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Introduction
Unprecedented clinical success with immune checkpoint inhibi-
tors alludes to the pivotal importance of the immune synapse that 
forms between the antigen-presenting cells and effector T cells (1). 
Professional antigen-presenting cells such as dendritic cells pres-
ent tumor-associated antigens via human leukocyte antigen com-
plex (HLA) to the cognate T cells to elicit tumor-specific immune 
responses (2). This high-fidelity recognition of tumor antigens 
by effector T cells is either augmented by concomitant interac-
tion of costimulatory molecules leading to a functional immune 
response, or interrupted by engagement of immune checkpoint 
molecules mediating T cell anergy or exhaustion (2).

Although professional antigen-presenting cells are deemed crit-
ical for elicitation of a competent immune response, the immune 
synapse also forms between the tumor and the effector T cells; 
thus, the tumor cells may evade the effector T cells by neutralizing 
this interaction. In fact, the interaction between tumor cells and 
immune cells may shape the immunosuppressive landscape within 
the tumor microenvironment via mechanisms involved in down-
regulation of expression of both HLA and a wide array of immune 

checkpoint and costimulatory ligands to modulate T cell respons-
es (3). Indeed, the role of the tumor in the immune synapse is best 
illustrated by a tendency toward superior efficacy of PD1-blocking 
antibodies against tumors expressing high levels of PD-L1 (4).

Expression of HLA and costimulatory/immune checkpoint 
molecules is intricately modulated at transcriptional, translation-
al, and posttranslational levels (5). In particular, DNA methyla-
tion is a crucial epigenetic mechanism of immune regulation with 
critical roles in T cell development and differentiation, antigen 
presentation, effector function, and immunologic memory (6). 
Because cancer cells frequently utilize epigenetic dysregulation to 
silence tumor suppressors or activate oncogenes (7), we hypothe-
sized that tumor progression requires epigenetic reprogramming 
of immune synapse genes to evade immune killing.

Results and Discussion
Tumor evolution to evade immune surveillance is a hallmark of 
carcinogenesis, and modulation of the immune synapse between 
antigen-presenting cells and effector T cells directly affects 
tumor-specific immunity. Because antigen-presenting cells and 
tumors modulate effector T cells via ligands for costimulatory 
and immune checkpoint pathways, we focused on the methyl-
ation status of these ligands in tumors (Figure 1A). The Cancer 
Genome Atlas (TCGA) Level 1 methylation data from 30 solid 
tumor types were studied (Supplemental Table 1; supplemental 
material available online with this article; https://doi.org/10.1172/
JCI131234DS1). Twenty selected genes were divided into 2 groups: 
immune checkpoint genes (ICGs) and costimulatory genes (CSGs) 
(Supplemental Table 2). Of note, CD80 and CD86 have dual roles 
as stimulatory when interacting with CD28 or inhibitory as a 
ligand for CTLA-4. Prior studies suggest that their affinity is stron-
ger for CTLA-4 and are thus likely to mediate inhibitory signals 
when expressed at low levels, as is generally the case in tumors (8). 
Therefore, these 2 genes were categorized as inhibitory genes in 
the tumor-immune synapse.

Cancer immune evasion is achieved through multiple layers of immune tolerance mechanisms including immune editing, 
recruitment of tolerogenic immune cells, and secretion of immunosuppressive cytokines. Recent success with immune 
checkpoint inhibitors in cancer immunotherapy suggests a dysfunctional immune synapse as a pivotal tolerogenic 
mechanism. Tumor cells express immune synapse proteins to suppress the immune system, which is often modulated 
by epigenetic mechanisms. When the methylation status of key immune synapse genes was interrogated, we observed 
disproportionately hypermethylated costimulatory genes and hypomethylation of immune checkpoint genes, which were 
negatively associated with functional T cell recruitment to the tumor microenvironment. Therefore, the methylation status of 
immune synapse genes reflects tumor immunogenicity and correlates with survival.
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For instance, breast cancer (inverted pink triangle) is clearly sepa-
rated from its counterpart normal adjacent tissue.

