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Introduction
Recent surveys estimate that 32 million children and adults in the 
United States suffer from food allergies (1, 2). This represents a 

marked increase in allergic responses to food in industrialized 
societies worldwide (3), which parallels increases in other non-
communicable diseases (NCDs), including obesity, diabetes, 
asthma, autism, and inflammatory bowel disease. These NCDs 
share an association with dysbiosis of the commensal microbi-
ome, particularly in the gut (4). Microbes colonize the skin and all 
mucosal surfaces and have profound influences on basic aspects 
of physiology and health. Emerging evidence suggests that 
increased antibiotic use, low-fiber/high-fat diets, reduced expo-
sure to infectious disease, caesarean delivery, and formula feed-
ing have collectively depleted bacterial populations beneficial to 
health (4). Early childhood is a particular period of vulnerability 
for the maturation of the microbiota and the developing immune 
system, which are intimately intertwined (5, 6). The intestinal 
microbiome of children with food allergies may differ in import-
ant ways from genetically similar nonallergic children and age-
matched controls. The aim of this study was to characterize fecal 
microbiomes to identify taxa that may influence the expression of 
food allergy in children and adults.

BACKGROUND. There has been a striking generational increase in the prevalence of food allergies. We have proposed that this 
increase can be explained, in part, by alterations in the commensal microbiome.

METHODS. To identify bacterial signatures and metabolic pathways that may influence the expression of this disease, we 
collected fecal samples from a unique, well-controlled cohort of twins concordant or discordant for food allergy. Samples 
were analyzed by integrating 16S rRNA gene amplicon sequencing and liquid chromatography–tandem mass spectrometry 
metabolite profiling.

RESULTS. A bacterial signature of 64 operational taxonomic units (OTUs) distinguished healthy from allergic twins; the 
OTUs enriched in the healthy twins were largely taxa from the Clostridia class. We detected significant enrichment in distinct 
metabolite pathways in each group. The enrichment of diacylglycerol in healthy twins is of particular interest for its potential 
as a readily measurable fecal biomarker of health. In addition, an integrated microbial-metabolomic analysis identified a 
significant association between healthy twins and Phascolarctobacterium faecium and Ruminococcus bromii, suggesting new 
possibilities for the development of live microbiome-modulating biotherapeutics.

CONCLUSION. Twin pairs exhibited significant differences in their fecal microbiomes and metabolomes through adulthood, 
suggesting that the gut microbiota may play a protective role in patients with food allergies beyond the infant stage.
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food requires the induction of both a food allergen– 
specific immunoregulatory response and a com-
mensal bacteria–induced intestinal barrier–pro-
tective response, which regulates epithelial 
permeability to food allergens (17). Thus, micro-
biome-modulating therapies could possibly be 
implemented to reduce adverse events, improve 
compliance, and to achieve efficacy and sustained 
unresponsiveness in patients with food allergies.

Toward our ultimate goal of developing nov-
el microbiome-modulating therapeutics, in this 
report, we extend our work in infants (18) to a 
broader patient population to identify both bac-
terial taxa and their products associated with a 
healthy microbiota. We hypothesized that the 
intestinal microbiome of food-allergic twins would 
differ from genetically similar twins without food 
allergy (siblings raised in the same household). We 
examined fecal samples from a unique cohort of 
food-allergic and healthy twins across a broad age 
range and identified a distinct set of bacterial spe-
cies and metabolites that distinguished the healthy 
and allergic groups. By integrating microbiota and 
metabolite abundance, we identified in healthy 
twins a significant enrichment in particular metab-
olite pathways not seen in their allergic counter-
parts, particularly diacylglycerol (DAG), an essen-
tial lipid second messenger, involved in numerous 
cell signaling cascades supporting biosynthesis of 
glycerolipids and regulating protein kinase C (19). 

We also identified 2 bacterial species more abundant in healthy 
twins that correlate with differentially abundant metabolites and 
are potential targets for future translational and clinical studies: 
Phascolarctobacterium faecium, an acetate/propionate-producing 
obligate anaerobe (20, 21) associated with increased DAG and 
biotin metabolism, and Ruminococcus bromii, a keystone resistant 
starch–degrading strict anaerobe (22, 23) associated with fatty 
acid, sterol, and amino acid metabolism.

Results
Healthy and allergic twins exhibit distinct fecal microbial profiles. 
The composition of the fecal microbiota has been reported to dif-
fer in young children with food allergies compared with healthy 
children (whether siblings or unrelated) (24). We therefore exam-
ined both the microbial signatures and metabolomic profiles in 
the fecal samples from a unique collection of twin pairs that were 
raised in the same household, in which they equally avoided the 
foods to which the affected twin was found to be allergic and were 
either concordant or discordant for food allergy (Figure 1). Base-
line demographic and clinical characteristics of the twin cohort 
are shown in Table 1, and a food diary prepared at the time of 
sample collection is shown in Supplemental Table 1 (supplemental 
material available online with this article; https://doi.org/10.1172/
JCI141935DS1). Interestingly, the concordant twins did not nec-
essarily share the same food allergy (Table 1). The average age 
of participants at sample collection was 39.4 ± 4.1 years (mean ± 
SEM). All of the twins lived independently after the age of 19 years. 

An association between gut microbial community changes 
and childhood food allergies has been reported in some epidemi-
ological studies (7–9). The Canadian Healthy Infant Longitudinal 
Development study showed alterations in the gut microbial com-
munity of food-sensitized infants; in that study, Enterobacteriace-
ae were overrepresented in a less diverse microbial community in 
infants at 3 months of age, whereas Bacteroidaceae were under-
represented at 1 year (9). A Chinese infant cohort study showed 
that infants with food allergies had a higher abundance of Firmic-
utes and a lower abundance of Bacteroidetes at 6 months, but no 
significant difference in the total microbial diversity was found (8).

Oral immunotherapy (OIT) and epicutaneous immunothera-
py, allergen-specific desensitization protocols performed by intro-
ducing small but gradually increasing doses of allergen, have been 
shown to safely and effectively desensitize patients with food 
allergies to their allergens (10–12). However, OIT requires a pro-
longed period of updosing (usually years), during which gastroin-
testinal symptoms are common and might contribute to the high 
withdrawal rate observed in clinical trials (13, 14). Although OIT 
can achieve short-term desensitization, this desensitization is not 
sustained without daily maintenance dosing, and long-term toler-
ance is not induced in the majority of the cases (11). Live micro-
biome-modulating biotherapeutics are already showing prom-
ise in clinical trials for a variety of diseases (15, 16). Preclinical 
data suggest that microbiome-modulating therapeutics have the 
potential for improving both the efficacy and safety of OIT. Our 
mouse model work shows that preventing an allergic response to 

Figure 1. Flow diagram of study design and participating patients.

https://www.jci.org
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all twins (17 pairs, 34 samples) (Supplemental Figure 5 and Sup-
plemental Table 4), and the OTU abundance scores remained sig-
nificantly different between the healthy and allergic twin groups 
(Supplemental Figure 6).

Healthy and allergic twins exhibit differential enrichment in 
fecal metabolic pathways. Bacteria produce many metabolites that 
modulate the immune system and profoundly influence human 
health (26). Limited data exist on unbiased systematic profiling 
of fecal metabolites in patients with and without food allergy. 
We performed liquid chromatography–tandem mass spectrome-
try (LC-MS/MS) to measure the abundance of compounds in the 
same set of fecal samples from the twin cohort (Supplemental 
Figure 7). We identified 97 metabolites differentially abundant 
between the healthy and allergic twins, with 33 more abundant in 
healthy twins, and 64 more abundant in allergic twins (Figure 5 
and Supplemental Tables 5 and 6). If statistical comparisons are 
restricted to monozygotic twins only (14 pairs, 28 samples), the 
test statistics for the 33 healthy-abundant metabolites and the 64 
allergic-abundant metabolites correlated with those of all samples 
(18 pairs, 36 samples) (Supplemental Figure 8 and Supplemental 
Table 6). Among these 97 metabolites, 32 (16 higher in healthy, 16 
higher in allergic) also reached a significance level of 0.10 within 
discordant twin pairs only (Supplemental Figure 9).

After annotating the 97 metabolites into superpathways and 
subpathways, healthy twins showed distinct enrichment at the 
pathway level compared with allergic twins (Figure 6A and Sup-
plemental Table 7). Specifically, as shown in Figure 6A, among 
other pathways, the DAG subpathway was significantly enriched 
in the 33 metabolites more abundant in healthy twins (FDR- 
adjusted P < 0.00001), and the food component/plant subpath-
way was significantly enriched in the 64 metabolites more abun-
dant in allergic twins (FDR-adjusted P = 0.0074). One of the DAG 
metabolites, linoleoyl-linolenoyl-glycerol (18:2/18:3) [1]*(Comp 
ID: 54963), was significantly higher (P = 0.0036) in healthy twins 
compared with allergic twins in discordant pairs (Supplemental 
Figure 10A) and was significant in the twin cohort overall (Fig-
ure 6B, P = 0.019). On the other hand, secoisolariciresinol (Comp 
ID: 38105) (SECO) from the food component/plant pathway was 
higher in allergic twins compared with healthy twins (P = 0.0067) 
(Figure 6C), with the same trend observed in discordant twin pairs 
(P = 0.094) (Supplemental Figure 10B).

