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Introduction
Prostate cancer is a leading cause of cancer death for men world-
wide (1). Despite significant advances in therapy for patients 
with metastatic disease, the emergence of treatment resistance 
remains a universal problem which ultimately contributes to the 
lethality of the disease. Prostate cancer is a cancer type that is 
driven by androgen receptor (AR) signaling, and several potent 
drugs targeting the AR are now commonly used to treat patients 
with advanced disease either in combination with gonadal andro-
gen suppression therapy for metastatic hormone naive prostate 
cancer or in the castration-resistant setting. Resistance to potent 
AR-targeted drugs is still primarily mediated through AR sig-
naling (2). However, an increasingly recognized proportion of 

tumors develop histologic transformation to a castration-resistant  
neuroendocrine prostate cancer (CRPC-NE) phenotype as a 
mechanism of AR-independent treatment resistance (3–5). Met-
astatic biopsies demonstrate morphologic features of small cell 
carcinoma, often with low or absent expression of the AR, down-
regulation of downstream AR-regulated markers such as prostate- 
specific antigen (PSA), and expression of classical neuroendo-
crine markers (e.g., chromogranin, synaptophysin) (6, 7). The 
prognosis of CRPC-NE is poor due in part to late diagnosis and a 
lack of effective therapies (5, 8). Similar to other poorly differen-
tiated neuroendocrine carcinomas (9, 10), CRPC-NE frequently 
harbors genomic loss of RB1 and TP53 (4, 6, 11, 12). However, RB1 
and TP53 loss-of-function alterations are not specific to CRPC-
NE and are also observed in a subset of castration-resistant ade-
nocarcinomas (4). Prior clinical and preclinical studies have sup-
ported a transdifferentiation process whereby CRPC-NE evolves 
clonally from a luminal prostate adenocarcinoma precursor (11, 
13–16). Early prostate cancer genomic alterations are retained, 
but other genomic and epigenetic alterations are acquired (11, 14, 
17). How and when this lineage plasticity manifests in patients is 
not well understood and whether early detection of CRPC-NE 
could improve outcomes is not known.

Loss of androgen receptor (AR) signaling dependence occurs in approximately 15%–20% of advanced treatment-resistant 
prostate cancers, and this may manifest clinically as transformation from a prostate adenocarcinoma histology to a 
castration-resistant neuroendocrine prostate cancer (CRPC-NE). The diagnosis of CRPC-NE currently relies on a metastatic 
tumor biopsy, which is invasive for patients and sometimes challenging to diagnose due to morphologic heterogeneity. 
By studying whole-exome sequencing and whole-genome bisulfite sequencing of cell free DNA (cfDNA) and of matched 
metastatic tumor biopsies from patients with metastatic prostate adenocarcinoma and CRPC-NE, we identified CRPC-NE 
features detectable in the circulation. Overall, there was markedly higher concordance between cfDNA and biopsy tissue 
genomic alterations in patients with CRPC-NE compared with castration-resistant adenocarcinoma, supporting greater 
intraindividual genomic consistency across metastases. Allele-specific copy number and serial sampling analyses allowed for 
the detection and tracking of clonal and subclonal tumor cell populations. cfDNA methylation was indicative of circulating 
tumor content fraction, reflective of methylation patterns observed in biopsy tissues, and was capable of detecting CRPC-
NE–associated epigenetic changes (e.g., hypermethylation of ASXL3 and SPDEF; hypomethylation of INSM1 and CDH2). A 
targeted set combining genomic (TP53, RB1, CYLD, AR) and epigenomic (hypo- and hypermethylation of 20 differential sites) 
alterations applied to ctDNA was capable of identifying patients with CRPC-NE.
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published criteria (6). Clinical features are summarized in Figure 
1A and Supplemental Table 1; supplemental material available 
online with this article; https://doi.org/10.1172/JCI131041DS1. 
Twenty-four of these individuals had multiple tissue or plasma 
time points, for a total of 69 plasma samples and 98 metastatic 
tissues (Supplemental Tables 1–4). Metastatic sites of patients at 
the time of specimen collection included bone (84%), lymph node 
(52%), liver (32%), lung (16%), brain (6%). Overall, patients in this 
study had high metastatic burden, including 50% with visceral  
metastases and greater than 45% of patients with more than 6 
bone metastases. The median number of prior therapies for CRPC 
was 2 (range 0–9); 42.8% patients received prior abiraterone or 
enzalutamide, and 65.7% received prior cytotoxic chemotherapy. 
The median time between prior therapy progression and blood 
draw was 3.2 months (range 1.1–9.1). Median progression-free 
survival on next line of systemic therapy (after blood/tissue col-
lection) for CRPC patients was 4.1 months (4.3 months CRPC- 
Adeno, 4.0 months CRPC-NE), and median overall survival was 
11.0 months (12.0 months CRPC-Adeno, 6.0 months CRPC-NE).

Tumor/normal whole-exome sequencing (WES) was per-
formed on cell free DNA (cfDNA) extracted from plasma and 
germline DNA from peripheral blood mononuclear cells (PBMCs) 
with a median depth of coverage of ×357 for plasma samples and 
×105 for germline samples. Median cfDNA tumor content (TC) 
was 22% (3%–94%), and TC did not associate with histology sub-
type (i.e., adenocarcinoma or CRPC-NE) (Supplemental Figure 
1), number or type of metastatic sites, prostate-specific antigen 
(PSA) levels, serum neuroendocrine markers, or number of prior 
systemic therapies (Supplemental Figure 2, A–C). Prior exposure 
to cytotoxic chemotherapy was associated with higher cfDNA TC 
(Supplemental Figure 2D), and no statistical difference in TC was 
observed with respect to presence or absence of sites of metastasis 
(bone, lymph node or visceral) in chemotherapy-treated patients. 
In patients with CRPC-Adeno, a cfDNA TC of at least 50% was 
associated with inferior prognosis (P = 0.01, Supplemental Figure 
3A), but this was not observed in the CRPC-NE subclass. Tumor 
mutation load and copy number burden in ctDNA did not differ 
significantly among tumor histologies, but both were higher in 
patients who received prior chemotherapy compared with those 
who did not (Supplemental Figure 2D). Recurrent genomic alter-
ations observed in plasma and in tissue samples of study cohort 
samples detected by WES are shown in Figure 1, B and C and Sup-
plemental Figure 4.

Overall, copy number alterations and point mutations involv-
ing commonly altered prostate cancer–associated genes (Supple-
mental Table 5) detected in metastatic biopsy tissue samples were 
evident in patient-matched ctDNA (median concordance 71%, 
range 0.29–1.0). This degree of concordance was similar to other 
targeted DNA and WES prostate cancer ctDNA studies (23, 24). As 
expected based on prior studies (4, 11), alterations involving RB1, 
TP53, and CYLD were more common in the ctDNA and biopsy tis-
sues of CRPC-NE patients, whereas AR alterations more common 
in CRPC-Adeno patients. There were no significant differences in 
the frequency of DNA repair gene aberrations involving BRCA1, 
BRCA2, and ATM among the subtypes (Figure 1B, Supplemental 
Figure 4, and Supplemental Table 6). SPOP mutations were nota-
bly absent in CRPC-NE. The most common genomic alterations 

Understanding patterns of tumor evolution that occur during 
prostate cancer progression and treatment resistance can inform 
tumor biology as well as identify novel strategies for combating 
resistance. Serial metastatic sampling in patients with prostate 
cancer during progression is challenging and is also not always 
representative of the heterogeneity of alterations that may exist 
across metastases in an individual. Although rapid autopsy stud-
ies have pointed to limited intraindividual genomic (18) and 
epigenomic (DNA methylation) (19, 20) heterogeneity across 
anatomic sites of metastases at the time of lethal disease, circu-
lating tumor DNA studies at earlier prostate cancer disease states 
suggests clonal dynamics that occur during tumor evolution with 
competing clones and subclones potentially contribute to resis-
tance and progression (21). Most studies to date have focused on 
castration-resistant adenocarcinoma (CRPC-Adeno), and little is 
known regarding the underlying heterogeneity and tumor dynam-
ics in the case of CRPC-NE evolution.

