D). ID8 tumor–bearing mice were 
treated with an aptamer against OPN alone or in combination with 
cisplatin (61–64). A mutant aptamer with poor OPN-binding abili-
ty was used as control for the OPN-targeted aptamer in this model 
(61–64). The combined treatment of the OPN-targeted aptamer 
with cisplatin decreased total tumor weight and the tumor-bear-
ing omental weight and also reduced tumor number and ascites 
volume compared with cisplatin with the mutant aptamer or the 
OPN-targeted aptamer alone (Figure 9, E and F). In summary, 
our observations suggest that targeting OPN signaling may be an 
effective therapeutic strategy for potentiating the efficacy of cis-
platin in the treatment of metastatic ovarian cancer.

Discussion
Accumulating evidence suggests that the tumor microenviron-
ment plays an important role in shaping tumor heterogeneity 
and drug resistance (65). Thus, identifying and targeting factors 
in the tumor microenvironment that promote resistance to plati-
num-based chemotherapy has the potential to improve outcomes 
in patients with advanced ovarian cancer. Peritoneal mesothelial 
cells line the visceral and parietal surfaces of the peritoneal cavity 
and are also a major cellular component of malignant ascites fluid 
(66, 67). In our study, we found that 8.56% to 80.81% of ovarian 
cancer patient ascites cells were calretinin-positive mesotheli-
al cells. Here, we demonstrate that patient-derived mesothelial 
cells from ascites fluid secrete OPN to enhance ovarian cancer 
cell stemness and platinum resistance. Importantly, therapeutic 
blockade of OPN enhanced ovarian cancer cell platinum sensitiv-
ity in coculture models and in tumor xenografts. These findings 
identify mesothelial cells as a key cellular component of the ovar-
ian tumor microenvironment that promote chemoresistance and 
suggest that targeting OPN may be an effective therapeutic strate-
gy for restoring platinum sensitivity in ovarian cancer.

We found that cancer-associated mesothelial cells from 
HGSOC patients expressed higher levels of OPN compared with 
mesothelial cells from patients with benign disease. Moreover, 
ovarian cancer cells induced OPN expression and secretion in 
mesothelial cells in a TGF-β1–dependent manner. TGF-β1 is 
highly expressed in ovarian cancer malignant ascites and omen-
tal metastases (68, 69). Recent studies have shown that TGF-β1 
stimulation increases fibronectin expression and mesenchy-
mal transition of mesothelial cells to facilitate ovarian cancer 
metastasis (9, 44). Our data extend these findings by showing 
that TGF-β1 production by ovarian cancer cells increases OPN 
expression and secretion by mesothelial cells to enhance ovarian 
cancer chemoresistance.

Our study identifies OPN as an important paracrine-signal-
ing molecule by which mesothelial cells in the ovarian tumor 
microenvironment promote cancer chemoresistance. OPN has a 
well-established role in cancer stemness and chemoresistance. 
In colon cancer, glioma, lung cancer, and gastric cancer, OPN 
secreted from tumor-associated cells enhances cancer cell stem-
ness in a CD44-dependent manner (47, 70–72). In mesothelio-
ma, gastric cancer, lung cancer, and prostate cancer, OPN pro-
motes cancer chemoresistance through enhanced hyaluronate 
(HA)/CD44/PI3K signaling, induction of Bcl-xL, modulation 
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