In an attempt to interpret the source of these metabolites, we 
compared our data with an internal microbial metabolite database 
from Metabolon Inc. (accessed October 24, 2019). We note that 
the database is under active development and does not represent 
a complete collection of microbiota-derived metabolites. Among 
the 992 metabolites with annotated pathways that we examined, 
129 overlapped with the Metabolon database (Supplemental 
Table 8). Of the 129 overlapping metabolites, 66 were marked 
with discovery sites, such as colon, feces, urine, plasma, tissues, 
or multiple sites; 38 (58%) of the 66 metabolites were from colon 
or feces. In addition, of the 129 metabolites, 13 were among the 
97 compounds differentially abundant between healthy and aller-
gic twins, including 1-methylhistamine, 3-hydroxyphenylacetate, 
3,4-dihydroxyphenylacetate, betaine, skatol, ethylmalonate, 
creatine, creatinine, putrescine, phenylacetylglycine, taurolitho-
cholate 3-sulfate, biotin, and D-urobilin (Supplemental Table 8). 

There were no significant differences in the baseline demographic 
and clinical characteristics between the healthy and food-allergic 
twin pairs (Table 1).

We first performed 16S rRNA gene amplicon sequencing on 
fecal samples from 13 healthy and 23 food-allergic individuals 
consisting of 18 twin pairs. After excluding 1 sample with low 
sequencing depth and the corresponding twin pair, we included 
34 samples for analysis, including 24 samples from 12 discordant 
twin pairs (1 allergic, 1 healthy) and 10 samples from 5 concordant 
twin pairs (both allergic). An overview of the analytical workflow is 
shown in Supplemental Figure 1. The composition of commensal 
microbiota is shown in Figure 2A, with quantitative measures pro-
vided in Supplemental Table 2. While there was sample-to-sample 
variation, the presence of major families, such as Bacteroidaceae, 
Lachnospiraceae, and Ruminococcaceae, was consistent with that 
reported in previous studies on fecal samples (25). For each twin 
pair, we compared the relative abundance of operational taxo-
nomic units (OTUs), which represent groups of microbes between 
closely related individuals. We calculated within-pair, sibling-wise 
OTU correlation between the 2 siblings from each twin pair. The 
within-pair OTU correlation did not differ significantly between 
discordant and concordant twin pairs or between dizygotic and 
monozygotic twin pairs (Figure 2, B and C). Across all samples or 
within discordant twin pairs only, no significant differences were 
detected in the α diversity (Shannon diversity, Figure 2, D and E). 
β Diversity (weighted UniFrac distance) metrics also did not differ 
between allergic and healthy groups (Supplemental Figure 2).

We next compared the microbial composition between aller-
gic and healthy twin pairs and identified 64 OTUs differentially 
abundant between the 2 groups, with 62 OTUs higher in healthy 
twins (hereafter referred to as “healthy-abundant” OTUs), and 2 
OTUs higher in allergic twins (hereafter referred to as “allergic- 
abundant” OTUs); this is shown in Figure 3, in the binary presence/
absence heatmap in Supplemental Figure 3, and in Supplemental 
Tables 3 and 4. To better illustrate the within-pair OTU abundance 
differences, we show in Figure 4A that these 62 healthy-abundant 
OTUs were more abundant in the healthy twins compared with 
their allergic siblings, and the 2 allergic-abundant OTUs were more 
abundant in the allergic twins than their healthy siblings. Families 
in the Clostridia class constituted 84% of the healthy-abundant 
OTUs; these were annotated as Lachnospiraceae (n = 21), Rumi-
nococcaceae (n = 28), or unclassified Clostridiales (n = 4) (Figure 
4A, highlighted in pink). To develop an aggregated microbiome 
signature, we calculated a microbiota abundance score, taking 
into consideration the relative abundance of the 64 differentially 
abundant OTUs and their change in direction between groups (see 
Methods). The OTU abundance score was significantly higher in 
healthy relative to allergic twins across all samples (P < 0.00001) 
(Figure 4B) or within discordant twins only (P = 0.00049) (Sup-
plemental Figure 4), as expected, because the score was calculat-
ed from preselected OTUs. Variance exists in the relative abun-
dance scores for the discordant twin pairs (Supplemental Figure 
4) because the majority of the differentially abundant OTUs are 
present in the healthy twins and absent in the allergic twins. If sta-
tistical comparisons are restricted to monozygotic twins only (14 
pairs, 28 samples), the test statistics for the 62 healthy-abundant 
OTUs and the 2 allergic-abundant OTUs correlated with those of 
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Figure 2. Relative abundance of microbial composition of healthy and allergic twins does not differ at the family level. (A) Relative abundance of taxon-
omy at the family level. Sample IDs are shown on the x axis (n = 34). Discordant twins (12 pairs, n = 24), for which one member was healthy and the other 
member was allergic; concordant twins (5 pairs, n = 10), for which both members were allergic. Of 36 total samples in the twin cohort, 1 sample (S5077) 
failed sequencing and yielded 0 reads, hence the corresponding twin pair (no. 13) was excluded from 16S analysis. (B and C) Correlation of OTU abundance 
between members from each twin pair, with the comparison between concordant and discordant twin pairs shown in B and the comparison between dizy-
gotic and monozygotic twins shown in C. Each dot denotes 1 twin pair (17 pairs shown). (D and E) Shannon α diversity index between healthy and allergic 
groups, with all samples are shown in D (n = 34) and only discordant twins shown in E (n = 24). Each dot denotes 1 sample. In B–E, the bounds of the boxes 
represent the 25th and 75th percentiles, the horizontal centers line indicate the medians, and the whiskers extend to data points within a maximum of 1.5 
times the IQR. Two-tailed Wilcoxon’s rank-sum test was used in B–D, and two-tailed Wilcoxon’s signed-rank test was used in E.
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Additionally, we profiled 8 short-chain fatty acids (SCFAs) using 
GC-MS technology: 2-methylbutyric acid, acetic acid, butyric 
acid, hexanoic acid, isobutyric acid, isovaleric acid, propionic 
acid, and valeric acid. We then compared the abundance of these 
SCFAs between allergic and healthy twins. Within the 13 discor-
dant twin pairs, no SCFA reached P < 0.10, potentially due to the 
single point-in-time analysis (Supplemental Table 9).

Identifying microbes and metabolites associated with health. 
After demonstrating the differential abundance of both OTUs and 

metabolites in the healthy and allergic twins, we next correlated 
these 2 data sets to identify any bacterial species or metabolites 
that may be mechanistically related to health in our cohort. Over-
all, the OTUs differentially abundant between healthy and allergic 
twin groups were correlated with different sets of metabolites and 
pathways. We correlated the abundance of 64 differentially abun-
dant OTUs with the 97 metabolites (Supplemental Figure 11 and 
Supplemental Table 10) and identified 21 healthy-abundant OTUs 
and 1 allergic-abundant OTU with consistent correlation across 

Figure 3. Healthy twins exhibit a fecal microbial profile distinct from allergic siblings. Relative abundance heatmap of the 64 OTUs identified to be 
differentially abundant between healthy (n = 12) and allergic (n = 22) twins. Of these 64 OTUs, 62 were more abundant in the healthy group (healthy- 
abundant OTUs), and 2 were more abundant in the allergic group (allergic-abundant OTU). OTU IDs are shown on the row in the format of “OTU_ID|Fami-
ly,” and those annotated with the Clostridia class (Lachnospiraceae, Ruminococcaceae, unclassified Clostridiales) are highlighted in pink. Sample IDs are 
shown on the column, with annotation bars above the heatmap indicating concordant/discordant twin members, sex, and zygosity. A binary presence/
absence heatmap of the 64 OTUs is shown in Supplemental Figure 3. Of 36 samples total in the twin cohort, 1 sample (S5077) failed sequencing and 
yielded 0 reads; therefore, the corresponding twin pair (no. 13) was excluded from 16S analysis. DS-FDR was used on all samples (P < 0.05) and 2-tailed 
Wilcoxon’s signed-rank test was used on discordant twin pairs (P < 0.10), respectively. Unadjusted P value thresholds were used to filter for OTUs of inter-
est. After BH-FDR correction, no OTUs passed the FDR cutoff of 0.10 threshold, potentially due to small sample size.
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Figure 4. Healthy and allergic twins exhibit within-twin pair differences in microbial composition. 
(A) Bubble plot showing the per–twin pair abundance differences of the 64 OTUs shown in Figure 3 
between the healthy and allergic groups. The size of each circle corresponds to the relative abundance 
of an OTU. Samples were arranged as discordant twins (12 pairs, n = 24), where one member is healthy 
and the other member is allergic; concordant twins (5 pairs, n = 10), where both members are allergic. 
(B) The aggregated OTU abundance score was significantly higher in healthy (n = 12) relative to allergic 
twins (n = 22). The score was calculated using the 64 differentially abundant OTUs from A. The score for 
discordant twin pairs only is shown in Supplemental Figure 4. Each dot denotes 1 sample. The bounds 
of the boxes represent the 25th and 75th percentiles, the horizontal center lines indicate the medians, 
and the whiskers extend to data points within a maximum of 1.5 times the IQR. In A, DS-FDR was used 
on all samples (P < 0.05) and 2-tailed Wilcoxon’s signed-rank test was used on discordant twin pairs 
(P < 0.10), respectively. Unadjusted P value thresholds were used to filter for OTUs of interest. After 
BH-FDR correction, no OTUs passed the FDR cutoff of 0.10 threshold, potentially due to small sample 
size. In B, 2-tailed Wilcoxon’s rank-sum test was used on all samples.
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Clostridia important for the degradation of dietary resistant starch 
(22). It was associated with group 2 metabolites involved in fatty 
acid, amino acid, and sterol metabolism.