We hypothesized that while tumors do acquire specific CRPC-
NE changes (predominantly epigenetic) during the process of lin-
eage plasticity, early resistant or aggressive prostate cancer clones 
(such as those already harboring loss of RB1 and TP53) may also 
gain clonal dominance during CRPC-NE transformation and may 
be early selected facilitators of transdifferentiation. Although 
metastatic lesions in prostate cancer may harbor evidence of sub-
clonal heterogeneity across sites potentially due to metastasis-to- 
metastasis seeding as observed in prior studies (22), we predicted 
that tumors would become less heterogeneous as patients progress 
toward CRPC-NE in later stages of the disease (as seen in rapid 
autopsy studies, ref. 18). To test this hypothesis, we studied tumor 
DNA detectable in the circulation of patients with CRPC-NE and 
CRPC-Adeno and compared their genomic and epigenomic pro-
files with patient-matched tumor biopsies.

In addition to using circulating tumor DNA (ctDNA) as a tool 
to study heterogeneity, we explored the potential utility of this 
approach as a noninvasive method for the detection of CRPC-NE 
by querying specific genomic and epigenomic changes seen in 
CRPC-NE tumors (4, 5, 11) in the circulation of biopsy-confirmed 
patients. A circulating biomarker for CRPC-NE has potential clin-
ical implications that could lead to future avoidance of invasive 
biopsy for patients (the current standard for CRPC-NE diagno-
sis). Furthermore, since there is a spectrum of histologies even 
within CRPC-NE and as patients progress from adenocarcinoma 
to CRPC-NE, with mixed adenocarcinoma-neuroendocrine mor-
phologies and hybrid tumors with overlapping features some-
times observed (3, 6), identifying molecular features could pro-
vide additional information beyond or complementary to a tumor 
biopsy. Noninvasive detection of molecular features of CRPC-NE 
could therefore lead to a more refined subclassification, and pos-
sibly detect features in patients at high risk for transformation 
even without CRPC-NE histology, paving the way for early inter-
vention treatment strategies.

Results
We obtained plasma blood samples and matched metastatic 
tumor biopsies from 62 men with metastatic prostate cancer (10 
hormone-naive metastatic prostate adenocarcinoma [mPCA], 35 
CRPC-Adeno, and 17 CRPC-NE) classified histologically using 
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Figure 1. Frequencies of somatic aberrations in advanced prostate cancer driver genes. (A) Schematic of study cohort. (B) WES segmented data for study 
cohort. WES segmented data are shown raw (inset) and ploidy- and TC-adjusted. (C) Distribution of somatic copy number loss and SNVs in CRPC-Adeno 
and CRPC-NE ctDNA and tumor tissue samples. Loss events include homozygous deletions (HomDel), heterozygous deletions (HetDel), copy number neu-
tral losses (CNNL), and events defined by loss of one allele and gain of the other allele (Del|Gain). (D) AR somatic aberration status in CRPC-Adeno, CRPC-
NE, and HNPC plasma and tumor tissue samples, ordered based on serial dates of collection. AR gain, focal gain, and SNV (L702H and T878A positional 
pileup calls) are shown together with sample ploidy and tumor class. Statistics are reported in Supplemental Table 6.
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genomics of all or most of an individual’s metastases releasing 
DNA into the circulation, a higher concordance between ctDNA 
and single-site biopsy suggests lower intrapatient tumor heteroge-
neity in CRPC-NE. However, differential contribution or release 
rates of individual metastases into the circulation cannot be fully  
excluded. For instance, inspection of the relative contributions 
into the plasma of 6 spatially distinct metastases (with 74% of 
average genomic similarity with one another) of one CRPC-NE 
patient all obtained at the same time point supported a higher con-
tribution of liver metastasis tumor alterations in cfDNA compared 
with other sites (Figure 2D).

In order to further explore intrapatient heterogeneity across 
the cohort, we leveraged allele-specific copy number analysis (28) 
of WES data. Although the vast majority of alterations were iden-
tified as shared between ctDNA and metastatic biopsies (Figure 
3A and Supplemental Figure 6A), this higher resolution analysis 
allowed for the identification of distinct subclonal differences 
(as illustrated by case examples in Figure 3B and Supplemental 
Figure 6B; blue genes demonstrate different allele-specific sta-
tus between tissue and plasma samples). These differences may 
represent private events in metastatic lesions that are therefore 
differentially represented in the circulation. Diversity could be 
restricted to a small set of lesions (Figure 3B) or to a wide range 
of structural differences, resulting in allele-specific diversity 
(Supplemental Figure 6B). Overall, these data support subclonal 
heterogeneity in metastatic lesions that may not be detected by 
single-site biopsy but could also contribute to the development of 
therapy resistance.

To explore how genomic alterations may change with time, 
we evaluated serial tumor and blood samples from individuals 
(Figure 4, Supplemental Figure 7, and Supplemental Table 7). 
In patient WCM161, for instance, we tracked metastatic biop-
sy time points during clinical progression from CRPC-Adeno to 
CRPC-NE. Interestingly, the plasma sample obtained at the time 
of CRPC-Adeno with lymph node and bone metastases present 
displayed a genomic ctDNA profile most similar (based on whole- 
exome–wide comparison) to the CRPC-NE liver metastasis 
observed on imaging and biopsied 3 months later at the time of 
progression on abiraterone (Figure 4A), supporting the presence 
of detectable resistant clones in the circulation before the develop-
ment of clinical features of CRPC-NE or liver metastases.

To delve deeper into tumor dynamics, we assessed short- 
interval serial time points of 2 patients with metastatic CRPC 
progressing after multiple lines of systemic therapy (Figure 4B). 
Patient WCM185 is a patient with a rising PSA greater than 3000 
ng/mL and bone-only metastases, a clinical picture suggestive 
of AR-driven progression. Patient WCM14 developed new vis-
ceral metastases despite a nonrising PSA of 20 ng/mL, clinical 
features commonly observed in CRPC-NE. Three weekly serial 
plasma time points of patient WCM185 were compared with WES 
data from his CRPC-Adeno tumor/plasma specimens collected 
over the prior 3 years. When corrected for ploidy and TC, dis-
tinct clones were identified in ctDNA, including those with and 
without AR mutations and TP53 deletions that changed dynami-
cally with time, suggesting multiple clones within the circulation 
with competing frequencies. This fast evolution in tumor clones 
even in the absence of therapy is consistent with clonal disequi-

in ctDNA included TP53 (43%), RB1 (38%), and FANCA (25%) 
in mPCA patients; AR (42%) and TP53 (37%) in CRPC-Adeno 
patients; and RB1 (69%) and TP53 (63%) in CRPC-NE patients. 
As observed in prior studies (25, 26), the presence of AR aberra-
tions in the ctDNA of CRPC-Adeno patients was associated with 
inferior overall survival (P = 0.009), which was maintained after 
adjustment for TC (multivariate P = 0.028, Supplemental Figure 
3B). Of note, AR focal gains could be either persistent or dynamic 
when comparing serial samples in individuals with CRPC-Adeno  
(Figure 1D), supporting evolution of somatic AR aberrations. The 
prognostic value of other specific gene aberrations in CRPC- 
Adeno was consistent with a recent study by Annala et al (27). 
The presence of TP53 and/or RB1 loss-of-function alterations 
in the ctDNA of patients with CRPC-Adeno (but not CRPC-NE) 
associated with worse overall survival (P = 0.006), including after 
accounting for TC (multivariate P = 0.006, Supplemental Figure 
3C). Somatic alterations involving BRCA1, BRCA2, or ATM were 
also prognostic across the cohort (multivariate P = 0.008, Supple-
mental Figure 3D).

