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Introduction
Vaccination has made an enormous contribution to improving  
human and animal health over the last two centuries (1–6). Despite 
progress in developing vaccines against a large number of infections, 
vaccine development against global chronic infectious disease threats 
such as tuberculosis (TB), HIV infection, and malaria has remained a 
challenge, and achievements to date have been modest.

TB kills more than 1.3 million people a year (7). The current 
vaccine, bacille Calmette-Guérin (BCG), is an attenuated strain of 
Mycobacterium bovis and has been in use since the 1920s; approx-
imately 100 million infants receive BCG annually. BCG is efficient 
in children, with greater than 50% protection against lung disease 
and more than 80% protection against disseminated forms of TB (8). 
Importantly, however, children do not spread TB, while adolescents 

and adults do (9). Unfortunately, BCG has shown variable and mostly 
poor protection against TB in adolescents and adults. Therefore, new 
vaccines that target both children and adult populations are needed.

Multiple TB vaccine candidates have entered clinical trials. 
In 2018, two major clinical advances were reported. The novel 
subunit vaccine M72/AS01E was shown to prevent progression to 
pulmonary TB disease in adults with prior immunological sensiti-
zation to Mycobacterium tuberculosis (Mtb), measured by Quanti-
FERON-TB (QFT; QIAGEN), with an efficacy of 54% (95% CI, 
3%–78%) (10). In a second trial, BCG revaccination in adolescence 
was shown to protect QFT-negative adolescents against sustained 
QFT conversion, indicative of established Mtb infection, with 
an efficacy of 45% (95% CI, 6%–68%) (5). These results require 
confirmation but provide early proof of principle that adolescent/
adult TB vaccination strategies may be feasible. In the preclinical 
space, a CMV-vectored vaccine has shown the best protection 
reported to date against Mtb challenge in nonhuman primates and 
is on track to enter clinical trials (11).

Despite this progress, new TB vaccine discovery and develop-
ment remain impeded by our limited understanding of host re-
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sion also affect expression of surface molecules that mediate hom-
ing to lymphoid and peripheral tissues, where pathogens are most 
likely to be encountered. Effector T cells migrate to the infected 
tissues to control infection, then contract, leaving a smaller pool of 
long-lived memory cells, mostly residing in the bone marrow (BM) 
or lymphoid tissues. If they encounter the same pathogen again, 
antigen-specific memory cells react faster and more efficiently 
than during primary infection. Less differentiated T cells, such 
as memory stem cells (16) and central memory cells (17), retain 
high proliferative capacity, associated with long-term anamnestic 
responses after vaccination (18). More differentiated T cells, such 
as circulating effector (17) and tissue-resident memory T cells (19), 
exhibit strong effector functions that are important for immediate 
protection against pathogens (20) (Figure 1). A balanced induction 
of T cells endowed with long-term memory as well as the capacity 
to rapidly migrate to the lung parenchyma is important for T cell–
mediated protection against TB (21).

Antigen-presenting cells, amplification of the response through 
costimulatory molecules, and T cell receptor signal strength play 
key roles in shaping T and B cell differentiation and functional 
polarization during priming (22, 23). Regardless, T cells maintain 
both functional and differentiation plasticity, being able to switch 
expression of lineage-regulating transcription factors (24) as well 
as to dedifferentiate (25). Vaccine formulation and delivery shape 
the distinctive features of adaptive immune responses, and anti-
gen selection determines the specificity and breadth of vaccine- 
induced immune responses. Highly expressed immunodominant 
antigens are commonly included in vaccines, but antigen selec-
tion has not been straightforward for TB vaccines. Mtb contains 
approximately 4000 genes (26), many of which are expressed 
differentially during infection (27). T cell epitopes are conserved 
in Mtb (28), suggesting an evolutionary advantage of T cell recog-

sponses required to control Mtb, as well as technical gaps such as 
animal models that are predictive of human immune responses 
(3). Whereas traditional approaches to TB vaccine development 
have focused on optimal engagement of the adaptive immune 
system, mainly due to the memory capacity of T cells, according 
to an emerging paradigm the innate immune system has memory- 
like capacity (termed trained immunity) (2, 6) and plays a role in 
the “nonspecific” beneficial effects of vaccines. In this Review, we 
explore the rationale for targeting the innate immune mechanisms 
for improving vaccines against TB.