Discussion
From our investigation of bacterial abundance in fecal samples 
from well-characterized healthy and allergic twins, we identi-
fied a unique microbiota signature consisting of 64 OTUs (62 
healthy-abundant and 2 allergic-abundant) that was significantly 
different between the 2 groups using 16S rRNA gene amplicon 
sequencing. In addition, we developed a microbial abundance 
score that is higher in healthy twins compared with that in aller-
gic twins. The 64 OTUs showed marked enrichment of bacteria 
in the Clostridia class, particularly the families Lachnospiraceae 
and Ruminococcaceae, in the healthy twins. We first described 
a role for mucosa-associated intestinal bacteria in the Clostrid-
ia class in protecting mice from allergic sensitization to peanuts 
(17). We went on to show that the composition of the fecal micro-
biota is altered in infants with cow’s milk allergy (28). When we 
colonized germ-free mice with the feces of healthy or cow’s milk 
allergic (CMA) infants we discovered that mice colonized with 
CMA infants’ microbiota produced an anaphylactic response to 
the cow’s milk allergen β-lactoglobulin, while mice colonized 
with healthy infants’ microbiota were protected against such an 
allergic response (18). We developed a microbiota signature that 
distinguished the CMA from healthy populations in both human 
donors and colonized mice. Correlating ileal bacterial taxa with 
differentially expressed genes in the ileal epithelium from healthy- 
colonized mice allowed us to identify a Clostridial species, Anaer-
ostipes caccae, that mimicked the effects of the healthy microbio-
ta, thus providing proof of concept that bacteria or their products 
can protect against an allergic response to food. Our results align 
with findings from other groups (24, 29, 30), suggesting that fecal 
microbiome signatures are different between healthy children and 
children with food allergies.

In this report we have used positive correlation with distinct 
metabolic pathways to identify two potentially new allergy pro-
tective bacterial species, the Clostridia R. bromii and P. faecium, 
a species from a taxon not previously associated with protection 
against allergy. R. bromii has been described as a keystone spe-
cies in fiber degradation (22), and its abundance in feces signifi-
cantly increases upon dietary intervention with resistant starch 
(31, 32). Individuals that do not have detectable R. bromii in the 
feces before beginning a resistant starch–supplemented diet con-
sume about 40% less total starch than individuals colonized with  
R. bromii, demonstrating that this species alone is responsible for 
much of the total starch digestion in the colon (31, 32). R. bromii 
produces acetate and propanol but does not produce butyrate 
(23). However, R. bromii is involved in the primary stages of resis-
tant starch digestion, which is correlated with increased butyr-
ate production downstream (33). Interestingly, in the Canadian 
Healthy Infant Longitudinal Development birth cohort, deple-
tion of R. bromii early in life (3 and 12 months of age) was associ-
ated with the development of atopy and reduced genetic potential 
to produce butyrate (34).

Mouse model studies from our laboratory showed that pro-
tection against allergic sensitization to food requires a bacteria- 

metabolites at the per-sample level (Figure 7 and Supplemental 
Table 11). We divided the metabolites into 5 categories based on 
their abundance correlation consistency among OTU clusters 
1–3 (consisting of 21 healthy-abundant OTUs; cluster 4 only con-
tains 1 OTU from an allergic-abundant taxon and was not used for 
metabolite group annotation). The 5 metabolite groups are as fol-
lows (Figure 7 and Supplemental Figure 12): group 1, positively cor-
related with the 3 OTU clusters, stronger in clusters 1 and 2 relative 
to cluster 3 (n = 9); group 2, positively correlated with the 3 OTU 
clusters, stronger in cluster 3 relative to clusters 1 and 2 (n = 8); 
group 3, correlated with OTU clusters with mixed patterns (n = 16); 
group 4, negatively correlated with the 3 OTU clusters, stronger in 
cluster 1 relative to clusters 2 and 3 (n = 46); and, group 5, nega-
tively correlated with the 3 OTU clusters with similar distribution  
(n = 22). These 5 metabolite groups showed distinctly different 
distributions of metabolite superpathways and subpathways (Fig-
ure 8A). In particular, group 1 was dominated by metabolites from 
the lipid superpathway, including DAG and monoacylglycerol 
(Figure 8A), whereas amino acid metabolism, including tyrosine, 
phenylalanine, arginine, proline, methionine, cysteine, S-adeno-
sylmethionine, and taurine, was enriched in group 2 (Figure 8A).

To annotate the 22 metabolite-correlated OTUs at spe-
cies-level resolution, we searched the assembled 16S sequence of 
each OTU against NCBI’s Bacteria/Archaea 16S reference data-
base using BLAST (27). At a sequence identity of 99% or higher, 
OTU556835 was matched to P. faecium (accession ID NR_026111.1) 
and both OTU188079 and OTU823634 were matched to R. bromii 
(accession ID NR_025930.1). The other OTUs (abundant in either 
healthy or allergic twins) did not have matches meeting the identi-
ty threshold. Quantitative PCR (qPCR) validated the significantly 
higher abundance of P. faecium in healthy twins compared with 
allergic twins (P = 0.016) (Figure 8, B and C; Supplemental Figure 
13; and Supplemental Table 12). P. faecium is an obligate anaero-
bic non-spore-forming bacterium that consumes succinate and 
produces SCFAs, including acetate and propionate (20, 21). P fae-
cium was grouped in cluster 1 and was most highly correlated with 
a number of DAG metabolites. P faecium was also strongly posi-
tively correlated with tocopherol and negatively correlated with 
a variety of metabolites, including those from the secondary bile 
acid metabolism pathway. R. bromii was also qPCR validated to be 
enriched in the healthy compared with the allergic twin group (P 
= 0.022) (Figure 8, D and E; Supplemental Figure 14; and Supple-
mental Table 12). R. bromii is a strictly anaerobic, spore-forming 

Figure 5. Healthy and allergic twins exhibit differential enrichment in 
fecal metabolic pathways. (A) Of 36 samples, 33 metabolites were more 
abundant in the healthy (n = 13) group relative to the allergic (n = 23) 
group. Metabolites are shown on the row in the format of “COMP_ID|Bio-
chemical_Name|Super_Pathway|Sub_Pathway.” Sample IDs are shown on 
the column, with annotation bars above the heatmap indicating concor-
dant/discordant twin members, sex, and zygosity. (B) Of 36 samples, 64 
metabolites were more abundant in the allergic group (n = 23) relative to 
the healthy (n = 13) group. Same annotations as in A. In A and B, 2-tailed 
Welch’s 2-sample t test was used on all samples (P < 0.10) and unadjusted 
P value thresholds were used to filter for individual metabolites of inter-
est. After FDR correction, no individual metabolites passed the FDR cutoff 
of 0.10 threshold, potentially due to small sample sizes.
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clusters 1 and 2, many of which are from the Clostridia family. 
Several reports have shown that Clostridia can produce DAG (37) 
and may make DAG more bioavailable to the host by facilitating its 
conversion from dietary phospholipids (38). Whether DAG metab-
olism is reflective of a healthy microbiota and whether or how it 
contributes to protection against allergy will be the subject of 
future studies. However, the identification of readily measurable 
metabolites that distinguish healthy and allergic twins has import-
ant implications for the development of microbiome-modulating 
therapeutics because of their potential as biomarkers, particularly 
in clinical trials. Laboratory-based assays measuring, in particular, 
DAG may have great utility as biochemical indicators of therapeu-
tic interventions that shift the microbiota toward health.

The food component/plant pathway was most significantly 
enriched in allergic twins after FDR correction (FDR-adjusted  
P = 0.0074), particularly the metabolite SECO. SECO is common-
ly observed as an intermediate product in the bacteria-mediated 
breakdown of plant-derived lignans into enterolignans, such as 
enterodiol and enterolactone, which have numerous benefits for 
human health (39–41). Several bacterial species and genes are 
involved in the multistep process of lignan metabolism (40, 42, 
43). Of particular interest, the gene glm codes for an enzyme that 
methylates SECO into dmSECO, allowing further biotransforma-
tion into enterodiol by other bacteria. Phylogenetic analysis sug-
gests that glm is expressed by a wide variety of bacteria, the major-

induced barrier protective response mediated by the cytokine IL-22 
(17). Interestingly, recent work has shown that P. faecium’s ability 
to protect against Clostridium difficile infection in mice depends on 
IL-22–mediated glycosylation of intestinal mucus in the absence of 
succinate (35). Genes involved in this glycosylation and IL22RA2 
are differentially expressed in colonic tissue of patients with active 
or inactive ulcerative colitis (35), which correlates well with previ-
ous data showing decreased abundance of Phascolarctobacterium 
species in adults with inflammatory bowel diseases (36).

To the best of our knowledge, no data yet exist on unbiased 
systematic profiling of fecal metabolites in patients with food 
allergy compared with controls. Among the metabolites that were 
significantly differentially abundant between healthy and aller-
gic twins, we identified those derived from microbiota, which 
included but are not limited to histamine metabolites (1-methyl-
histamine), 3,4-dihydroxyphenylacetate, betaine, skatol, creatine, 
creatinine, putrescine, phenylacetylglycine, and taurolithocholate 
3-sulfate, all of which are higher in allergic siblings, and biotin, 
3-hydroxyphenylacetate, ethylmalonate, and D-urobilin, all of 
which are higher in healthy siblings.