A subset of alterations detected in ctDNA was not detected  
in matched tissue samples (Supplemental Figure 4). Though 
false-negative calls cannot be excluded, it is likely that intrapa-
tient tumor heterogeneity is a prominent reason for these differ-
ences, whereby the sampled metastasis did not fully capture the 
genomic status of the patient’s cancer burden. In order to quantify 
and contextualize the degree of CRPC-NE intra- and interpatient 
heterogeneity by comparing metastatic tissue and liquid biop-
sies, we first built the distributions of genome-wide heterogeneity 
levels among all metastatic tissue biopsies of both CRPC-Adeno 
and CRPC-NE using their genomic profiles (WES data). Although 
there was generally genomic concordance across metastatic tis-
sues in either subtype (Figure 2A), the CRPC-NE subtype demon-
strated significantly greater interindividual similarity both for 
somatic copy number alterations (SCNAs) and for single nucle-
otide variants (SNVs) (Figure 2A). Importantly, this finding was 
irrespective of the anatomic site of the metastatic biopsy assessed, 
as indicated by similarities stratified by site and across sites (Fig-
ure 2B). We also observed higher intrapatient genomic similarity 
when comparing ctDNA and biopsy samples within individuals 
with CRPC-NE (Figure 2C and Supplemental Figure 5) compared 
with CRPC-Adeno patients. If a plasma sample represents the 

Figure 2. Similarity of somatic aberration profiles across plasma and 
metastatic tumor tissue samples. (A) Intrapatient somatic copy number 
aberrations (SCNAs, Loss and Gain) and single nucleotide variants (SNVs) 
similarity across metastatic biopsies stratified by patient’s tumor class 
at plasma collection (Supplemental Table 2). (B) Inter- and intrapatient 
measures of SCNA similarity per site and across sites of metastasis. (C) 
Intrapatient loss and gain SCNA similarities (left) and SNV (right) similar-
ities (fraction of SNVs in plasma detected also in tissues and fraction of 
SNVs in tissues detected also in plasma) across tissue and plasma sam-
ples stratified by patient’s tumor class at plasma collection. Only samples 
of patients with estimated ctDNA greater than 10% are considered. The 
same trends are also obtained with a more restrictive filter on TC greater 
than 50%. (D) SCNA similarity among plasma and tumor tissue samples 
of patient WCM0 (left); private and shared SNVs comparison between 
WCM0 plasma and selected tumor tissue samples. Reported P values are 
computed using 2-tailed Wilcoxon Mann-Whitney U test.
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librium. On the other hand, 4 serial samples of patient WCM14, 
as well as his tumor tissue samples collected 5 years earlier when 
he had minimal metastatic disease burden, all showed consistent 
alterations including MYC gain and RB1, TP53, PTEN, and BRCA2 
losses across all time points, suggesting these were relatively early  
events. Of note, concurrent loss of RB1 and TP53, frequently 
associated with small cell carcinomas, including CRPC-NE, was 
detectable before he had developed clinical features of AR inde-
pendence or CRPC-NE (Figure 4B).

These data suggest that in some cases, CRPC may be dom-
inated by a clone that arises early whereas in other cases sub-
clones evolve and contribute to treatment resistance. By using 
ctDNA to track clones with a selective advantage with those 
that are less fit, we may better understand tumor dynamics 
during prostate cancer progression. In the setting of CRPC-
NE, intrinsic drug resistance is likely a major factor that con-
tributes to the development of clonal dominance. However, 
other biological factors, including a proliferative advantage, 

Figure 3. Allele-specific copy number quantification of matched plasma and tumor tissue samples. (A) Example of patient demonstrating almost identi-
cal genomic status between a metastasis and a plasma sample, suggesting high homogeneity among all patient’s metastases. The lymph node metas-
tasis of patient WCM198 and the plasma sample were collected at 4 days apart. Polygons include cancer genes with same allele-specific copy number; 
red dots correspond to reported gene names. (B) Example of patient with heterogeneous profiles. Patient WCM183 liver metastasis was obtained 13 days 
before the plasma sample. Blue indicates genes with different allele-specific copy number.
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the local microenvironment, and epigenetic alterations, also 
likely play a role.

Epigenetic variability contributes to the diversity of pheno-
types observed in cancer and other diseases and has been shown 
to play a key role in differentiation and phenotypic plasticity (29). 
Conserved DNA methylation patterns across metastases has also 
been observed in patients with lethal prostate cancer (20), sup-
porting relative stability of DNA methylation patterns at least in 
late-stage disease. We previously identified significant differences  
between DNA methylation patterns of CRPC-NE tissues com-
pared with CRPC-Adeno (11). In order to see if these changes are 
also captured by cfDNA, we performed whole-genome bisulfite 
sequencing of cfDNA from 5 patients with CRPC-Adeno and 6 
patients with CRPC-NE and compared these methylation profiles 
with those of their matched tumor biopsies (Supplemental Table 
8). Inference of cfDNA TC by DNA methylation using a method-
ology previously described (30) revealed no differences between 
CRPC-Adeno and CRPC-NE, and was consistent with copy num-
ber–based TC data from WES of the same samples (Figure 5A and 
Supplemental Figure 8B). Comparative analysis between plasma 
and biopsy tissue methylome data genome-wide (Figure 5C and 
Supplemental Figure 8A) demonstrated overall concordance of 
differentially methylated regions in CRPC-NE (both hypomethyl-
ated and hypermethylated sites, as shown in Supplemental Figure 
8E). This included methylation of specific neuroendocrine pros-
tate cancer classifier genes reported in Beltran et al (11) such as 
ASXL3 and SPDEF, as well as hypomethylation of overexpressed 
CRPC-NE genes, including the neuroendocrine marker INSM1 
and the plasticity gene CDH2 (Supplemental Table 12, Supple-
mental Figure 8C). Differentially methylated regions detectable 
by cfDNA were able to segregate patients with CRPC-Adeno 
or CRPC-NE (Figure 5B and Supplemental Figure 8D). We did 
not observe clustering based on the location of metastases. This 
potentially suggests that cfDNA methylation patterns in the circu-
lation are distinguishable based on their resistance subclass, more 
so than by the anatomic sites of metastases within a given patient. 
To increase our study sample size, we queried DNA methylation 
profiles from a published independent cohort of 33 metastatic 
CRPC patients at baseline and after treatment with abiraterone 
acetate (31). Interrogation of the end-of-treatment cases within 
this cohort (with at least 10% TC) (30) revealed similar methyl-
ation profile distribution as our CRPC-Adeno cases treated with 
potent AR pathway inhibitors (Figure 5D), and the combined 
set demonstrated significant methylation differences between 
CRPC-Adeno and CRPC-NE patients (P = 0.0031). Notably, the 2 
CRPC-Adeno cases that harbored differentially methylated region 
(DMR) profiles compatible with CRPC-NE were from patients 
with visceral metastases as well as other features commonly seen 
in CRPC-NE (i.e., WCM119 developed radiographic progression 
on enzalutamide in the setting of a low serum PSA and elevated 
serum neuroendocrine markers; WCM14 tumor harbored con-
current MYCN amplification and deletion of RB1, which are often 
enriched in CRPC-NE).