Classical design of vaccines: targeting adaptive 
immunity
Classical design of vaccines is based on priming of antigen- 
specific naive B and T cells to generate memory B and T cells, 
which are able to initiate a rapid and robust immune response 
upon encounter with the same pathogen, thus achieving long- 
lasting protection from initial infection or disease (Figure 1).

B and T cell specificity is dependent on somatic rearrangement 
of genes coding for receptors that recognize specific epitopes and 
can distinguish self and non-self (12). When naive lymphocytes 
are presented with their cognate antigen in the appropriate cyto-
kine milieu, they become activated and undergo clonal expansion, 
thereby exponentially increasing the magnitude of antigen-specific  
cells over several days. During priming, B and T cell transcriptional  
profiles are epigenetically modulated and drive differentiation 
into effector and memory cells (13) (Figure 1). Activated B cells 
undergo immunoglobulin class switching and somatic hyper-
mutation to produce high-affinity Abs with diverse effector func-
tions. Activated T cells rapidly produce effector molecules, such as 
cytokines and cytotoxic mediators (14), and experience metabolic 
reprogramming (15). Activation-induced changes in gene expres-

Figure 1. Sequential activation of innate and adaptive immunity during infection, and activation of a long-term memory response through T and B lym-
phocytes. The life cycle of memory T cells is depicted in corresponding phases of pathogen infection, clearance, and memory response. In secondary lymphoid 
organs (e.g., lymph node [LN]), APCs process and present microbial antigen to naive T (TN) cells and convert them to effector T (Teff) cells. These Teff cells 
then migrate to infected peripheral tissues (e.g., lung) to control infection. After pathogen clearance, Teff cells substantially contract, but a small fraction of 
antigen-experienced Teff cells convert to: effector memory T (Mem Teff) cells, circulating between lymphoid organs and peripheral tissues; tissue-resident 
memory T (Mem TTR) cells, residing in peripheral tissues; and central memory T (Mem TC) cells, which are long-lived and reside in secondary lymphoid organs.
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neutrophils, macrophages, monocytes, and DCs. In the tradi-
tional setting, adjuvants initiate priming and expansion of naive 
T cell responses through DC activation that leads to DC matura-
tion and migration to the draining lymph node, where they prime 
naive B and T cells. Depending on the pattern recognition recep-
tor (PRR) activated on DCs, different costimulatory and cytokine 
milieus are induced, thus affecting differentiation and polariza-
tion of adaptive immunity (41, 42). However, by broadly activat-
ing diverse innate immune cell types, adjuvants can also alter the 
activation state and epigenetic reprogramming of innate immune 
cells, including those potentially exposed to Mtb.

In addition to adjuvants, the choice of vaccine delivery (such 
as route and schedule of immunizations) can influence tissue 
localization and longevity of vaccine-induced immune responses  
(43, 44). This appears particularly important in TB, where T 
cells homing to the lung parenchyma are associated with supe-
rior protection compared with those that remain intravascular 
in a mouse model (45, 46). Intravenous or lung mucosal BCG 
administration is associated with reduced TB pathology com-
pared with intradermal vaccination in nonhuman primates (47, 
48). Mucosal vaccination with an attenuated Mtb vaccine can-
didate, Mtb sigH, induces B cell–harboring lymphoid follicles in 
the lung that serve as local immune structures to mediate highly  
effective T cell immune responses and better protection than 
even mucosal BCG vaccination (39). Live BCG can also induce a 
specific cytokine profile in human APCs to promote T follicular 
helper (TFH) cell differentiation (49).

Another TB vaccine candidate based on a recombinant CMV 
vector (RhCMV/TB) conferred complete protection in approx-
imately 40% of nonhuman primates (11). Although this vaccine, 
administered subcutaneously, induced and maintained highly 
differentiated circulating and tissue-resident memory T cells, 
protection was associated with innate cell (particularly neutro-
phil) activation (11). Furthermore, as discussed further below, 
targeting innate immune activation pathways, specifically CD40/
CD40L and CD103+ DCs in mouse models, can induce rapid  
antigen-specific T cell responses, formation of B cell lymphoid  
follicles, and superior near-sterilizing immunity in the lungs of 
BCG-vaccinated mice (50). These studies together provide new 
avenues to target innate immune responses to improve T and B 
cell responses for TB vaccines. Ultimately, adaptive and innate 
immune responses work in a coordinated fashion during both 
priming and effector phases of a successful immune response.