The DAG subpathway was the most significantly different 
between healthy and allergic twins (FDR-adjusted P < 0.00001) 
and was enriched in the 33 metabolites more abundant in healthy 
twins. In addition to P. faecium (cluster 1), metabolites in the DAG 
subpathway were strongly correlated with other bacteria in OTU 

Figure 6. Distinct metabolic pathways are enriched 
in healthy and allergic twins. (A) Metabolites more 
abundant in the healthy group (from Figure 5A) or in the 
allergic group (from Figure 5B) were enriched in different 
subpathways shown. Relative enrichment fold change 
is shown on the x axis, and the name of subpathway is 
shown on the y axis. P value and FDR-adjusted P value of 
each subpathway enrichment are shown next to each hor-
izontal bar. (B and C) Representative examples of metab-
olites in the enriched subpathways in the healthy or aller-
gic group. (B) The linoleoyl-linolenoyl-glycerol (18:2/18:3) 
[1]* (subpathway: Diacylglycerol) was higher in healthy (n 
= 13) compared with allergic (n = 23) twin members. (C) 
The secoisolariciresinol (subpathway: Food Component/
Plant) was higher in allergic twin pairs (n = 23) compared 
with healthy twin pairs (n = 13). Supplemental Figure 10 
shows the result of discordant twin pairs only that corre-
spond to metabolites shown in B and C. In B and C, units 
shown on the y axis represent the normalized raw area 
counts of UPLC-MS/MS peaks, rescaled to set the median 
equal to 1.00 for each biochemical (see Methods). Each 
dot denotes 1 sample. The bounds of the boxes represent 
the 25th and 75th percentiles, the horizontal center lines 
indicate the medians, and the whiskers extend to data 
points within a maximum of 1.5 times the IQR. In A, the 
hypergeometric test was used to compute the P values 
of relative enrichment of metabolite subpathways and 
filtered by FDR-adjusted P < 0.10. Pathways consisting 
of at least 2 significant metabolites were included in the 
statistical test. After BH-FDR multiple-testing correction 
DAG remained as the most significantly enriched sub-
pathway in metabolites more abundant in healthy twins 
(FDR-adjusted P < 0.00001). In B and C, 2-tailed Welch’s 
2-sample t test was used on all samples.
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Figure 7. The OTUs differentially abundant between healthy and allergic groups are correlated with different sets of metabolites and pathways. Of 64 
OTUs from Figure 3, 4 OTUs showed a strong correlation with the 97 metabolites from Figure 5, A and B. The filtering of OTUs is illustrated in the analytical 
workflow (Supplemental Figure 1). Metabolites are shown on the row in the format of “COMP_ID|Biochemical_Name|Super_Pathway|Sub_Pathway,” 
and OTU IDs are shown on the column in the format of “OTU_ID|Family.” Three OTUs that match to bacteria species at >99% identity are bolded. On the 
heatmap, between each OTU and each metabolite, a positive correlation is shown in red, and a negative correlation is shown in blue. OTUs were divided 
into 4 clusters based on same height on the dendrogram shown on the column using R function cut.tree. Similarly, metabolites were divided into 5 groups 
based on same height on the dendrogram shown on the row. Annotation to metabolite groups 1–5 was added based on the distribution of Spearman’s 
correlation coefficient ρ among the healthy-abundant OTU clusters 1–3 consisting of 21 OTUs (Supplemental Figure 12). Cluster 4 only contains 1 OTU from 
allergic-abundant bacteria and, hence, was not used for metabolite group annotation. Spearman’s correlation was used.
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trolled for many potential demographic variables by sampling 
healthy and allergic twins across a broad age range. It is known that 
healthy and allergic children have differences in the abundance of 
allergy-protective Clostridia (18, 24, 28–30), and here we show that 
these same signatures persist into adulthood. The broad age range 
in this study provides a unique context to study how these early-life 
changes persist, despite years of separation and lifestyle changes 
between twins/siblings. We acknowledge, however, that the small 
sample size is a limitation to our report.

In summary, we performed an integrated microbial and metab-
olomic analysis of human fecal samples from allergic and healthy 

ity of which are Lachnospiraceae (43). The abundance of SECO 
in feces was negatively correlated with the abundance of several 
OTUs in healthy individuals (many of which were Lachnospira-
ceae or Ruminococcaceae). We infer that the high abundance of 
SECO in the feces of allergic twins supports our taxonomic anal-
ysis, as the buildup of this intermediate product may be a direct 
effect of the lower abundance of Clostridia in these individuals.

A strength of our study is that this twin cohort allows us to 
examine lasting differences between genetically similar “litter-
mate-controlled” subjects with similar lifestyle in childhood in a 
way that is not often possible with human samples. We have con-

Figure 8. Two bacterial species correlated with pathways that were differentially abundant between healthy and allergic twins. (A) Distribution of 
pathways in group 1 and 2 metabolites from Figure 7. Top: Superpathways in each group. The fraction of metabolites from each superpathway on the y 
axis was calculated by the number of metabolites that belong to this pathway divided by the total number of metabolites in a group. Bottom: Number of 
metabolites that belong to each subpathway; (left) group 1, (right) group 2. SAM, S-adenosylmethionine. (B) OTU 556835 (family Acidaminococcaceae) is 
significantly more abundant in the healthy group compared with the allergic group by 16S sequencing. This OTU was annotated as Phascolarctobacterium 
faecium at the species level. (C) Quantitative PCR (qPCR) validates the abundance differences between healthy and allergic groups using P. faecium–
specific primers. (D) OTU188079 (family Ruminococcaceae) is significantly more abundant in the healthy group compared with the allergic group by 16S 
sequencing. This OTU was annotated as Ruminococcus bromii at the species level. (E) qPCR validates the abundance differences between healthy and 
allergic groups using R. bromii–specific primers. Units shown on the y axis in C and E represent 2–Ct normalized to total 16S rRNA copies per gram of fecal 
material and multiplied by a constant (1 × 1022) to bring all values above 1 (see Methods). In B–E, n = 30 samples (15 twin pairs) with DNA available for qPCR 
validation are shown (10 healthy, 20 allergic). Each dot denotes 1 sample. The bounds of the boxes represent the 25th and 75th percentiles, the horizontal 
center lines indicate the medians, and the whiskers extend to data points within a maximum of 1.5 times the IQR. DS-FDR was used in B and D. In C and E, 
qPCR data were log10 transformed, and 2-tailed Wilcoxon’s rank-sum test was used.
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by Quantitative Insights into Microbial Ecology (version 1.9) (48) using 
a procedure similar to one we have previously described (18). In brief, 
low-quality bases were trimmed at 5′ end of raw paired-end reads and 
3′ overlapping mates were merged by SeqPrep (v1.2) (https://github.
com/jstjohn/SeqPrep; master branch, commit ID bda7a3d). The open 
reference OTU picking protocol was used at 97% sequence identity 
against the Greengenes database (08/2013 release) (49). Reads were 
aligned to reference sequences using PyNAST (50), and taxonomy 
was assigned using uclust consensus taxonomy assigner (51). Chi-
meric sequences were identified and removed using ChimeraSlayer 
(v20110519) (52). Sequences with “Unassigned” taxa at the kingdom 
level were also removed. Data were then rarefied to an even depth of 
92,670 sequences across all samples (n = 34, the twin cohort). α Diver-
sity (Shannon index) was compared between the allergic and healthy 
groups using Wilcoxon’s rank-sum test (unpaired, nonparametric) for 
all samples or Wilcoxon’s signed-rank test (paired, nonparametric) 
within the discordant twin pairs only. β Diversity metrics were calcu-
lated and compared between the 2 groups using permutational mul-
tivariate analysis of variance (PERMANOVA) with weighted UniFrac 
distance in R package vegan (v2.4.5) (53).

Differentially abundant microbial taxa identification. Bacterial taxa 
differentially abundant between allergic and healthy groups of the twin 
cohort were identified using the following approach. First, OTUs pres-
ent in fewer than 4 samples were removed. Second, for all samples (n = 
34), relative abundance of OTUs was compared between the 2 groups 
using discrete FDR (DS-FDR) (54) method (hereafter referred to as test 
no. 1) with parameters “transform_type = normdata, method = mean-
diff, alpha = 0.10, numperm = 1000, fdr_method = dsfdr” (accessed 
10102018) (https://github.com/biocore/dsFDR; master branch, com-
mit ID 51521d7). The DS-FDR algorithm computes test statistics, raw P 
values, and estimates FDR from a permutation test (default 1000 per-
mutations). Of 5590 OTUs total, 180 reached P < 0.05; none reached 
FDR cutoff of 0.10 potentially due to sample size. Within the discor-
dant twin pairs (n = 24, from 12 pairs), for which one sibling is allergic 
and the other is healthy, the relative abundance of OTUs was compared 
between groups using Wilcoxon’s signed-rank test (paired, nonpara-
metric) (hereafter referred to as test no. 2). Of 5590 OTUs total, 259 
reached a significance level of P < 0.10. A more lenient P value cut-
off (0.10) was used here considering that nonparametric rank-based 
method has less power than the DS-FDR method (54). After Benjami-
ni-Hochberg FDR (BH-FDR) correction (55) for multiple testing, no 
OTUs passed the FDR cutoff of 0.10, potentially due to small sample 
sizes. Between 180 OTUs returned by test no. 1 and 259 OTUs returned 
by test no. 2, 64 OTUs overlapped and showed consistent direction of 
change in abundance (more abundant in healthy or allergic) in both 
tests and were kept for further analysis (Supplemental Table 4).

OTU abundance score calculation. Of 64 OTUs differential-
ly abundant between allergic and healthy twin members, 62 were 
healthy-abundant OTUs and 2 were allergic-abundant OTUs (Supple-
mental Table 4, Figure 3, and Figure 4A). The limited number of aller-
gic-abundant OTUs did not warrant the calculation of an OTU ratio 
as we had previously (18), defined as the total number of potentially 
healthy-abundant OTUs divided by the total number of potential-
ly allergic-abundant OTUs per sample. We were able to compute an 
OTU abundance score as an aggregated signature taking into consid-
eration the relative abundance of 64 OTUs shown in Figure 4B. First, 
the rarefied absolute count matrix of OTUs was added by offset 1.0 

twins and identified differentially abundant bacteria and metabol-
ic compounds as well as pathways between the 2 groups. We devel-
oped a microbiota abundance score dominated by bacteria with 
greater abundance in healthy twins and used positive correlation 
with distinct metabolite pathways to identify P. faecium and R. bro-
mii as significantly enriched in the healthy twins. Our data demon-
strate that the gut microbiota may play a protective role in patients 
with food allergies beyond the infant stage and through adulthood. 
Our findings warrant further studies in larger populations to uncov-
er the mechanism(s) underlying microbiota-mediated modulation 
of systemic effects in food allergy and to provide insight into new 
interventions to treat and prevent food allergy.