Overall, we found that CRPC-NE is associated with both 
genomic and epigenomic features that distinguish this resistant 
subtype from CRPC-Adeno, and these alterations are detect-
able by ctDNA. Although WES and WGBS allowed for the char-

acterization of global patterns and tumor heterogeneity in a 
patient cohort with relatively high metastatic tumor burden, a 
molecular classifier for CRPC-NE would be useful if it could be 
applied at all stages of the disease even in situations with lower  
tumor burden. This would require a more sensitive targeted 
assay to run at deeper coverage amenable to lower TC plasma 
samples. We therefore tested a targeted set of genomic and 
epigenomic lesions that could identify CRPC-NE using cfD-
NA. When combining the presence or absence of CRPC-NE– 
associated features, including genomic deletion of mutation of 
TP53, RB1, and CYLD, lack of mutation or focal gain of AR, and 
aggregated hypo- and hypermethylation of 20 differential sites 
(Supplemental Table 11) (Neuroendocrine Prostate Cancer 
feature score, see Methods), cfDNA was robust in identifying 
individuals with CRPC-NE confirmed by histologic analysis of 
their metastatic biopsy (P = 0.000444) (Figure 5E). Although 
DNA methylation in itself is a strong classifier of CRPC-NE, 
we reasoned that the combination with genomic alterations, 
likely earlier events, would enable the future identification of 
high-risk cases at earlier stages. Overall, these data nominate 
a ctDNA classifier as a potential biomarker for noninvasively 
detecting CRPC-NE.

Discussion
Recent metastatic biopsy studies have uncovered the landscape of 
genomic and epigenomic alterations enriched in metastatic CRPC 
compared with primary prostate tumors (4, 32–34), yet there is still 
much to learn regarding the sequence of molecular events that 
occurs during prostate cancer progression and therapy resistance, 
and the degree of heterogeneity that underlies different stages of 
the disease. Resistance patterns have largely fallen into 2 catego-
ries: AR-driven and non–AR driven (2). The vast majority of cas-
tration-resistant tumors are AR-driven, and this may be mediated 
through AR gene amplification, mutation, splicing, other struc-
tural variants, or other means. Specific AR alterations detected by 
blood sampling, such as AR amplification in ctDNA or AR-V7 splice 
variant expression in circulating tumor cells, have been associated  
with poor response and outcomes in patients treated with the 
AR-targeted drugs abiraterone or enzalutamide (25, 26, 35). This 
study and others (25, 34, 36, 37) support continued evolution of AR 
gene alterations during disease progression. Non–AR driven dis-
ease is less common in CRPC, and the mechanisms underlying AR 
independence are less clear. One increasingly recognized mecha-
nism is the development of lineage plasticity, by which the tumor 
cells adopt alternative lineage and oncogenic programs to grow, 
despite suppressed AR signaling (3). One extreme manifestation 
of this is the transformation from a luminal prostate adenocarci-
noma to a CRPC-NE phenotype, defined by the acquisition of his-
tologic features similar to small cell lung cancer (6) and associated 
with distinct molecular alterations (5, 11). It has been reported that 
up to 15%–20% of patients develop features of CRPC-NE in late 
stages of their disease (4, 5, 38). Similar to small cell lung cancer 
and other small cell neuroendocrine carcinomas (9), CRPC-NE is 
enriched with genomic loss of TP53 and RB1 (4, 11, 15). However, 
loss of these genes may also occur in nonneuroendocrine prostate 
cancer (33). In EGFR-mutated lung adenocarcinomas, the pres-
ence of TP53 and RB1 loss predisposes patients to later transfor-
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be considered for platinum-based chemotherapy (41, 42) or other 
non–AR targeted approaches, rather than AR-targeted drugs.

In this study, we also identified several prostate cancer alter-
ations shared between adenocarcinoma and CRPC-NE, sup-
porting a same cell of origin, though certain genomic alterations 
(such as AR, TP53, and RB1) had different prognostic value in 
patients based on their histologic subtype. We took a genome-
wide approach in order to characterize the clonal and subclonal 
heterogeneity in advanced prostate cancer. Similar to prior stud-
ies using targeted DNA or WES (23, 24), there was overall high 

mation to small cell lung cancer after EGFR inhibitor therapy (39, 
40). The timing of these events and other molecular alterations 
during CRPC-NE progression has not been established; our data 
suggests that they may also be acquired early. DNA methylation 
and transcriptome analyses have also pointed to specific defining 
features of CRPC-NE that may improve upon genomics for CRPC-
NE disease detection. In the current study, we found that both 
genomic and epigenomic features of CRPC-NE are identifiable in 
patients noninvasively through plasma ctDNA analysis. The diag-
nosis of CRPC-NE has clinical implications as these patients may 

Figure 4. Heterogeneity of somatic 
aberration profiles in multiple plasma 
and tumor tissue sample series. (A) 
Somatic-copy number aberration 
(SCNA) and single nucleotide variants 
(SNV) similarities among plasma 
and tumor tissue samples of patient 
WCM161. Samples are ordered by date 
of collection with date differences 
reported in days. SNV similarity is an 
asymmetric measure based on set 
inclusion and the complete matrix 
is shown. SCNA similarity is instead 
a symmetric measure based on the 
Jaccard coefficient and hence infor-
mation is shown without redundancy. 
(B) Genomic analysis of WCM185 and 
WMC14 multi-sample series. The panel 
reports: allele-specific copy number of 
a selection of advanced prostate cancer 
driver genes (HomDel = homozygo us 
deletion, HetDel = heterozygous dele-
tion, CNNL = copy number neutral loss, 
Del|Gain = events defined by loss of one 
allele and gain of the other allele); AR 
L702H and AR T878A SNVs (determined 
by pileup analysis); TC estimations; 
ploidy state estimation; normalized 
SNV load, with values representing the 
ratio between the sample’s SNV num-
ber and the sample type (plasma/tumor 
tissue) median SNV number. Samples 
are ordered by date of collection (inter-
vals shown).



The Journal of Clinical Investigation   R E S E A R C H  A R T I C L E

1 6 6 1jci.org   Volume 130   Number 4   April 2020

enced by therapy cross-resistance or other factors. The prognostic 
and predictive role of the identified genes in different stages of 
the disease would need to be tested and confirmed in prospective 
cohorts. Although we focus on the CRPC-NE subtype, we recog-
nize that other resistance subtypes also exist even within non–AR 
driven disease (38). Nonetheless, these new observations highlight 
the feasibility and promise of a combined genomic/epigenomic 
cfDNA approach to identify men with advanced CRPC-NE and 
provides insights into the degree of intrapatient heterogeneity that 
exists at different stages of disease progression.

Methods

Clinical cohort
Patients were prospectively enrolled on an IRB-approved protocol 
(#1305013903) with written informed consent. Patients were eligible 
for this study if they had metastatic prostate cancer with at least one 
metastatic tumor biopsy and matched plasma sample (EDTA or Streck 
Cell-Free DNA BCT) and at least 2–50 ng total cfDNA present in 1 mL 
plasma. WES of metastatic biopsy was previously reported for 53 of 63 
patients (11, 48). Peripheral blood samples were collected within 30 
days of treatment initiation (in ~85% of cases). The choice of systemic 
therapies before plasma sample collection was at the discretion of the 
treating physician. Treatments were administered continuously until 
evidence of disease progression or unacceptable toxicity, or, in the case 
of chemotherapy according to regime-specific treatment protocols, for 
a planned number of cycles. We included patients treated for at least 1 
month, defined as the duration of time from initiation to discontinua-
tion of therapy. Clinical data were obtained from the electronic medical 
record. Pathology review was performed and reported as adenocarci-
noma or CRPC-NE using published morphologic criteria (6).