Unbiased t-SNE and hierarchical clustering analysis demon-
strated that the methylation status of immune synapse genes 
alone can distinguish tumor versus normal tissue and histologic 
subtypes, opening up an intriguing possibility that the methyl-
ation status of immune synapse genes may be utilized for early 
detection of cancer.

Next, we endeavored to understand the biological basis of 
separation between the tumor and the normal adjacent tissue by 
the methylation status of ICGs and CSGs by analyzing the meth-

We first investigated whether distinct tumor types were 
identifiable based on the methylation status of the immune syn-
apse genes using 2-dimensional t-distributed stochastic neigh-
bor embedding (t-SNE) (9) and unbiased hierarchical clustering 
analysis. Strikingly, patients with the same tumor type clustered 
together regardless of other clinical characteristics including age, 
sex, or stage (Figure 1, B–D). This finding suggests the methylation 
status of immune synapse genes is heavily imprinted by the tissue 
of origin. By contrast, normal adjacent tissue of the same histology 
differentially segregated within the cluster, highlighting the epi-
genetic evolution of tumors during carcinogenesis (Figure 1, B–D). 

Figure 1. The distinct pattern of immune synapse gene methylation depends on tumor histology. (A) Schematic of an immune synapse between the 
antigen-presenting cells/tumor and T cells. (B) t-SNE analysis was performed on 8,186 solid tumors and 745 normal adjacent tissues based on the β values 
for methylation levels for all probes for CSGs and ICGs from A, contrasting tumor (blue) versus normal adjacent tissue (red). (C) The spatial relationship 
between distinct tumor types is depicted, with breast tumors in the blue-dotted box and normal adjacent tissue samples in the black-dotted box. (D) 
Unbiased hierarchical clustering analysis is shown. ACC, adrenocortical carcinoma; BLCA, bladder urothelial carcinoma; BRCA, breast invasive carcinoma; 
CESC, cervical squamous cell carcinoma and endocervical adenocarcinoma; CHOL, cholangiocarcinoma; COAD, colon adenocarcinoma; DLBC, lymphoid 
neoplasm diffuse large B cell lymphoma; ESCA, esophageal carcinoma; HNSC, head and neck squamous cell carcinoma; KICH, kidney chromophobe; KIRC, 
kidney renal clear cell carcinoma; KIRP, kidney renal papillary cell carcinoma; LIHC, liver hepatocellular carcinoma; LUAD, lung adenocarcinoma; LUSC, lung 
squamous cell carcinoma; MESO, mesothelioma; OV, ovarian serous cystadenocarcinoma; PAAD, pancreatic adenocarcinoma; PCPG, pheochromocytoma 
and paraganglioma; PRAD, prostate adenocarcinoma; READ, rectum adenocarcinoma; SARC, sarcoma; SKCM, skin cutaneous melanoma; STAD, stomach 
adenocarcinoma; TGCT, testicular germ cell tumors; THCA, thyroid carcinoma; THYM, thymoma; UCEC, uterine corpus endometrial carcinoma; UCS, uterine 
carcinosarcoma; UVM, uveal melanoma.
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gene expression. As anticipated, an inverse correlation between 
methylation and gene expression was manifest among tumor and 
normal adjacent tissue (Figure 2, C and D). Such an inverse rela-
tionship, however, was confined to tumor samples with detectable 
gene expression (i.e., log2 expression > 4) (Figure 2D). The aver-
age methylation level was calculated using probes located in the 
TSS1500, TSS200, or 5′UTR region of the gene and with r less 
than –0.2 (Supplemental Table 3). Importantly, the average β val-
ue of the selected probes within the HHLA2 and CD40 gene loci 
demonstrated consistent methylation patterns across disease sites 
(Figure 2E): hypermethylation of CD40 and hypomethylation of 
HHLA2 in comparison with the normal adjacent tissue. Addition-
ally, for both HHLA2 and CD40, the tumor samples demonstrated 
a larger variance in the methylation levels in tumor versus normal 
tissue across disease sites (Figure 2E).