Methods
Study design. The design of the analytical workflow is shown in Supple-
mental Figure 1, which illustrates the enrollment of the twin pairs that 
were food allergic and those that were healthy. Collected fecal samples 
were analyzed for microbes and metabolites as described below. Wil-
coxon’s rank-sum tests were used as statistical tests for analysis of data.

Human fecal sample collection. Participants in this study were 
recruited as part of an observational study (ClinicalTrials.gov 
NCT01613885) at multiple sites (Stanford Main Hospital and Clinics, 
Palo Alto, California, USA and El Camino Hospital Stanford/Lucile 
Packard Children’s Hospital Stanford, Mountain View, California, 
USA) from 2014 to 2018. Food-allergic participants in this study were 
diagnosed with food allergy by a staged and validated food challenge 
(14) performed by trained center staff. Fecal samples were collected 
per a standard operating procedure developed by the NIH Microbi-
ome Project (44). Fecal samples were collected from 18 pairs of twins. 
Among 18 twin pairs, 13 were discordant for food allergy (one sibling 
had food allergy and the other was healthy) and 5 were concordant for 
food allergy (both siblings had food allergy) (Table 1). No one was on 
any medications or experienced any respiratory infections (e.g., cold, 
flu, pneumonia) at the time of fecal sample collection. For food diary 
records see Supplemental Table 1. All samples that passed quality con-
trol (QC) (n = 34 for microbiota analysis; n = 36 for metabolite analysis) 
were used for statistical comparisons.

16S rRNA–targeted library preparation and sequencing. Bacteri-
al DNA was extracted from fecal samples of the twin cohort using 
the Power Soil DNA Isolation Kit (MoBio). 16S rRNA–targeted gene 
amplicon library preparation and sequencing were performed at 
the Environmental Sample Preparation and Sequencing Facility 
at Argonne National Laboratory (DuPage, Illinois, USA). The V4 
region of the 16S rRNA gene was amplified by PCR with region-spe-
cific primers 515F (Parada) to 806R (Apprill) (45, 46) that include 
sequencer adapter sequences used in the Illumina flowcell. 151 bp 
paired-end reads with 12 bp barcodes were generated following pre-
viously described protocols (47) on an Illumina MiSeq instrument. 
On average, each sample yielded 183,952 ± 7011 (mean ± SEM; rang-
ing from 94,917 to 268,423) read pairs. One sample (S5077, allergic 
sibling of a twin pair) failed sequencing and yielded 0 reads and the 
corresponding twin pair (no. 13) was therefore excluded from 16S 
data analysis. A total of 34 samples (from 22 allergic and 12 healthy 
twins) were kept for further analysis, including 12 discordant twin 
pairs (n = 24), 5 concordant twin pairs (n = 10).

16S rRNA microbial quantification and normalization. The microbi-
al 16S rRNA–targeted gene amplicon sequencing data were processed 
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alignment. Instrument variability was determined by calculating the 
median relative standard deviation (RSD) for the standards that were 
added to each sample prior to injection into the mass spectrometers 
(3% median RSD in this study). Overall process variability was deter-
mined by calculating the median RSD for all endogenous metabolites 
(i.e., noninstrument standards) present in 100% of the pooled matrix 
samples (7% median RSD in this study). All 36 fecal samples passed 
QC and were included in the metabolic data analysis.

UPLC-MS/MS. All methods utilized a Waters ACQUITY UPLC and 
a Thermo Scientific Q-Exactive high-resolution/accurate mass spec-
trometer interfaced with a heated electrospray ionization (HESI-II)  
source and Orbitrap mass analyzer operated at 35,000 mass resolu-
tion. The sample extract was dried and reconstituted in solvents com-
patible with each of the 4 methods. Each reconstitution solvent con-
tained a series of standards at fixed concentrations to ensure injection 
and chromatographic consistency. One aliquot was analyzed using 
acidic positive ion conditions, chromatographically optimized for more 
hydrophilic compounds. In this method, the extract was gradient elut-
ed from a C18 column (Waters UPLC BEH C18-2.1 × 100 mm, 1.7 μm) 
using water and methanol, containing 0.05% perfluoropentanoic acid 
(PFPA) and 0.1% formic acid (FA). Another aliquot was also analyzed 
using acidic positive ion conditions; however, it was chromatographi-
cally optimized for more hydrophobic compounds. In this method, the 
extract was gradient eluted from the same previously mentioned C18 
column using methanol, acetonitrile, water, 0.05% PFPA, and 0.01% 
FA and was operated at an overall higher organic content. Another ali-
quot was analyzed using basic negative ion optimized conditions using 
a separate dedicated C18 column. The basic extracts were gradient 
eluted from the column using methanol and water, however, with 6.5 
mM ammonium bicarbonate at pH 8. The fourth aliquot was analyzed 
via negative ionization following elution from a HILIC column (Waters 
UPLC BEH Amide 2.1 × 150 mm, 1.7 μm) using a gradient consisting 
of water and acetonitrile with 10 mM ammonium formate at pH 10.8. 
The MS analysis alternated between MS and data-dependent MSn 
scans using dynamic exclusion. The scan range varied slightly between 
methods but covered 70–1000 m/z.

Compound identification and curation. UPLC-MS/MS raw data 
were extracted, peak-identified, and QC-processed by Metabolon Inc. 
Compounds were identified by comparing them to internal library 
entries of purified standards or recurrent unknown entities. The library 
was based on authenticated standards that contain the retention time/
index (RI), mass-to-charge ratio (m/z), and chromatographic data 
(including MS/MS spectral data) on all molecules present in the library. 
Furthermore, biochemical identifications were based on 3 criteria: (a) 
retention index within a narrow RI window of the proposed identifica-
tion, (b) accurate mass match to the library ± 10 ppm, and (c) the MS/
MS forward and reverse scores between the experimental data and 
authentic standards. The MS/MS scores were based on comparing the 
ions in the experimental spectrum to the ions in the library spectrum. 
While there may be similarities among these molecules based on one 
of these factors, the use of all 3 data points can be used to distinguish 
and differentiate biochemicals. More than 3300 commercially avail-
able purified standard compounds were acquired and registered for 
analysis on all platforms to determine their analytical characteristics. 
Additional mass spectral entries were created for structurally unnamed 
biochemicals, which were identified by virtue of their recurrent nature 
(both chromatographic and mass spectral). Entries were further pro-

and log10-transformed to bring data close to Gaussian distribution, and 
then data were scaled by dividing the value by their root mean square 
across samples. The abundance of allergic-abundant OTUs was mul-
tiplied by –1. Second, the sum of the transformed abundance of the 64 
OTUs was calculated to generate the aggregate score.

qPCR. The presence of P. faecium and R. bromii in fecal samples 
was confirmed using qPCR with species-specific primers for the 16S 
gene. Bacterial DNA was extracted using the Power Soil DNA Isola-
tion Kit (MoBio), and qPCR was performed with PowerUp SYBR green 
master mix (Applied Biosystems) using 4 μL of each primer at 10 μM 
working dilution and 2 μL of bacterial DNA. Primers are listed in Sup-
plemental Table 13. For normalization purposes, widely recognized 
primers 8F (56) and 338R (57) were used to quantify total bacterial 
abundance. For P. faecium, we used primers from a previously pub-
lished study (21) and reannotated the taxonomy of the corresponding 
OTU556835 as family Acidaminococcaceae, genus Phascolarctobacte-
rium. For R. bromii, we used primers from ref. 32. The cycling condi-
tions for P. faecium–specific qPCR consisted of an activation cycle of 
95°C for 2 minutes; followed by 40 cycles at 95°C for 15 seconds, 58°C 
for 30 seconds, and 72°C for 60 seconds; and a final extension period 
at 72°C for 5 minutes (21). The cycling conditions for R. bromii–specific 
qPCR consisted of an activation cycle of 95°C for 5 minutes; followed 
by 40 cycles at 95°C for 30 seconds, 52°C for 30 seconds, and 72°C 
for 2 minutes; and a final extension period at 72°C for 8 minutes (32). 
The fluorescent probe was detected in the last step of this cycle. A melt 
curve was performed at the end of the PCR to confirm the specificity 
of the PCR product. Relative abundance is expressed as 2–Ct normal-
ized to total 16S rRNA copies per gram of fecal material and multiplied 
by a constant (1 × 1022) to bring all values above 1 and log10 transformed 
before statistical analysis.

Metabolic profiling sample preparation. The metabolic profiling of 
human fecal samples was performed by Metabolon Inc. All samples 
were maintained at –80°C until processed. Samples were prepared 
using the automated MicroLab STAR system from Hamilton Company. 
Recovery standards were added prior to the first step in the extraction 
process for QC purposes. To remove protein, to dissociate small mol-
ecules bound to protein or trapped in the precipitated protein matrix, 
and to recover chemically diverse metabolites proteins were precipi-
tated with methanol under vigorous shaking for 2 minutes (Glen Mills 
GenoGrinder 2000) followed by centrifugation. The resulting extract 
was divided into 5 fractions: 2 for analysis by 2 separate reverse phase/
ultrahigh-performance liquid chromatography–tandem mass spec-
troscopy (RP/UPLC-MS/MS) methods with positive ion mode electro-
spray ionization (ESI), 1 for analysis by RP/UPLC-MS/MS with neg-
ative ion mode ESI, and 1 for analysis by HILIC/UPLC-MS/MS with 
negative ion mode ESI; 1 sample reserved for backup. Samples were 
placed briefly on a TurboVap (Zymark) to remove the organic solvent. 
The sample extracts were stored overnight under nitrogen before 
preparation for analysis.