Plasma processing and DNA extraction and quantification
Whole blood was centrifuged at 1600g for 10 minutes at 4°C within  
3 hours after blood collection. The plasma layer was transferred to 
2-mL microcentrifuge tubes and centrifuged at 16,000g for 10 min-
utes at 4°C to ensure removal of any cellular debris. The plasma was 
then collected and stored at –80°C. cfDNA was extracted from plasma  
using the NeoGeneStar Cell-Free DNA Purification kit per manu-
facturer’s instructions. Briefly, for 2-mL plasma samples, cfDNA 
was isolated via proteolytic digestion with 1 μg RNA carrier at 55°C 
for 30 minutes. cfDNA capture on the superparamagnetic particles 
was accomplished via addition of 3 volumes (6 mL) LYS buffer, 0.8 
mL isopropanol, and 30 μL NGS Beads (NeoGeneStar), with a 30- 
minute room temperature incubation. Samples were washed twice 
with NeoGeneStar Wash Buffer (diluted with an equal volume of 
absolute ethanol) and twice with 75% ethanol, air dried, and eluted 
in 30 μL 10 mM Tris, 0.1 mM EDTA (pH 8.5). Germline DNA was 
extracted from extracellular blood components (PBMCs) using the 
Promega Maxwell 16 MDx kit per the manufacturer’s instructions. 
Blood aliquots were vortexed briefly and mixed with LYS buffer and 
proteinase K solution, vortexed briefly again, and incubated at 56°C 
for 20 minutes. Lysates were then transferred to the first well of a 
multiwall cartridge prefilled with reagents, 65 μL elution buffer was 
loaded, and the automated system successfully isolated high-concen-
tration genomic DNA. cfDNA was quantified with Qubit and quality 
was also assessed using Agilent’s High Sensitivity DNA kit.

concordance of alterations shared between cfDNA and matched 
tumor biopsies within individual patients. Allele-specific analy-
sis allowed for a more refined estimation of subclonal diversity. 
In general, comparison across patients, metastases, and between 
plasma and biopsies pointed to less heterogeneity in CRPC-NE 
compared with CRPC-Adeno. This observation, as well as data 
from published rapid autopsy studies (18, 20), points to higher 
intraindividual homogeneity across metastases in later stages 
of the disease. A proposed model of prostate cancer progression 
toward CRPC-NE, building upon published work in the field, is 
depicted in Figure 6. Although prior studies have supported a 
monoclonal origin of metastatic prostate cancer (43, 44) with 
metastatic lesions traceable back to a founding clone within the 
primary tumor (18), tumors do subsequently acquire alterations 
with disease progression and treatment resistance. Polyclonal 
spread (22, 45) in later stages further leads to intrapatient het-
erogeneity, particularly of subclonal alterations (as we detected 
here through allele-specific copy number analysis of ctDNA). 
Evolution of these subclones may contribute to cancer therapy 
resistance (46, 47). During the transition toward CRPC-NE and 
AR independence, our data support likely selection of a dom-
inant tumor clone (potentially harboring combined loss of RB1 
and TP53) that persists and dominates due to selective pres-
sures of therapy, resulting in more stringent bottlenecks in the 
subclonal makeup of the tumor. Therefore, although collective 
clinical and preclinical data support CRPC-NE arising through 
transdifferentiation from a prostate adenocarcinoma precur-
sor, our data also suggest that there may be dominance or clonal 
selection of a resistant clone during this process, and that these 
are not 2 mutually exclusive models of clonal evolution. Import-
ant future studies should address if earlier disease states such as 
select hormone-naive, high-risk localized or metastatic prostate 
cancers harbor CRPC-NE alterations that manifest later through 
clonal selection.

We also found that DNA methylation profiles are distinct in 
CRPC-NE, which is detectable both in tissues and in cfDNA. DNA 
methylation patterns have also been reported to be consistent 
across sites of metastases in men with lethal CRPC-Adeno (19, 
20), supporting the use of methylation as a relatively stable bio-
marker for detecting specific resistance patterns. How and when 
these patterns shift during the development of CRPC-NE is not 
known, nor is the reversibility of any of these epigenetic changes.  
Serial dynamic monitoring of both genomic and epigenomic 
CRPC-NE features is now required to better understand when 
CRPC-NE alterations occur and how frequently in the context of 
specific therapies. Methylation profiles point to differential epi-
genetic regulation of key genes involved in CRPC-NE and may 
also point to new therapeutic avenues.

A limitation of this study is the relatively small sample size due 
to stringent patient selection with the requirement for sufficient 
cfDNA (and relatively high metastatic tumor burden) to perform 
WES/WGBS, as well as the need for matched metastatic biopsies. 
A targeted assay of select genes would be required to more sensi-
tively evaluate for CRPC-NE features at disease states with lower 
cfDNA TC. Due to this patient selection as well as enrichment of 
this study with patients with CRPC-NE, treatments were hetero-
geneous across the cohort and outcomes may have been influ-
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WES processing pipeline
Data preprocessing. Tumor tissue BAM files were generated through 
the WCM Englander Institute of Precision Medicine pipeline (49) 
and preprocessed at the University of Trento. The FastQC tool (www. 
bioinformatics.babraham.ac.uk/projects/fastqc) was run on the raw 
reads of cfDNA samples and matched germline DNA samples to assess 
their quality. Quality metrics include average base quality, sequence 
duplication rate, and the k-mer enrichment along the length of the 
reads. These measures were used to assess whether the sequencing 
and the de-multiplexing of the samples were performed correctly. After 
initial quality control, adapter sequences were trimmed using Trimmo-
matic (50). Short reads were then aligned to GRC37/hg19 reference 
using Burrows Wheeler alignment (51). Picard (http://broadinstitute.
github.io/picard/) and SAMtools (52) were used to generate single- 
sorted BAM files for each patient sample. BAM files were then realigned 
(to correct for possible misalignments due to indels) and recalibrated 
(to adjust for over- and underestimated base quality scores in the data) 
using GATK standard pipelines (53). Finally, SAMtools were used to 
adjust BAM MD tags (strings for mismatch positions). The alignment 
quality of the BAM files was obtained by several metrics related to the 
average coverage and capture rate to calculate how many aligned reads 
fall within a capture region of the Nimblegen SeqCap EZ Exome V3 
kit. For any given sample, the capture rate was given by the percent-
age of mapped reads that overlap any capture region in the kit and the 
total number of mapped reads. Average coverage was computed from 
the captured regions of the Nimblegen kit. Metrics from 62 processed 
patients’ data showed that average coverages for plasma DNA and  
germline DNA were ×361 and ×109, respectively; average capture 
rates for plasma DNA and germline DNA were 81% and 77%, respec-
tively (Supplemental Table 3). All subsequent steps were applied to all  
samples, tissues, and cfDNA, unless differently specified.

Identity check for individual samples. In order to verify the cor-
rect matches for individual samples, we applied a solid genotype 
distance-based test, SPIA (54), exploiting the related R package SPI-
Assay. Genotypes of 334 selected SNPs were computed using ASEQ 
(55). The 334 SNPs were previously selected based on the minor allele  
frequency (MAF) and uniform distribution across the genome.