These results suggest that the tumor-immune synapse is reg-
ulated at least in part by methylation in cancer. Sporadic evidence 
for regulation of HLA (11, 12), CD40 (5), or CD80 (13) by meth-
ylation in select tumor types now appears to be a more general-
ized phenomenon in the majority of CSGs and ICGs across tumor 
types. Interestingly, consistent with previous reports of PD-L1 

ylation pattern of individual genes and their CpG probes on the 
Illumina 450K chip. A full list of the genes and their probes is 
given in Supplemental Table 3. Recent studies have demonstrat-
ed that DNA methylation of gene bodies may also contribute to 
transcriptional regulation (10); however, the probes targeting the 
putative promoter region of the genes within TSS1500, TSS200, 
and the 5′UTR were evaluated. Interestingly, ICGs and CSGs 
demonstrated inverse methylation patterns, reflecting their 
opposite immunomodulatory functions (Figure 2 and Supple-
mental Figures 1–16). For instance, the β values of probes within 
the CD40 gene locus, a prominent CSG, demonstrated profound 
hypermethylation in the tumor, while the HHLA2 gene locus, an 
ICG, demonstrated hypomethylation in the tumor in comparison 
with the normal adjacent tissue (Figure 2A). By contrast, the oppo-
site phenomenon was observed for the CSGs with an increased 
methylation in tumor versus normal adjacent tissue (Figure 2B). 
The correlation between probes within the same gene is high, 
indicating the consistence of the methylation level measurements 
(Supplemental Figure 1). Because the known epigenetic mecha-
nism of gene methylation is transcriptional suppression, we inter-
rogated the relationship between the methylation status and its 

Figure 2. The polarity of methylation patterns for costimulatory and immune checkpoint ligands. (A and B) β Values of methylation probes for TSS1500, 
TSS200, 5′UTR, body, and 3′UTR of the HHLA2 gene (A), an example of an ICG, or CD40 (B), an example of a CSG, derived from all tumor samples (blue) 
and normal adjacent tissues (red) are depicted. The methylation level for each probe is represented by a box plot. The left-most column indicates the 
presence of CpG islands, while the second-column colors indicate where on the gene the probe is located. The average β values for selected probes within 
TSS1500, TSS200, and 5′UTR are plotted against gene expression for HHLA2 (C) or CD40 (D). Each marker represents an individual tissue sample. (E) A box 
plot of average β values for selected probes for HHLA2 and CD40 from tumor (blue) and normal adjacent tissue (red) is shown. rP and rS are Pearson’s and 
Spearman’s correlation coefficients, respectively.
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nents, explaining 22.6% and 16.6% of the variation, respectively. 
A 2-dimensional representation of PC1 and PC2 for 8,186 solid 
tumors and 745 normal adjacent tissues clearly showed that many 
tumors have an abnormal methylation pattern (Figure 3A). Strik-
ingly, the dominant components of PC1 were CSGs, in particular 
CD40 and HLA-A. By contrast, PC2 was mainly driven by ICGs 
including VTCN1, HHLA2, PDL1, CEACAM1, CD80, and CD86 
(Figure 3B and Supplemental Figure 17). Consequently, PC1 and 
PC2 were highly correlated with average β values of CSG probes 
and ICG probes, respectively (Supplemental Figure 17, A and B). 
Probes from the same gene generally clustered together, further 
confirming the robustness of this analysis (Figure 3B). It should 
be noted that all CpG probes contribute to both PCA components 
with variable contributions, some with a negative weight for a spe-
cific PCA component. The total score for a sample will thus be a 

promoter regulation by methylation (14), 2 probes within the pro-
moter region were negatively correlated with the gene expression. 
However, a clear trend for hypomethylation of the PD-L1 locus 
in comparison with normal adjacent tissue was not observed, 
suggesting competing mechanisms governing PD-L1 expression 
(Supplemental Figure 4).