Metabolic profiling sample QA/QC. Three types of controls were 
analyzed together with the experimental samples: (a) a pooled matrix 
sample generated by taking a small volume of each experimental 
sample as a technical replicate throughout the data set, (b) extracted 
water samples as process blanks, and (c) a cocktail of QC standards 
carefully chosen not to interfere with the measurement of endogenous 
compounds was spiked into every analyzed sample, allowing for mon-
itoring of instrument performance and facilitating chromatographic 
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(SRA ID PRJNA663708) and made publicly available. Processed data 
files are provided as Supplemental Tables 2–12.

Code availability. The open-source analysis software used in this 
study is publicly available and referenced as appropriate. Custom 
codes are available from the corresponding author upon request.

Statistics. The DS-FDR method (54) was used to identify differen-
tially abundant OTUs by comparing allergic to healthy twins. Welch’s 
2-sample t test was used to identify differentially abundant metabolites 
comparing allergic to healthy twins. Unless stated otherwise, Wilcox-
on’s rank-sum test was used for comparing groups using all samples; 
if only within discordant twins, Wilcoxon’s signed-rank test was used. 
For metabolites, paired t test was used to compare metabolite abun-
dance between the 2 groups within discordant twins after log10 trans-
formation. We analyzed metabolic subpathway enrichment using the 
hypergeometric test, requiring at least 2 metabolites annotated with 
each subpathway. Following Wilcoxon’s rank-sum test or Wilcoxon’s 
signed-rank test, and hypergeometric test, we used the BH-FDR meth-
od (55) for multiple-testing correction. For pairwise comparisons of 
metabolite Spearman’s correlation coefficients between OTU clusters, 
Tukey’s honestly significant difference test was used. Other statistical 
tests used included PERMANOVA, as indicated in the figure legends. 
Two-tailed Fisher’s exact test was used for contingency tables. For 
comparison of healthy and allergic groups across all samples in 16S 
analysis, qPCR validation, and Spearman’s correlation between OTUs 
and metabolites, a P value less than 0.05 was considered significant. 
For comparison of healthy and allergic groups across all samples in 
metabolite analysis, comparison of healthy and allergic groups within 
discordant twin pairs in 16S or metabolite analysis, and SCFA analy-
sis, a P value less than 0.10 was considered significant. For metabolite 
subpathway enrichment analysis, an FDR-adjusted P value less than 
0.10 was considered significant. All tests were 2 tailed.

Study approval. All aspects of this study were approved by the eth-
ics committee of Stanford University and Stanford University Insti-
tutional Review Board (IRB-19495). Written informed consent was 
obtained from the parents and/or guardians of all children involved 
in the research.
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Metabolite quantification and normalization. UPLC-MS/MS peaks 
were quantified by the area under the ROC curve. Data were normal-
ized to correct for variations resulting from instrument interday tuning 
differences using the median-centered method. In this method, each 
compound was corrected in run-day blocks by registering the medi-
an as 1.00 and normalizing each data point proportionately, hereafter 
referred to as block correction, and further normalized to account for 
differences in metabolite levels due to differences in the quantities of 
material in each sample.

Differentially abundant metabolite identification. Metabolites dif-
ferentially abundant across all samples from the allergic and healthy 
twin groups (n = 36) were identified using Welch’s 2-sample t test after 
log10 transformation. A total of 1308 metabolites were quantified. After 
removing metabolites without pathway annotation, 992 metabolites 
were kept for statistical comparisons. Among those, in comparing aller-
gic with healthy groups, 97 metabolites reached a significance level of 
P < 0.10 and were kept for further analysis. After BH-FDR correction 
for multiple testing, none of the metabolites passed the FDR cutoff of 
0.10, potentially due to small sample size. Additionally, the abundance 
of metabolites was compared between the 2 groups within discordant 
twins only (n = 26, from 13 twin pairs) using paired t test. A sample 
(S5077) and the corresponding twin pair (no. 13) excluded from micro-
bial 16S data analysis were kept in the metabolic profiling analysis.

Correlation of bacterial taxa and metabolite abundance. Pairwise 
Spearman’s rank correlation was computed among the 64 OTUs and 
97 metabolites differentially abundant between allergic and healthy 
twins. OTUs were further prioritized using the following approach. 
First, OTUs were filtered for those that showed a correlation at P < 
0.05 with at least 5 differentially abundant metabolites from the 
designated group. For analysis of potentially healthy-abundant 
OTUs (more abundant in the healthy group), OTUs were correlated 
with metabolites from group “up in healthy” or “down in healthy”; 
the potentially allergic-abundant OTUs (more abundant in allergic 
group) were correlated with metabolites from group “Up in aller-
gic” or “Down in allergic.” Second, OTUs that passed step 1 were 
filtered further for those that showed a relatively consistent trend 
of positive correlation (Spearman’s ρ > 0.20) across at least 30% of 
the metabolites from the designated group. For analysis of potential-
ly healthy-abundant OTUs, OTUs were correlated with metabolites 
from group “up in healthy” and “down in allergic” joined; the poten-
tially allergic-abundant OTUs were correlated with metabolites from 
group “up in allergic” and “down in healthy” together. Third, OTUs 
that passed steps 1 and 2 were further filtered to select those at P < 
0.05 from the DS-FDR method comparing allergic to healthy groups 
across all samples. Of the 64 OTUs, 22 passed these correlation fil-
ters and are shown in Figure 7. After a BLAST search of assembled 
16S sequences against the NCBI database (16S ribosomal RNA, Bac-
teria and Archaea) (accessed September 12, 2020) using blastn (27), 
3 of 22 OTUs were matched to bacterial species at 99% or higher 
sequence identity: OTU556835, matched to P. faecium (accession ID 
NR_026111.1, 99.21% identity); OTU188079 and OTU823634, both 
matched to R. bromii (accession ID NR_025930.1; 99.21% identity).

Data availability. The 16S rRNA–targeted sequencing raw FastQ 
data files have been deposited into the NCBI Sequence Read Archive 

https://www.jci.org
https://doi.org/10.1172/JCI141935
https://www.jci.org/articles/view/141935#sd


The Journal of Clinical Investigation   C L I N I C A L  M E D I C I N E

1 6 J Clin Invest. 2021;131(2):e141935  https://doi.org/10.1172/JCI141935

Heart, Lung, and Blood Institute (R01 HL 118612), the Orsak Fam-
ily, the Kepner Family, the Stanford Institute for Immunity, Trans-
plant and Infection, and NIAID (R01AI 140134 to KCN).

Address correspondence to: Cathryn Nagler, Biological Sciences 
Division and Pritzker School of Molecular Engineering, Univer-
sity of Chicago, Jules F. Knapp Medical Research Building, 924 
East 57th Street, R410, Chicago, Illinois 60637, USA. Phone: 
773.702.6317; Email: cnagler1@uchicago.edu.

Research Informatics (University of Chicago) and on the HPC 
cluster HTC at the Center for Research Computing (University 
of Pittsburgh). We thank M. Jarsulic (University of Chicago) and 
F. Mu (University of Pittsburgh) for their technical assistance in 
software installation and job execution on the HPCs. This work 
was supported by the Sunshine Charitable Foundation, the Moss 
Family Foundation, and National Institute of Allergy and Infec-
tious Diseases (NIAID) (R56AI134923 to CRN) as well as the Sean 
N. Parker Center for Allergy and Asthma Research, the National 

 1. Gupta RS, et al. The public health impact of 
parent-reported childhood food allergies in the 
United States. Pediatrics. 2018;142(6):e20181235.

 2. Gupta RS, et al. Prevalence and severity of food 
allergies among US adults. JAMA Netw Open. 
2019;2(1):e185630.

 3. Warren CM, et al. Epidemiology and burden 
of food allergy. Curr Allergy Asthma Rep. 
2020;20(2):6.

 4. Iweala OI, Nagler CR. The microbiome and food 
allergy. Annu Rev Immunol. 2019;37:377–403.

 5. Wesemann DR, Nagler CR. The microbiome, 
timing, and barrier function in the context of 
allergic disease. Immunity. 2016;44(4):728–738.

 6. Torow N, Hornef MW. The neonatal window 
of opportunity: setting the stage for life-long 
host-microbial interaction and immune homeo-
stasis. J Immunol. 2017;198(2):557–563.

 7. Thompson-Chagoyan OC, et al. Faecal microbio-
ta and short-chain fatty acid levels in faeces from 
infants with cow’s milk protein allergy. Int Arch 
Allergy Immunol. 2011;156(3):325–332.

 8. Ling Z, et al. Altered fecal microbiota composi-
tion associated with food allergy in infants. Appl 
Environ Microbiol. 2014;80(8):2546–2554.

 9. Azad MB, et al. Infant gut microbiota and food 
sensitization: associations in the first year of life. 
Clin Exp Allergy. 2015;45(3):632–643.

 10. PALISADE Group Clinical Investigators, et al. 
AR101 oral immunotherapy for peanut allergy.  
N Engl J Med. 2018;379(21):1991–2001.

 11. Chinthrajah RS, et al. Sustained outcomes in oral 
immunotherapy for peanut allergy (POISED 
study): a large, randomised, double-blind, 
placebo-controlled, phase 2 study. Lancet. 
2019;394(10207):1437–1449.

 12. Freeland DMH, et al. Oral immunotherapy for 
food allergy. Semin Immunol. 2017;30:36–44.

 13. Wood RA. Food allergen immunotherapy: cur-
rent status and prospects for the future. J Allergy 
Clin Immunol. 2016;137(4):973–982.