Optimized de-duplication procedure for WES plasma data from  
single-end protocol and with deep coverage. WES data generated from 
both germline and cfDNA study samples showed high fractions of 
read duplicates in the sample cohort (mean 59% and 79%, respective-
ly). Anticorrelation between duplication percentage and input DNA 
was observed (–0.83 Pearson coefficient, P = 9 × 10–4). Duplication lev-
els in off-target regions were comparable to the on-target region. Pro-
vided that without using specific technologies (e.g., molecular barcod-
ing) it is not possible to measure and quantify the exact proportions 
of PCR and natural duplication (due to high coverage), we opted for 
an ad hoc computational solution that limits the impact of nonnatural 
read duplicates in downstream copy number analyses. First, we mea-
sured the empirical distribution of read duplicates at different cover-
age intervals from all samples of our cohort. Then, for each coverage 
interval, we collected the 50th, 75th, and 90th percentiles and used 
these percentiles across all coverage intervals to create 3 different 
duplication thresholds (Supplemental Figure 9C). Finally, we applied 
these thresholds when the coverage statistics at a single base resolu-
tion were computed for downstream analysis. Specifically, when cov-
erage statistics are computed for a position x in the genome, the raw 

Whole-exome sequencing of ctDNA and matched PBMC DNA
Based on the expected circulating DNA fragment size distribution and 
the range of input DNA identified from each plasma sample, we opted  
for the Roche SeqCap EZ Library SR for library preparation. Germline 
genomic DNA was sheared using the Covaris E220 Evolution instru-
ment. For cfDNA, input for library prep ranged from 2.8–50 ng and 
for germline DNA, input ranged from 50–100 ng. The libraries of 
both germline DNA and cfDNA were prepared using the KAPA HTP 
Library Preparation Protocol (Kapa Biosystems) containing end repair, 
A-base addition, and ligation of sequence adaptors. The sample librar-
ies were normalized and pooled following PCR amplification. The 
pooled libraries were then hybridized with whole-exome SeqCap EZ 
probe pool. Finally, the pooled, indexed, and amplified capture sample 
libraries were sequenced using the Illumina HiSeq4000 sequencer at 
100 cycles. All plasma and matched normal samples were run with 
single-end protocol unless differently specified. Illumina bcl2fastq2 
Conversion Software was used to demultiplex samples into individual 
samples and convert per-cycle binary base call (BCL) files into FASTQ 
files for downstream data analysis. WES sample processing and the 
data generation procedure of tissue biopsies sequenced in this study 
follow the same protocol as previously reported (11); all tissues were 
run with paired-end protocol.

Titration experiment to determine optimal ctDNA input for WES
Before profiling the whole cfDNA study cohort, we studied the 
effect of input amount for cfDNA on the sequencing-based genomic  
profiles. One patient with known genotype features (WCM163) was 
selected for this experiment. Specifically, the cfDNA was diluted 
into 5 concentrations using 5 ng, 10 ng, 20 ng, 50 ng, and 100 ng. 
For matched germline DNA, 100 ng was used for all comparisons. 
All downstream library preparation and sequencing were conduct-
ed as stated above. Somatic copy number calls of approximately 
1000 cancer-associated genes were compared (Supplemental Fig-
ure 9, A and B).

Figure 5. Differential methylation signal is detected in the circulation of 
patients. (A) PAMES purity estimation of plasma WGBS plasma and PBMC 
samples. Top 10 most informative hypermethylated CpG Island were used. 
(B) Ward’s hierarchical clustering of 25 samples using 1-Pearson’s correla-
tion coefficient as distance measure. The annotation tracks include infor-
mation on sample tumor purity and on the site of the relative sequenced 
tissue biopsy for all tissue samples and on the presence or absence of 
lymph node, bone, or visceral metastases in the corresponding patient 
for the plasma samples. (C) Evaluation of DMR concordance in matched 
plasma and tissue samples. Two distinct DMR sets were nominated apply-
ing the Rocker-meth algorithm on tissue samples, and single-sample Z 
scores were computed for each DMR. Comparison among values detected 
in ctDNA and tissue biopsy are reported for 3 representative patients: 
WCM90, CRPC-Adeno; WCM0, CRPC-NE; and WCM119, CRPC-Adeno with 
radiographic progression on enzalutamide, PSA 3.5, and elevated serum 
NSE. Color density is proportional to point density to the power of 1/4 to 
improve visualization. First, order linear regression R2 is reported. (D) Com-
parison of average absolute Z score based on CRPC-NE|CRPC-Adeno DMR 
in plasma samples from this cohort and from a set of patients treated with 
abiraterone acetate (reported in ref. 31). To maximize the compatibility of 
clinical history and disease stage, only end-of-treatment samples with an 
estimated TC greater than 10% were included. Significance was assessed 
using 2-tailed unpaired Wilcoxon Mann-Whitney U test without continuity 
correction. (E) NEPC feature scores are plotted as assessed in plasma data 
of CRPC-Adeno and CRPC-NE patients.
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ability to detect somatic aberrations in low TC samples. Specifically, a 
new method for the calculation of CLONET β values (i.e., the percent-
age of reads from cells harboring 2 alleles) was implemented and used 
in this work. For each segment S, previously identified, we computed 
the corresponding β value as follows: β = max {i | W (d > Di)} + (max {i 
| W (d < Di)} − min {i | W (d > Di)]) × P, where P = (median (d) − min 
(d) / (max (d) − min (d)) and W (d > Di) represents the Mann Whitney 
statistics (using significance cutoff at 1%) comparing the mirrored AF 
distribution d distribution of all informative SNPs in segment S (i.e., 
SNPs with heterozygous genotype in germline patient’s sample) and 
the reference distribution Di simulating a monoallelic deletion with β 
= i (where i ∈ [0,1]) and AF noise estimated from the germline patient’s 
samples at SNP positions. We applied the extended CLONET pipe-
line to estimate TC and ploidy of all cfDNA and tumor tissue samples. 
CLONET analysis estimated TC for 55 of 69 plasma samples (80% 
of the total): 30 samples with TC ≥20% (43% of the total), 43 sam-
ples with TC ≥10% (62% of the total) and 12 samples with TC <10%. 
Manual inspection of the somatic copy number profiles of the remain-
ing 15 samples suggest low or absent tumor signal. Ploidy estimates 
were available for 68 samples with 12 samples having a ploidy ≥2.5. 
For tumor tissue samples, CLONET analysis estimated TC for 90 of 
98 samples: 85 samples with TC ≥20% (87% of the total), 87 sam-
ples with TC ≥10% and 1 sample with TC <10%. Ploidy estimates 
were available for 96 samples, with 34 samples having a ploidy ≥2.5.  
CLONET allele-specific somatic copy number profiles were computed 
for all plasma and tissue samples at gene-level resolution, using a gene 
model consisting of 19,027 genes (Supplemental Table 9).

Detection of somatic single nucleotide variants
To identify and characterize somatic single-nucleotide variants (SNVs) 
in WES captured regions, we run MuTect (57) on BAM files were read 
duplicates were removed using Picard (http://broadinstitute.github.

coverage C is first computed considering all reads and is then normal-
ized considering the duplication threshold T specific for C. Coverage 
statistics were computed for all 3 thresholds (i.e., 50th, 75th, and 90th 
percentiles). Coverage distributions obtained applying the different 
duplication thresholds are shown in Supplemental Figure 9D.

