
The Journal of Clinical Investigation   C O M M E N T A R Y

4 5 6 3jci.org   Volume 129   Number 11   November 2019

Hungry for your alanine: when liver depends  
on muscle proteolysis
Theresia Sarabhai1,2 and Michael Roden1,2,3

1Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany. 2German Center for Diabetes Research,  

München-Neuherberg, Germany. 3Division of Endocrinology and Diabetology, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany.

Adaptive response to fasting
Adaptation to fasting is a fascinating phys-
iological phenomenon allowing organ-
isms to maintain energy supply to tissues 
despite declining energy stores. During 
evolution, multiple mechanisms evolved to 
counter the threat of starvation. Periods of 
famine and starvation have likely selected 
genotypes featuring adaptive responses, 
such as hepatic insulin resistance, e.g., by 
insulin receptor mutation in cave-dwelling 
Astyanax mexicanus fish (1) or insulin resis-
tant subtypes of type 2 diabetes prone to 
nonalcoholic fatty liver disease (NAFLD) 
(2). On the other hand, various concepts 
of dietary restriction, e.g., interval/inter-
mittent fasting (3) or very low caloric diets 
(4), may help to combat the current obesity 
and type 2 diabetes epidemic.

The liver plays the key role in main-
taining blood glucose concentrations for 
obligate glucose utilizers (central nervous 
system, red blood cells, renal medulla) 

(5). During the transition from the fed to 
the early fasted state, the liver switches 
from glycogen storage to glucose produc-
tion by glycogen breakdown as well as by 
gluco neogenesis from noncarbohydrate 
precursors, such as lactate, glycerol, and 
branched-chain amino acids (6). Prolonged 
fasting requires the liver to shift from car-
bohydrate oxidation to β- oxidation of free 
fatty acids (FFAs) so that ketone bodies 
become the main energy source (7).

In a previous study, the researchers 
developed a positional isotopomer nuclear 
magnetic resonance tracer analysis (PINTA) 
to elucidate the interaction between adipose 
tissue and liver crosstalk during starvation 
in rodents (8). During starvation, the decline 
in hepatic glycogenolysis results in a fall of 
plasma leptin, which stimulates the hypo-
thalamic-pituitary-adrenal axis (HPA) and, 
in turn, adipose tissue lipolysis with release 
of FFA and glycerol (Figure 1). In the liver, 
the increase in FFA levels stimulates hepatic 

β-oxidation and the acetyl-CoA pool, which 
allosterically activates pyruvate carboxylase 
flux (VPC), and which, together with glycerol 
as substrate, maintains the rates of hepatic 
gluconeogenesis and endogenous glucose 
production (VEGP) (8).

Liver–skeletal muscle 
metabolic crosstalk
Other metabolic pathways are also known 
to connect skeletal muscle and liver. The 
Cori cycle describes the shuttling of lactate 
derived from skeletal muscle anaerobic gly-
colysis to the liver to feed gluconeogenesis 
upon intensive exercising. In addition, skel-
etal muscle contributes to fasting metabo-
lism, not only by glycogenolysis and glycol-
ysis yielding pyruvate, but also by protein 
breakdown yielding amino acids (Figure 
1). These pathways converge via alanine 
transaminase (ALT), which transfers amino 
groups from amino acids to pyruvate to form 
and release alanine and thereby prevent 
skeletal muscle from rapidly accumulating 
toxic ammonium (9). The latter glucose-al-
anine cycle, also known as the Cahill cycle, 
allows glucose to regenerate from alanine in 
the liver by a series of reactions (7). Although 
this interorgan communication is fairly pro-
ductive, yielding 2 mol ATP per 1 mol glu-
cose oxidized in muscle and yielding 2 mol 
of carbon-3 glucose precursors from alanine, 
energetic efficiency decreases with glucone-
ogenesis and urea synthesis (Figure 1). As a 
result, the transition from the fed to the fast-
ed state shifts the control of energy metabo-
lism and glucose production from the liver 
to adipose tissue and skeletal muscle, and 
alanine may become an important substrate, 
maintaining glucose homeostasis and regu-
lating hepatic energy metabolism.