Next, we conducted a principal component analysis (PCA) 
to summarize the methylation pattern across all genes and their 
CpG probes. To minimize noise and enrich for biologically rele-
vant signal, only the CSG and ICG CpG probes that demonstrated 
negative correlation (r < –0.2) between the methylation status and 
their corresponding gene expression and located in the TSS1500, 
TSS200, and 5′UTR regions were selected for further analysis: in 
total 75 probes (Figure 2, Supplemental Figures 1–16, and Supple-
mental Tables 3 and 4). PCA revealed 2 major principal compo-

Figure 3. Principal component analysis (PCA) segregates costimulatory and immune checkpoint ligands. (A) Two-dimensional plot of PC1 and PC2 scores 
for all tumor types (blue) and normal adjacent tissues (red) is shown. (B) The importance of the variables (CpG probes) for PC1 and PC2 is depicted. (C) A 
box plot of PC1 and PC2 scores for tumor (blue) and normal adjacent tissue (red) compared across histologic types. (D) PC1 scores of mock- or 5-azaciti-
dine–treated epithelial cancer cell lines. (E) The methylation status of the CD40 gene in mock- or 5-azacytidine–treated CAMA1 cell line. *P < 0.05,  
**P < 0.01, ***P < 0.001, ****P < 0.0001 by 2-sided Student’s t test.
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ing the absence of an epigenetic brake to suppress the immune 
response. Indeed, highly efficient central tolerance mechanisms 
governing clonal deletion of self-reactive T cells allows normal tis-
sues to remain highly immunogenic to any abnormal presence of 
foreign antigens, which usually represent infection. By contrast, 
tumor tissues manifest either hypermethylation of CSGs and/or 
hypomethylation of ICGs, effectively employing epigenetic mech-
anisms to deliberately suppress the immune system. Because of 
neoantigens, oncogenic virus antigens, or cancer testis antigens, 
tumor-specific immune responses ensue. Therefore, altered 
methylation status may reflect tumor adaptation to evolutionary 
pressure exerted by immune surveillance. A relatively consistent 
methylation phenotype between early-stage and late-stage mel-
anoma suggests such epigenetic adaptation occurs early during 
carcinogenesis, which explains in part the markedly consistent 

weighted average of all variables. Consistent with the methyla-
tion patterns observed with individual CSGs and ICGs, primary 
tumors exhibited higher PC1 and lower PC2 scores in comparison 
with the normal adjacent tissue score across disease sites (Figure 
3C), which was also replicated in the average β values of CSG and 
ICG probes (Supplemental Figure 17, D and E). Importantly, we 
observed reversal of hypermethylation of CSGs by 5-azacytidine 
in the data set of 26 epithelial cancer cell lines (15), with a signif-
icant decrease in PC1 scores (Figure 3D). At an individual gene 
level, demethylation of CD40 by 5-azacytidine was also evident 
(Figure 3E), underscoring the notion that the methylation status of 
CSGs is therapeutically actionable.

Two-dimensional evaluation of CSG and ICG methylation sta-
tus revealed that normal tissues generally exhibit relative hyper-
methylation of ICGs and hypomethylation of CSGs, demonstrat-