WES segmentation. Segmentation of patient samples was per-
formed using the recent tool FACETS (56), a computational method 
that extends the standard circular binary segmentation (CBS) algo-
rithm to a joint segmentation that combines read counts and SNP 
allelic fraction data. To deal with plasma samples, the preprocessing 
module of FACETS was extended, including our de-duplication pro-
cedure, and segmentation was performed considering separately 
all 3 thresholds (50th, 75th, and 90th percentiles) and complete de- 
duplication. Comparison of segmentation results on a large cancer 
gene list (N = 920) showed that although the segmentation signal 
from de-duplicated samples strongly correlates with the raw segmen-
tation signal (where no de-duplication was applied) in all cases (Sup-
plemental Figure 9E), the stronger the de-duplication level applied, 
the higher the divergence of the signal from the diagonal, indicating 
a loss of detection power. Based on this observation we decided to use 
75th percentile threshold for cfDNA sample WES segmentation and 
related somatic copy number downstream analyses (Supplemental 
Table 9). Study cohort WES-segmented data were adjusted for tumor 
ploidy and TC, revealing an overall plasma signal similar to that for 
tissue-based data (Figure 1B), with peaks distinctive of mono- and 
biallelic deletions and gains of 1, 2, 3 or more gene copies.

Tumor ploidy and tumor content assessment. To assess tumor ploidy  
and TC (estimation of cfDNA tumor fraction, ctDNA) from plasma 
DNA samples, we used an extended version of CLONET (28), a tool 
we developed to deal with highly heterogeneous tissue samples. It now 
embeds a refined mathematical approach for local TC estimation (25) 
to further increase the performance in computation time and in the 

Figure 6. Proposed model of prostate cancer progression toward CRPC-NE. Metastatic prostate cancer lesions harbor shared alterations that are often 
traceable back to a primary tumor clone, supporting a monoclonal origin of metastatic prostate cancer. Tumors acquire alterations with disease progres-
sion and treatment resistance, and these alterations may be subclonal. Polyclonal spread in later stages further leads to intrapatient heterogeneity. 
During the transition toward CRPC-NE, there is likely selection of a dominant clone that persists. Intraindividual tumor heterogeneity and tumor homoge-
neity are captured through ctDNA analyses. DNA methylation profiles dramatically shift with CRPC-NE.
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Where  is the Euclidian distance of p = (cnA, cnB) and a point in 
C = {(a,b) | a,b ϵ M}, with M equal to the least integer greater than or equal 
to the maximum raw cnA or cnB estimated across all P segments. The 
Clonality Divergence Index of P is the mean of all DS computed for all 
segments S of P. A sample with all and only segments with perfect inte-
ger (cnA, cnB) would have a Clonality Divergence Index equal to zero.

Whole-genome bisulfite sequencing (WGBS) data generation and 
processing
cfDNA (5 ng) and germline DNA (100 ng) were sonicated using a 
Covaris S220 to approximately 180–220 bp (Covaris) and bisulfite con-
verted using the EZ DNA Methylation-Gold Kit (catalog D5005, Zymo 
Research Corporation). The single-stranded DNA obtained was pro-
cessed for library construction using the Accel-NGS@Methyl-seq DNA 
Library kit (catalog 36024) as per manufacturer instructions (Swift Bio-
Sciences). Briefly, truncated adapter sequences were incorporated to 
the single-stranded DNA in a template-independent reaction through 
sequential steps using the Adaptase module (Swift BioSciences). DNA 
was then enriched using PCR with primers compatible with Illumi-
na sequencing, 9 cycles for cfDNA, and 6 cycles for genomic DNA. 
The libraries were clustered at 12 pM on a pair-end read flow cell and 
sequenced for 125 cycles on Illumina HiSeq 2500 or 4000.

Primary processing of sequencing images was done using Illu-
mina’s Real Time Analysis software (RTA). CASAVA 1.8.2 software 
was then used to demultiplex samples and generate raw reads and 
respective quality scores. The WGBS raw data was quality filtered and 
adapter trimmed using Flexbar with the following parameters: min-
imal overlap of adaptor and read sequence, 6; minimal read length 
after adaptor removal/trimming, 21; and allowed mismatches and 
gaps per 10bp overlap, 2. Reads were aligned to unmasked human 
genome build GRCh37/hg19 and methylation calls were generat-
ed with Bismark (59) as described in the data analysis section of the  
Weill Cornell Epigenomics Core in-house bisulfite sequencing anal-
ysis pipeline (60). The average conversion rate in WGBS samples is 
99.6%, the average CpG coverage is ×14.3, and the average mapping 
efficiency is 76% (Supplemental Table 8). For plasma-related analysis, 
only CpG sites covered by at least 10 reads and read in at least 10% of 
the study samples were considered for downstream analysis. For each 
sample, the percentage of methylation per site (β value) was computed. 
ctDNA fraction was estimated by purity assessment from clonal meth-
ylation sites (PAMES), using 10 hypermethylated prostate-specific 
CpG islands (30). CpG wise differential methylation analysis (CRPC-
NE versus CRPC-Adeno) was performed by AUC analysis. Hyper- and 
hypomethylated sites were identified as those sites demonstrating 
AUC = 1 and AUC = 0, respectively. Genomic annotation of methyl-
ation sites was performed by the tool annotatePeaks included in the 
HOMER package (Supplemental Table 11) (61).

Concordance of differential methylation in matched plasma and  
tissue samples
DMRs were nominated using an in-house algorithm. The method is 
divided into 3 main modules. Given methylation values for each CpG 
site in a control and a test set of samples, the following procedure was 
applied: (a) for each detected site, the area under the receiver oper-
ator characteristics (AUROC) was computed, evaluating the segrega-
tion between groups based solely on target CpG signal; (b) sequential 
AUROC values were divided into segments with a common methyla-

io/picard). Putative somatic SNVs were nominated as genomic posi-
tions called by MuTect and having in the plasma/tumor sample a 
depth of coverage at least ×30, an allelic fraction ≥0.05 and at least 
2 reads supporting the alternative base, and having an allelic fraction 
<0.01 in the matched normal sample. Oncotator (58) was finally used 
to annotate retained SNVs with variant- and gene-centric information 
relevant to cancer. A complete annotated list of called missense SNVs 
is available in Supplemental Table 10.

Similarity measure based on copy number profiles
For each patient, we compared the somatic copy number aberration 
(SCNA) profiles of tumor tissues and cfDNA samples (Supplemental 
Table 9). Comparison was performed using an ad hoc notion of sim-
ilarity, which exploits TC corrected SCNA profiles (Figure 1B) and 
measures the percentage of concordant aberration signal. Specifically, 
given a sample P and a sample T, the algorithm computes the follow-
ing steps: (a) SCNA profile signal of sample P is centered around the P 
mean signal; (b) SCNA profile signal of sample T is centered around 
the T mean signal; (c) SCNA signals of P and T samples are synchro-
nized around their median difference to avoid the presence of sys-
tematic signal shifts due to technical or processing bias; specifically, 
SCNAs signal P is normalized as P = P – median (P – T); (d) Sloss, a mea-
sure of loss similarity, is obtained by measuring the fraction of genes 
having signal below the detection threshold –THR in both P and T pro-
files over the total number of genes having a signal below the detection 
threshold –THR in at least 1 of the 2 samples; (e) Sgain, a measure of gain 
similarity, is obtained by measuring the fraction of genes having signal 
above the detection threshold THR in both P and T profiles over the 
total number of genes having a signal above the detection threshold 
THR in at least 1 of the 2 samples; and (f) a global similarity measure is 
obtained as S = (Sloss + Sgain) / 2.

A model with 19,027 genes was considered along with a detection 
threshold THR equal to 0.3.