Alanine-to-glucose conversion 
during fasting in humans
In humans, examining the metabolic path-
ways of interorgan crosstalk has been lim-
ited by several factors. Measurements of 
hepatic metabolite concentrations or flux 
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Fasting requires complex endocrine and metabolic interorgan crosstalk, 
which involves shifting from glucose to fatty acid oxidation, derived from 
adipose tissue lipolysis, in order to preserve glucose for the brain. The 
glucose-alanine (Cahill) cycle is critical for regenerating glucose. In this issue 
of JCI, Petersen et al. report on their use of an innovative stable isotope 
tracer method to show that skeletal muscle–derived alanine becomes rate 
controlling for hepatic mitochondrial oxidation and, in turn, for glucose 
production during prolonged fasting. These results provide new insight 
into skeletal muscle–liver metabolic crosstalk during the fed-to-fasting 
transition in humans.
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30%, respectively. Next, they infused 
alanine intravenously in 60-hour fasted 
humans to match the higher alanine turn-
over observed after 12 hours of fasting, 
which raised VEGP and VPC and markedly 
stimulated VCS, by approximately 70%. 
The alanine-stimulated gluconeogenesis 
(VPC) occurred under conditions of sup-
posedly maximal stimulation by glucagon 
and FFA from adipose tissue lipolysis. Of 
note, the rise of VPC correlated with mito-
chondrial oxidation, which indicates an 
important role of skeletal muscle–derived 
alanine as rate controlling for hepatic 
mitochondrial oxidation and, in turn, 

chondrial oxidation from citrate synthase 
flux (VCS) (11). In addition, they assessed 
systemic alanine turnover using [3-13C]ala-
nine infusion as well as the hepatic mito-
chondrial redox state (NADH:NAD+) from 
the ratio of plasma β-hydroxybutyrate/ace-
toacetate concentrations.

After 60 hours of fasting, VEGP 
decreased by more than 20% despite 
largely unchanged VPC, indicating that 
the reduction in glucose production was 
mainly due to decreased net glycogeno-
lysis (Figure 1). Hepatic VCS and endog-
enous alanine turnover decreased by 
approximately 50% and approximately 

rates cannot be performed invasively due 
to ethical considerations precluding liver 
biopsies for physiological studies. Nonin-
vasive in vivo magnetic resonance spec-
troscopy is expensive, not generally avail-
able, and confined to certain metabolites. 
Petersen and colleagues combined min-
imal invasive techniques to examine the 
glucose-alanine cycle during short-term 
(12 hour) and prolonged (60 hour) fasting 
in healthy humans (10). They applied their 
recently described PINTA method and 
infused three stable-isotope–labeled sub-
strates that allowed for simultaneous mea-
surement of VEGP, VPC, and hepatic mito-

Figure 1. Liver–skeletal muscle crosstalk fuels metabolism in starvation. The Cahill cycle allows for recycling of hepatic glucose from skeletal muscle 
alanine via ALT and for detoxification of ammonium ions (NH4

+) from proteolysis via the hepatic urea cycle. In 60-hour fasted humans, the nearly unchanged 
gluconeogenesis, as assessed from VPC, indicates that reduced hepatic glycogenolysis accounts for the decrease in VEGP. The decrease in VCS occurred in 
parallel to a rise in the β-hydroxy-butyrate/acetoacetate ratio (β-OHB/AcAc) suggesting that the redox potential regulates VCS. Of note, alanine infusion 
partially reversed these alterations under conditions of already stimulated hepatic mitochondrial oxidation resulting from substrate supply and endocrine 
stimulation. CI, citrate; FA-CoA, fatty acyl–coenzyme A; GH, growth hormone; α-KG, α-ketoglutarate; βOX, β-oxidation; OA, oxaloacetate; PEP, phospho-
enolpyruvate; PEPCK, PEP carboxykinase; TAG, triglycerides; T3, triiodothyronine.
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hepatic mitochondrial oxidation, results 
that will have important implications for 
metabolic dysfunction in obesity, type 2 
diabetes, and NAFLD (2).
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