 14. Andorf S, et al. Anti-IgE treatment with oral immu-
notherapy in multifood allergic participants: a 
double-blind, randomised, controlled trial. Lancet 
Gastroenterol Hepatol. 2018;3(2):85–94.

 15. Jimenez M, et al. Microbial therapeutics: new 
opportunities for drug delivery. J Exp Med. 
2019;216(5):1005–1009.

 16. Wargo JA. Modulating gut microbes. Science. 
2020;369(6509):1302–1303.

 17. Stefka AT, et al. Commensal bacteria protect 
against food allergen sensitization. Proc Natl 
Acad Sci U S A. 2014;111(36):13145–13150.

 18. Feehley T, et al. Healthy infants harbor intestinal 
bacteria that protect against food allergy. Nat 

Med. 2019;25(3):448–453.
 19. Bishop WR, Bell RM. Functions of diacylglycerol 

in glycerolipid metabolism, signal transduction 
and cellular transformation. Oncogene Res. 
1988;2(3):205–218.

 20. Ogata Y, et al. Complete genome sequence of 
Phascolarctobacterium faecium JCM 30894, a 
succinate-utilizing bacterium isolated from 
human feces. Microbiol Resour Announc. 
2019;8(3):e01487-18.

 21. Wu F, Guo X, Zhang J, Zhang M, Ou Z, Peng Y. 
Phascolarctobacterium faecium abundant coloni-
zation in human gastrointestinal tract. Exp Ther 
Med. 2017;14(4):3122–3126.

 22. Ze X, Duncan SH, Louis P, Flint HJ. Ruminococcus 
bromii is a keystone species for the degradation 
of resistant starch in the human colon. ISME J. 
2012;6(8):1535–1543.

 23. Mukhopadhya I, et al. Sporulation capability and 
amylosome conservation among diverse human 
colonic and rumen isolates of the keystone 
starch-degrader Ruminococcus bromii. Environ 
Microbiol. 2018;20(1):324–336.

 24. Kourosh A, et al. Fecal microbiome signatures 
are different in food-allergic children compared 
to siblings and healthy children. Pediatr Allergy 
Immunol. 2018;29(5):545–554.

 25. Human Microbiome Project Consortium. Struc-
ture, function and diversity of the healthy human 
microbiome. Nature. 2012;486(7402):207–214.

 26. Postler TS, Ghosh S. Understanding the holobi-
ont: how microbial metabolites affect human 
health and shape the immune system. Cell Metab. 
2017;26(1):110–130.

 27. Altschul SF, Gish W, Miller W, Myers EW, Lipman 
DJ. Basic local alignment search tool. J Mol Biol. 
1990;215(3):403–410.

 28. Berni Canani R, et al. Lactobacillus rhamnosus 
GG-supplemented formula expands butyrate- 
producing bacterial strains in food allergic 
infants. ISME J. 2016;10(3):742–750.

 29. Bunyavanich S, et al. Early-life gut microbiome 
composition and milk allergy resolution. J Allergy 
Clin Immunol. 2016;138(4):1122–1130.

 30. Abdel-Gadir A, et al. Microbiota therapy acts 
via a regulatory T cell MyD88/RORgammat 
pathway to suppress food allergy. Nat Med. 
2019;25(7):1164–1174.

 31. Walker AW, et al. Dominant and diet-responsive 
groups of bacteria within the human colonic 
microbiota. ISME J. 2011;5(2):220–230.

 32. Salonen A, et al. Impact of diet and individual 
variation on intestinal microbiota composition 
and fermentation products in obese men. ISME J. 
2014;8(11):2218–2230.

 33. Baxter NT, et al. Dynamics of human gut micro-
biota and short-chain fatty acids in response to 
dietary interventions with three fermentable 
fibers. mBio. 2019;10(1):e02566-18.

 34. Cait A, et al. Reduced genetic potential for butyr-
ate fermentation in the gut microbiome of infants 
who develop allergic sensitization. J Allergy Clin 
Immunol. 2019;144(6):1638–1647.

 35. Nagao-Kitamoto H, et al. Interleukin-22-medi-
ated host glycosylation prevents Clostridioides 
difficile infection by modulating the meta-
bolic activity of the gut microbiota. Nat Med. 
2020;26(4):608–617.

 36. Morgan XC, et al. Dysfunction of the intestinal 
microbiome in inflammatory bowel disease and 
treatment. Genome Biol. 2012;13(9):R79.

 37. Vulevic J, McCartney AL, Gee JM, Johnson IT, 
Gibson GR. Microbial species involved in pro-
duction of 1,2-sn-diacylglycerol and effects of 
phosphatidylcholine on human fecal microbiota. 
Appl Environ Microbiol. 2004;70(9):5659–5666.

 38. Martinez-Guryn K, et al. Small intestine microbi-
ota regulate host digestive and absorptive adap-
tive responses to dietary lipids. Cell Host Microbe. 
2018;23(4):458–469.

 39. Clavel T, Borrmann D, Braune A, Dore J, Blaut 
M. Occurrence and activity of human intestinal 
bacteria involved in the conversion of dietary 
lignans. Anaerobe. 2006;12(3):140–147.

 40. Clavel T, Henderson G, Engst W, Dore J, Blaut M. 
Phylogeny of human intestinal bacteria that acti-
vate the dietary lignan secoisolariciresinol diglu-
coside. FEMS Microbiol Ecol. 2006;55(3):471–478.

 41. Adlercreutz H. Lignans and human health. Crit 
Rev Clin Lab Sci. 2007;44(5–6):483–525.

 42. Woting A, Clavel T, Loh G, Blaut M. Bacterial 
transformation of dietary lignans in gnotobiotic 
rats. FEMS Microbiol Ecol. 2010;72(3):507–514.

 43. Bess EN, et al. Genetic basis for the cooperative 
bioactivation of plant lignans by Eggerthella 
lenta and other human gut bacteria. Nat Microbi-
ol. 2020;5(1):56–66.

 44. Sinha R, et al. Collecting fecal samples for micro-
biome analyses in epidemiology studies. Cancer 
Epidemiol Biomarkers Prev. 2016;25(2):407–416.

 45. Parada AE, Needham DM, Fuhrman JA. Every 
base matters: assessing small subunit rRNA 
primers for marine microbiomes with mock 
communities, time series and global field sam-
ples. Environ Microbiol. 2016;18(5):1403–1414.

 46. Apprill A, et al. Minor revision to V4 region 
SSU rRNA 806R gene primer greatly increases 
detection of SAR11 bacterioplankton. Aquat 
Microb Ecol. 2015;75:129–137.