Similarity measure based on SNV profiles
For each patient and each plasma and tumor tissue sample’s pair pri-
vate and shared somatic SNVs were then compiled. For each patient, an 
inclusion matrix considering all plasma-tissue and tissue-tissue pairs 
was computed, including nonsynonymous SNVs only. Specifically, for 
each pair (P1, P2) of samples the inclusion matrix reports both the frac-
tion of mutations detected in P1 that are also detected in P2 and the 
fraction of mutations detected in P2 that are also detected in P1.

Estimation of clonality divergence
Nondiscretized estimations of allele-specific copy number anal-
ysis (Supplemental Table 9) were used to calculate the Clonality 
Divergence Index. For each sample and each genomic segment, the 
Euclidean difference between the estimated raw allele-specific copy 
number and the closest expected clonal allele-specific copy number 
was assessed. The average of the minimum distances is the Clonality 
Divergence Index. Formally, considering a sample P and segment S 
and its estimated allele-specific copy number coordinates (cnA, cnB), 
in a Euclidean space with cnA and cnB real numbers, we compute the 
value: 

 (Equation 1)
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ously defined set of CRPC-NE|CRPC-Adeno DMRs, we computed 
single-sample Z scores for end-of-treatment time points (using nor-
mal tissue samples from TCGA-PRAD as reference) (65). In order to 
obtain a comparable set of samples, only samples with TC (30) above 
or equal to 10% were retained in the analysis using a threshold similar 
to prior WES ctDNA studies (24).

Neuroendocrine Prostate Cancer (NEPC) score
The NEPC score includes genomic- and methylation-based features. 
Genomic features include RB1 deletion or mutation, TP53 deletion or 
mutation, AR focal gain or mutation, and CYLD deletion. TP53, RB1, 
and CYLD genomic-based features for the NEPC feature score are 
set to 1 for a specific sample if the aberration is present; AR genomic 
feature is instead set to 1 for a specific sample in case of absence of 
aberrations. Methylation-based signal includes 2 components based 
on top 20 hypo- and 20 hyper-methylated sites based on previous 
tissue analysis (Supplemental Table 11). Briefly, we ranked differen-
tially methylated sites (Supplemental Table 12, ref. 11) by FDR and 
by β difference (CRPC-NE vs CRPC-Adeno) and retained only those 
sites found in WGBS data. To avoid redundancy, we also required that 
each informative CpG site was not within 10 kilobases from all other 
selected sites. Next, to have comparable methylation levels from tis-
sue and plasma samples, a purity correction of M values was applied 
using PAMES. Then, for each top hyper- and hypomethylated site, 
we identified the threshold that best discriminated between CRPC- 
Adeno and CRPC-NE tissue samples by receiver operating charac-
teristic (ROC) curve analysis. Last, plasma methylation data were 
dichotomized as follows: for each plasma sample, methylation feature 
score is equal to 1 if the majority of sites show methylation level above 
(hyper) or below (hypo) the site-specific, tissue-based threshold. The 
NEPC feature score was computed for a specific sample by counting 
the number of features set to 1 and normalizing by the number of 
available features for that sample. Features with no call were set to 
NA and were not considered in the score computation.

Statistics
Association of plasma genomics and binary clinical variables was 
performed using 2-tailed Wilcoxon Mann-Whitney U test with signifi-
cance level set at 5%. Association of plasma genomics and continuous 
clinical variables was performed using Pearson correlation statistics 
with significance level set at 5%. Statistical comparison of genomic  
variables across a sample’s classes was performed using 2-tailed  
Wilcoxon Mann-Whitney U test with significance level set at 5%. Uni-
variate overall survival and progression-free survival analyses were 
performed using the Kaplan-Meier estimator (log-rank test). Multi-
variate overall and progression-free survival analyses were performed 
using a proportional hazard model with stepwise model selection by 
Akaike information criterion using forward and backward directions.

Study approval
This study was approved by the Weill Cornell Medicine IRB  (nos. 
1305013903, 1210013164). Written informed consent was obtained 
from participants before inclusion in the study.

Author contributions
HB, AR, FD initiated and designed the study. HB, VC, JMM, DMN, 
and STT enrolled patients and contributed samples and clinical 

tion status (hypermethylated, neutral, or hypomethylated) following a 
3-state heterogeneous shifting level model, adapted from Magi et al. 
(62); (c) significance of differential methylation between control and 
test group was assessed for each DMR with Wilcoxon Mann-Whitney 
U test on average β values, and P values are corrected for multiple 
hypothesis testing with standard Benjamini-Hochberg procedure. We 
named this algorithm Rocker-Meth (Receiver operating characteristic 
curve analyzer of DNA methylation data; available at https://github.
com/cgplab/ROCkerMeth).

Starting from published enhanced reduced representation bisul-
fite sequencing (eRRBS) of solid tumor biopsy samples and healthy 
prostate tissues (11, 63), we performed 2 orthogonal differential meth-
ylation analyses using default parameter values with the exception of 
na_threshold set to 0.3. First, we identified DMRs between primary 
prostate cancer tissues (test, n = 7) and normal prostatic tissue (control, 
n = 7) (PCa|NT). Second, we compared CRPC-NE (test, n = 10) with 
CRPC-Adeno (control, n = 18), obtaining a set of DMRs that reflects 
methylation changes upon transdifferentiation (CRPC-NE|CRPC- 
Adeno). FDR of 0.01, an absolute average β difference of 20 between 
test and control, and the presence of at least 6 detected CpG sites 
inside the region were applied as filters. Shared DMRs were isolated 
using Bedtools multiinter clustering (64) and discarded. To capture 
single-sample alterations of DNA methylation, Z scores for each DMR 
in each pair of tissue plasma–matched samples were computed using 
the following equation:
 

 (Equation 2)

Where i and j indicate the index over tumor and normal samples, z is 
the DMR index,  and  are the averaged (i.e., median) beta values 
of CpG sites within a DMR z for tumor and normal samples, respec-
tively, and medianj and madj are the median and the maximum abso-
lute deviation of the  across normal samples j. Normal prostatic 
tissue was used as reference. To control for potential sources of noise 
due to nontumoral cfDNA, we also profiled the methylome of PBMCs 
of all 11 patients using WGBS sequencing. For both DMR sets we eval-
uated the Z scores detected across PBMC samples and excluded the 
DMRs that consistently deviated (abs (Z score) > 5) from the reference 
in more than 80% (at least 9 of 11) of PBMC samples. A total of 7606 
and 3843 DMRs were obtained for PCa|NT and CRPC-NE|CRPC- 
Adeno, respectively (Supplemental Table 10). To maximize the compat-
ibility of different assays, only CpG sites detected in at least more than 
half of plasma samples (ctDNA and PBMC) were retained in single- 
sample Z score computation, excluding sites that were detected only 
in eRRBS tissue samples. Furthermore, all DMRs containing less than 
6 detected CpG sites in WGBS samples or with an undetectable sig-
nal in 1 or more WGBS plasma samples were excluded from pairwise 
tissue-plasma analysis and DMR score computation to ensure con-
sistency between samples.

Integration of plasma methylomes from an independent CRPC 
cohort. To evaluate the robustness of our findings, we analyzed a pub-
lished cohort of cfDNA methylomes of patients with CRPC treated 
with abiraterone and prednisone (31) generated with the HM450 
array, including only end-of-treatment time point data to maximize 
the similarity in disease state and clinical history. Using the previ-
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and innovation programme (grant agreement no. 648670). 
All BAM files generated for this study and associated sample 
information are described in Supplemental Tables 3 and 6, and 
are accessible through dbGaP (phs001752.v1.p1) at https://
www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_
id=phs001752.v1.p1.
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