Figure 4. The methylation status of costimulatory ligands is prognostic in melanoma. (A) Kaplan-Meier curves for DSS of melanoma patients with high, 
intermediate, and low tertiles of PC1 scores are shown. Higher PC1 scores represent hypermethylation of CSGs. (B) Box plot of PC1 score distribution based 
on melanoma patient staging. (C and D) Kaplan-Meier curves for DSS of UCEC patients with MSI (C) or without MSI (D) with high, intermediate, and low 
tertiles of PC1 scores are shown. (E) T cell recruitment in PC1High and PC1Low melanoma patients is approximated by gene expression of CD3E, CD4, and 
CD8B. (F) T effector functions in PC1High and PC1Low melanoma patients are approximated by gene expression of CD3ζ (CD247), granzyme B (GZMB), perforin 
(PRF1), and IFN-γ (IFNG). (G) Chemokines for immune cell trafficking in PC1High and PC1Low melanoma patients is approximated by gene expression of CCL2, 
CCL3, CCL4, CCL5, CCL9, and CCL10. (H) Immunogenicity of PC1High and PC1Low melanoma patients is approximated by gene expression of cGAS. P values in 
A, C, and D were derived from a log-rank test comparing PC1High and PC1Low groups. ****P < 0.0001 by 2-sided Student’s t test.
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with hypermethylated CSGs (PC1High) may benefit from combi-
nation therapy of PD1 blockade with 5-azacitidine, while con-
versely, patients with hypermethylated ICGs (PC2High) may be 
adversely impacted. Given negative preliminary findings from 
the phase II randomized clinical trial of oral 5-azacitidine plus 
pembrolizumab versus pembrolizumab plus placebo (19), patient 
selection may be crucial to overcome resistance to PD1 blockade. 
Alternatively, targeted editing of tumor methylation of immune 
synapse genes by TET1 or DNMT3a via CRISPR may allow per-
sonalized approaches to augment immunotherapy (20). Notably, 
the methylation status of immune synapse genes may be utilized 
to predict response to immunotherapy. The major advantage to 
the use of the methylation status is that DNA is stable and deg-
radation is less likely in formalin-fixed paraffin-embedded tis-
sues, and thus anticipated to be more robust than RNA-based or  
histology-based approaches.

Methods
Analysis of TCGA methylation database. TCGA Level 1 IDAT files for 
the selected tumor types were downloaded between April and May of 
2016 using the former (now defunct) Data Matrix accessed through 
http://tcga-data.nci.nih.gov/tcga/dataAccessMatrix.htm. Preprocess
ing the data included normalization via internal control probes fol-
lowed by background subtraction using the methylumi R package 
from Bioconductor (21). The calculated β values were then extracted 
from the MethyLumiSet object following preprocessing.

Analysis of TCGA RNA-Seq database. The TCGA RNA-Seq samples 
were extracted from the EBPlusPlusAdjustPANCAN_IlluminaHiSeq_
RNASeqV2.geneExp.tsv file available from: https://gdc.cancer.gov/
about-data/publications/pancanatlas and log2 transformed: log2(x + 1).

GSE57342 5-azacitidine–treated cancer cell lines. The GSE57342 pro-
cessed data set was downloaded and cell lines with more than 3 mock- 
and three 5-azacitidine–treated samples were selected for analysis.

t-SNE analysis. t-SNE was calculated using all 247 probes for the 
selected 20 genes across all TCGA samples. The 50 first PCA compo-
nents were used as input, with perplexity = 50 and Euclidian distance 
as implemented in MATLAB.

Correlation coefficient heatmap. The Pearson’s correlation coeffi-
cients between all the probes within a gene were calculated and dis-
played as a heatmap.

PCA. We used the first and second principal components (a 
weighted average of β values among the CSG and ICG probes), as they 
account for the largest variability in the data, to represent the overall 
methylation status for 8,931 tumor and normal samples in the TCGA 
database. That is, PC = Σwixi, a weighted average of β values among the 
selected CSG and ICG probes, where xi represents the gene i β value,  
wi is the corresponding weight (loading coefficient), with Σwi

2 = 1, and 
the wi values maximize the variance of Σwixi. For each gene, a set of 
probes was selected using the following criteria to minimize noise: 
r < –0.2 (methylation vs. gene expression) located in the TSS1500, 
TSS200 or the 5′UTR (Supplemental Table 4). Each probe was cen-
tered but not scaled before PCA calculations.

Survival analysis. OS and DSS data were retrieved from a pri-
or publication (22). Tertiles were used to define high, intermediate 
(Int), and low PC1 or PC2 for melanoma, NSCLC, HNSC, RCC, 
UCEC MSIHigh, and WT patients. Kaplan-Meier curves were then plot-
ted based on tertile scores.

methylation phenotype of immune synapse genes across tumor 
types. Although expression of HLA and costimulatory/immune 
checkpoint molecules is frequently dysregulated in cancer via 
multiple mechanisms (5), heritable changes that affect the entire 
tumor tissue as a whole require the initial cascade of tolerogenic 
signals to involve genetic or epigenetic changes. Because germ-
line or somatic mutations of these immune synapse genes are rare 
events (5), the immune status of tumors manifest as the epigenetic 
footprints of immune synapse genes.