 47. Caporaso JG, et al. Ultra-high-throughput 

https://www.jci.org
https://doi.org/10.1172/JCI141935
mailto://cnagler1@uchicago.edu
https://doi.org/10.1542/peds.2018-1235
https://doi.org/10.1542/peds.2018-1235
https://doi.org/10.1542/peds.2018-1235
https://doi.org/10.1001/jamanetworkopen.2018.5630
https://doi.org/10.1001/jamanetworkopen.2018.5630
https://doi.org/10.1001/jamanetworkopen.2018.5630
https://doi.org/10.1007/s11882-020-0898-7
https://doi.org/10.1007/s11882-020-0898-7
https://doi.org/10.1007/s11882-020-0898-7
https://doi.org/10.1146/annurev-immunol-042718-041621
https://doi.org/10.1146/annurev-immunol-042718-041621
https://doi.org/10.1016/j.immuni.2016.02.002
https://doi.org/10.1016/j.immuni.2016.02.002
https://doi.org/10.1016/j.immuni.2016.02.002
https://doi.org/10.4049/jimmunol.1601253
https://doi.org/10.4049/jimmunol.1601253
https://doi.org/10.4049/jimmunol.1601253
https://doi.org/10.4049/jimmunol.1601253
https://doi.org/10.1159/000323893
https://doi.org/10.1159/000323893
https://doi.org/10.1159/000323893
https://doi.org/10.1159/000323893
https://doi.org/10.1128/AEM.00003-14
https://doi.org/10.1128/AEM.00003-14
https://doi.org/10.1128/AEM.00003-14
https://doi.org/10.1111/cea.12487
https://doi.org/10.1111/cea.12487
https://doi.org/10.1111/cea.12487
https://doi.org/10.1056/NEJMoa1812856
https://doi.org/10.1056/NEJMoa1812856
https://doi.org/10.1056/NEJMoa1812856
https://doi.org/10.1016/S0140-6736(19)31793-3
https://doi.org/10.1016/S0140-6736(19)31793-3
https://doi.org/10.1016/S0140-6736(19)31793-3
https://doi.org/10.1016/S0140-6736(19)31793-3
https://doi.org/10.1016/S0140-6736(19)31793-3
https://doi.org/10.1016/j.smim.2017.08.008
https://doi.org/10.1016/j.smim.2017.08.008
https://doi.org/10.1016/j.jaci.2016.01.001
https://doi.org/10.1016/j.jaci.2016.01.001
https://doi.org/10.1016/j.jaci.2016.01.001
https://doi.org/10.1016/S2468-1253(17)30392-8
https://doi.org/10.1016/S2468-1253(17)30392-8
https://doi.org/10.1016/S2468-1253(17)30392-8
https://doi.org/10.1016/S2468-1253(17)30392-8
https://doi.org/10.1084/jem.20190609
https://doi.org/10.1084/jem.20190609
https://doi.org/10.1084/jem.20190609
https://doi.org/10.1126/science.abc3965
https://doi.org/10.1126/science.abc3965
https://doi.org/10.1073/pnas.1412008111
https://doi.org/10.1073/pnas.1412008111
https://doi.org/10.1073/pnas.1412008111
https://doi.org/10.1038/s41591-018-0324-z
https://doi.org/10.1038/s41591-018-0324-z
https://doi.org/10.1038/s41591-018-0324-z
https://doi.org/10.3892/etm.2017.4878
https://doi.org/10.3892/etm.2017.4878
https://doi.org/10.3892/etm.2017.4878
https://doi.org/10.3892/etm.2017.4878
https://doi.org/10.1038/ismej.2012.4
https://doi.org/10.1038/ismej.2012.4
https://doi.org/10.1038/ismej.2012.4
https://doi.org/10.1038/ismej.2012.4
https://doi.org/10.1111/1462-2920.14000
https://doi.org/10.1111/1462-2920.14000
https://doi.org/10.1111/1462-2920.14000
https://doi.org/10.1111/1462-2920.14000
https://doi.org/10.1111/1462-2920.14000
https://doi.org/10.1111/pai.12904
https://doi.org/10.1111/pai.12904
https://doi.org/10.1111/pai.12904
https://doi.org/10.1111/pai.12904
https://doi.org/10.1038/nature11234
https://doi.org/10.1038/nature11234
https://doi.org/10.1038/nature11234
https://doi.org/10.1016/j.cmet.2017.05.008
https://doi.org/10.1016/j.cmet.2017.05.008
https://doi.org/10.1016/j.cmet.2017.05.008
https://doi.org/10.1016/j.cmet.2017.05.008
https://doi.org/10.1016/S0022-2836(05)80360-2
https://doi.org/10.1016/S0022-2836(05)80360-2
https://doi.org/10.1016/S0022-2836(05)80360-2
https://doi.org/10.1038/ismej.2015.151
https://doi.org/10.1038/ismej.2015.151
https://doi.org/10.1038/ismej.2015.151
https://doi.org/10.1038/ismej.2015.151
https://doi.org/10.1016/j.jaci.2016.03.041
https://doi.org/10.1016/j.jaci.2016.03.041
https://doi.org/10.1016/j.jaci.2016.03.041
https://doi.org/10.1038/s41591-019-0461-z
https://doi.org/10.1038/s41591-019-0461-z
https://doi.org/10.1038/s41591-019-0461-z
https://doi.org/10.1038/s41591-019-0461-z
https://doi.org/10.1038/ismej.2010.118
https://doi.org/10.1038/ismej.2010.118
https://doi.org/10.1038/ismej.2010.118
https://doi.org/10.1038/ismej.2014.63
https://doi.org/10.1038/ismej.2014.63
https://doi.org/10.1038/ismej.2014.63
https://doi.org/10.1038/ismej.2014.63
https://doi.org/10.1016/j.jaci.2019.06.029
https://doi.org/10.1016/j.jaci.2019.06.029
https://doi.org/10.1016/j.jaci.2019.06.029
https://doi.org/10.1016/j.jaci.2019.06.029
https://doi.org/10.1038/s41591-020-0764-0
https://doi.org/10.1038/s41591-020-0764-0
https://doi.org/10.1038/s41591-020-0764-0
https://doi.org/10.1038/s41591-020-0764-0
https://doi.org/10.1038/s41591-020-0764-0
https://doi.org/10.1186/gb-2012-13-9-r79
https://doi.org/10.1186/gb-2012-13-9-r79
https://doi.org/10.1186/gb-2012-13-9-r79
https://doi.org/10.1128/AEM.70.9.5659-5666.2004
https://doi.org/10.1128/AEM.70.9.5659-5666.2004
https://doi.org/10.1128/AEM.70.9.5659-5666.2004
https://doi.org/10.1128/AEM.70.9.5659-5666.2004
https://doi.org/10.1128/AEM.70.9.5659-5666.2004
https://doi.org/10.1016/j.chom.2018.03.011
https://doi.org/10.1016/j.chom.2018.03.011
https://doi.org/10.1016/j.chom.2018.03.011
https://doi.org/10.1016/j.chom.2018.03.011
https://doi.org/10.1016/j.anaerobe.2005.11.002
https://doi.org/10.1016/j.anaerobe.2005.11.002
https://doi.org/10.1016/j.anaerobe.2005.11.002
https://doi.org/10.1016/j.anaerobe.2005.11.002
https://doi.org/10.1111/j.1574-6941.2005.00057.x
https://doi.org/10.1111/j.1574-6941.2005.00057.x
https://doi.org/10.1111/j.1574-6941.2005.00057.x
https://doi.org/10.1111/j.1574-6941.2005.00057.x
https://doi.org/10.1111/j.1574-6941.2010.00863.x
https://doi.org/10.1111/j.1574-6941.2010.00863.x
https://doi.org/10.1111/j.1574-6941.2010.00863.x
https://doi.org/10.1038/s41564-019-0596-1
https://doi.org/10.1038/s41564-019-0596-1
https://doi.org/10.1038/s41564-019-0596-1
https://doi.org/10.1038/s41564-019-0596-1
https://doi.org/10.1158/1055-9965.EPI-15-0951
https://doi.org/10.1158/1055-9965.EPI-15-0951
https://doi.org/10.1158/1055-9965.EPI-15-0951
https://doi.org/10.1111/1462-2920.13023
https://doi.org/10.1111/1462-2920.13023
https://doi.org/10.1111/1462-2920.13023
https://doi.org/10.1111/1462-2920.13023
https://doi.org/10.1111/1462-2920.13023
https://doi.org/10.3354/ame01753
https://doi.org/10.3354/ame01753
https://doi.org/10.3354/ame01753
https://doi.org/10.3354/ame01753
https://doi.org/10.1038/ismej.2012.8


The Journal of Clinical Investigation   C L I N I C A L  M E D I C I N E

1 7J Clin Invest. 2021;131(2):e141935  https://doi.org/10.1172/JCI141935

microbial community analysis on the Illu-
mina HiSeq and MiSeq platforms. ISME J. 
2012;6(8):1621–1624.

 48. Caporaso JG, et al. QIIME allows analysis of 
high-throughput community sequencing data. 
Nat Methods. 2010;7(5):335–336.

 49. DeSantis TZ, et al. Greengenes, a chimera- 
checked 16S rRNA gene database and workbench 
compatible with ARB. Appl Environ Microbiol. 
2006;72(7):5069–5072.

 50. Caporaso JG, Bittinger K, Bushman FD, DeSantis 
TZ, Andersen GL, Knight R. PyNAST: a flexible 
tool for aligning sequences to a template align-
ment. Bioinformatics. 2010;26(2):266–267.

 51. Edgar RC. Search and clustering orders of 
magnitude faster than BLAST. Bioinformatics. 
2010;26(19):2460–2461.

 52. Haas BJ, et al. Chimeric 16S rRNA sequence 
formation and detection in Sanger and 
454-pyrosequenced PCR amplicons. Genome Res. 
2011;21(3):494–504.

 53. Oksanen J, et al. vegan: Community Ecology 
Package. R package version 245. 2017. CRAN 
website. https://cran.r-project.org/web/ 
packages/vegan/index.html. Accessed  
November 10, 2020.

 54. Jiang L, et al. Discrete false-discovery rate 
improves identification of differentially abun-

dant microbes. mSystems. 2017;2(6):e00092-17.
 55. Benjamini Y, Hochberg Y. Controlling the 

false discovery rate: a practical and powerful 
approach to multiple testing. JR Statist Soc B. 
1995;57(1):289–300.

 56. Turner S, Pryer KM, Miao VP, Palmer JD. Inves-
tigating deep phylogenetic relationships among 
cyanobacteria and plastids by small subunit 
rRNA sequence analysis. J Eukaryot Microbiol. 
1999;46(4):327–338.

 57. Amann RI, Ludwig W, Schleifer KH. Phylogenetic 
identification and in situ detection of individual 
microbial cells without cultivation. Microbiol Rev. 
1995;59(1):143–169.

https://www.jci.org
https://doi.org/10.1172/JCI141935
https://doi.org/10.1038/ismej.2012.8
https://doi.org/10.1038/ismej.2012.8
https://doi.org/10.1038/ismej.2012.8
https://doi.org/10.1038/nmeth.f.303
https://doi.org/10.1038/nmeth.f.303
https://doi.org/10.1038/nmeth.f.303
https://doi.org/10.1128/AEM.03006-05
https://doi.org/10.1128/AEM.03006-05
https://doi.org/10.1128/AEM.03006-05
https://doi.org/10.1128/AEM.03006-05
https://doi.org/10.1093/bioinformatics/btp636
https://doi.org/10.1093/bioinformatics/btp636
https://doi.org/10.1093/bioinformatics/btp636
https://doi.org/10.1093/bioinformatics/btp636
https://doi.org/10.1093/bioinformatics/btq461
https://doi.org/10.1093/bioinformatics/btq461
https://doi.org/10.1093/bioinformatics/btq461
https://doi.org/10.1101/gr.112730.110
https://doi.org/10.1101/gr.112730.110
https://doi.org/10.1101/gr.112730.110
https://doi.org/10.1101/gr.112730.110
https://doi.org/10.1111/j.1550-7408.1999.tb04612.x
https://doi.org/10.1111/j.1550-7408.1999.tb04612.x
https://doi.org/10.1111/j.1550-7408.1999.tb04612.x
https://doi.org/10.1111/j.1550-7408.1999.tb04612.x
https://doi.org/10.1111/j.1550-7408.1999.tb04612.x
https://doi.org/10.1128/MR.59.1.143-169.1995
https://doi.org/10.1128/MR.59.1.143-169.1995
https://doi.org/10.1128/MR.59.1.143-169.1995
https://doi.org/10.1128/MR.59.1.143-169.1995

	Graphical abstract