Available adjuvants and their functions
Innate immunity plays a key role in TB vaccine responses through 
an increase in the function of antigen-presenting cells by vaccine 
adjuvants. Although some types of vaccines, such as live attenu-
ated (e.g., yellow fever), whole cell (e.g., BCG), and certain killed 
vaccines (e.g., inactivated polio vaccine [IPV]), do not need spe-
cialized adjuvants as part of the vaccine formulation, most if not 
all subunit/protein vaccines require adjuvants to trigger innate 
immune activation for efficient humoral and/or T cell responses  
for effective vaccine efficacy (51). Few adjuvants are licensed for 
use in humans, including the aluminum-containing adjuvants 
CPG 1018, MF59, and AS01, but recently, there has been progress 
in advancing more formulations for clinical use.

nition, possibly to drive lung tissue damage and TB transmission, 
but T cell recognition could also contribute to protection, since most 
individuals do not develop TB following exposure. Indeed, decoy 
mechanisms such as export of mycobacterial antigens from infected 
cells (29) divert T cell recognition to promote bacterial persistence. 
The development of MTBVAC, a live attenuated vaccine retain-
ing most antigens present in virulent Mtb, therefore, represents a  
radical approach to circumvent biased antigen selection (30).

The functional attributes of protective T cells are not fully 
understood. Several lines of evidence in humans and animal mod-
els point toward a protective role for Th1 and Th17 cells (21). A direct 
comparison of six candidate TB vaccines in clinical testing showed 
remarkable similarities in the Th1 functional profiles of vaccine- 
induced CD4+ T cells, with M72/AS01E inducing the highest  
magnitude of memory responses (31). Whether such potent T 
cell responses are associated with the partial protection against 
TB afforded by M72/AS01E (10) will be established in correlates 
of protection studies. On the other hand, accumulating evidence 
indicates that unleashing T cell responses via reprogramming T 
cell metabolism (32) or checkpoint inhibitors (e.g., programmed 
cell death 1 [PD-1]) (33, 34) increases susceptibility to TB.

The role of B cells in mediating TB vaccine efficacy is emerg-
ing but incompletely understood. Animal models and human TB 
provide clear evidence that proliferating antigen-specific B cells 
localize within protective granulomas, highly special ized spatial 
structures that develop for the contain ment of infection (35). 
More recent evidence suggests that Abs from latently infected  
individuals drive enhanced phagolysosomal maturation, inflam-
masome activation, and macro phage killing of intracellular  
Mtb when compared with Abs isolated from TB patients (36). 
These differences in functional outcomes have been linked to 
the Fc functional profiles of the Abs, selective binding to the 
Fcγ receptor FcγRIII, and distinct Ab glycosylation patterns 
found in Abs from healthy persons with Mtb infection com-
pared with TB patients. Also, while Mtb-exposed individuals 
and patients with TB generate Ab responses against mycobac-
terial surface antigens and are protective against cell invasion, 
the inhibitory activity of anti-Mtb Abs appears to be limited to 
the IgA isotype (37). Recently, individuals highly exposed to 
Mtb who tested negative by QFT and tuberculin skin test (TST) 
were considered “resisters” and shown to possess IgM, class-
switched IgG Ab responses, and non–IFN-γ T cell responses 
to Mtb-specific proteins (38). In TB, localization of CXCR5- 
expressing CD4+ T cells within B cell follicles in TB granulomas 
near Mtb-infected macrophages mediates superior Mtb control 
(35, 39). Thus, it is possible that in addition to T cells, B cells 
also engage and participate in effective generation of vaccine- 
induced immunity against TB.