Because immune evasion is critical for cancer progression and 
survival, we hypothesized that the differential methylation status 
of the immune synapse genes may determine clinical outcome. 
Therefore, we investigated the clinical relevance of our PCA mod-
el in melanoma, a prototypic immunogenic cancer. PC1 was a 
determinant of disease-specific survival (DSS) in melanoma, with 
significant survival advantage in PC1Low patients characterized by 
hypomethylation of CSGs (Figure 4A). An alternative approach 
with partial least squares (PLS) modeling using the outcome as 
response variable also confirmed differences in survival outcome 
based on CSGs (Supplemental Figure 18). Interestingly, the PC1 
score was relatively consistent among early- and late-stage mela-
noma patients, and thus, the survival difference was independent 
of patient staging (Figure 4B).

The methylation status of immune synapse genes was prog-
nostic only in immunogenic tumors, suggesting that modulation 
of the tumor-immune synapse by methylation may become clin-
ically relevant only in the presence of active antitumor immune 
responses. For instance, PC1 was prognostic for DSS in uterine 
corpus endometrial carcinoma (UCEC) with microsatellite insta-
bility (MSIHigh) (Figure 4C). By contrast, no differences in surviv-
al were noted based on PC1 in UCEC without MSI (WT) (Figure 
4D). Consistently, the methylation status correlated with overall 
survival (OS) and DSS in other relatively immunogenic cancers, 
including non–small cell lung cancer (NSCLC), renal cell carci-
noma (RCC), and head and neck cancer (HNSC). Similar to our 
findings with melanoma, NSCLC patients with lower PC1 scores 
demonstrated improved survival (Supplemental Figure 19). By 
contrast, prognosis for HNSC and RCC correlated with PC2 (Sup-
plemental Figure 20).

Increased tumor infiltration by CD4+ and CD8+ T cells was 
evident in PC1Low patients (Figure 4E). Furthermore, increased 
levels of CD3ζ (CD247), granzyme B (GZMB), perforin (PRF1), and 
IFN-γ (IFNG) in PC1Low patients suggest superior effector functions 
by these T cells (Figure 4F). Interestingly, key chemokines that 
drive T cell recruitment and trafficking in melanoma (16), CCL2, 
CCL3, CCL4, CCL5, CXCL9, and CXCL10, were elevated in PC1Low 
patients (Figure 4G). More recently, the STING/cGAS pathway has 
been critically implicated in tumor immunogenicity. A significant 
increase in cGAS expression was also manifest in PC1Low patients 
(Figure 4H). Therefore, hypomethylation of CSGs in melanoma 
was associated with improved survival as well as enhanced tumor 
immunogenicity and recruitment of effector T cells.

In summary, we report methylation of immune synapse 
genes as a crucial driver of tolerogenic immune landscapes in 
cancer. Notably, preclinical studies have demonstrated the effi-
cacy of demethylating agents to augment immunotherapy (17, 
18). Based on our study, we predict that the subset of patients 
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PLS modeling. A PLS model was derived using melanoma patients 
with poor survival (DSS dead < 12 months, 0) and long survival (DSS 
alive > 120 months, 1) as a binary response using the CSG probes. 
Cross validation indicated 2 significant PLS components. The PLS 
model was then applied to the melanoma samples not used in training. 
Samples with a predicted response greater than 0.5 were compared to 
samples with a predicted response less than 0.5 using a log-rank test.

MSI status. The MSI status was extracted from Bonneville et al. 
(23). Samples with a MANTIS score larger than 0.4 were considered 
MSI positive as described in the publication.

Statistics. t-SNE, PCA, PLS, Pearson’s, Spearman’s correlation 
statistics, and 2-sided Student’s t tests were performed in MATLAB 
R2018B. Survival analysis was done using MatSurv (https://github.
com/aebergl/MatSurv).

Study approval. Only publicly available, deidentified data are pre-
sented; thus, institutional study approval was not required.
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