Vaccine choice and delivery impact immune 
responses
Vaccine formulation (e.g., choice of adjuvants and live attenu-
ated vectors) can affect the magnitude and functional quality of 
vaccine-induced adaptive immune responses (40); therefore, 
knowledge about appropriate responses to a pathogen is essential 
for rational vaccine design. Adjuvants and live vectors provide a 
danger signal for a large variety of innate immune cells, such as 
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Interpretation of trained immunity as innate 
immune memory
In addition to the classical role of innate immunity in amplifying 
T/B cell immune memory through adjuvant activity, recent stud-
ies provide evidence that a prolonged increase in the antimicro-
bial function of innate immune cells can itself contribute to pro-
tection from reinfection. This functional reprogramming of innate 
immune cells such as myeloid and NK cells, termed trained immu-
nity, represents a de facto innate immune memory (6). Trained 
monocytes and macrophages display functional and epigenetic 
reprogramming, leading to increased production of cytokines and 
chemokines, and improved phagocytosis and killing capacity (66). 
Studies have demonstrated that immunological signals, metabolic 
rewiring of cell metabolism, and epigenetic reprogramming are 
integrated, representing the molecular substrates for induction 
of trained immunity (6). The first step involves immunological 
signals induced through PRRs such as dectin-1 (in the case of  
β-glucans) and NOD2 (for BCG). The molecular link between 
these signals and the epigenetic changes in the nucleus has 
recently been attributed to changes in cellular metabolism. An  
initial study reported that induction of trained immunity is accom-
panied by a shift from oxidative phosphorylation to glycolysis, or 
the Warburg effect (67). Subsequent studies have shown that the 
Krebs cycle is replenished through glutaminolysis, leading to 
accumulation of succinate and especially fumarate. In turn, fuma-
rate inhibits the KDM5 family of demethylases, which are specific 
for H3K4me3; this inhibition permits the retention of this active 
histone mark (68). Induction of trained immunity leads to an 
increase in the mevalonate pathway; mevalonate in turn amplifies 
this process through an insulin-like growth factor 1 (IGF-1R)/Akt/
mTOR pathway (69) (Figure 2).

The changes described above have an important impact 
on the epigenetic program of trained myeloid cells. The best- 
studied epigenetic changes to immune stimuli involve the post-
translational modification of histone tails at promoter and 
enhancer regions (70, 71). In response to training signals, histone 
acetylation and methylation play an important role in regulation 
of gene expression and remodeling of the epigenome, which 
are important molecular mechanisms implicated in modulating 
innate immune cell signaling (6). Prior to gene expression, the 
promoters of innate immune genes are “preloaded” with poised 
RNA polymerase II, and neighboring histones possess active  
histone marks such as H3K4me3 (72, 73). A rise in the level of this 
active mark, as well as other active marks such as H3K4me1 and 
H3K27Ac, is a hallmark of trained immunity (74). Indeed, train-
ing with β-glucan leads to H3K4me3 accumulation at specific  
locations in the genome (74). H3K4me3 is directed to specific 
promoters in the genome by the presence of a class of long non-
coding RNAs (lncRNAs) called immune gene–proximal lncRNAs 
(IPLs) (75). IPLs are positioned within topological associating 
domains (TADs), regions of enriched chromatin long-range loop-
ing interactions bringing together multigene complexes (76). 
Within TADs, IPLs recruit a histone modification complex, the 
COMPASS complex, which in turn directs the trimethylation of 
H3K4me3 (75, 77, 78). IPLs are transcribed in an nuclear factor of 
activated T cells–dependent (NFAT-dependent) manner. Silenc-
ing of IPLs, disruption of the COMPASS complex, or abrogation 

Adjuvants are categorized based on composition, delivery sys-
tems, and their ability to trigger innate immune activation (52). 
Aluminum-containing adjuvants (e.g., alum) have been used for 
more than 70 years and are suggested to stimulate the inflamma-
some (53), but their mode of action is still not fully characterized. 
Oil-in-water emulsions such as MF59 and AS03 attract neutro-
phils and traffic antigen to lymph nodes (54). TLR4 agonists mim-
ic specific danger signals (e.g., bacterial LPS, microbial DNA, or 
single- or double-stranded RNA) that trigger surface or intracel-
lular receptors to induce innate pathways in antigen-presenting 
cells to program adaptive immunity. The plant-derived saponin 
QS21 elicits the release of alarmins, which activate DCs and the 
inflammasome to generate CD8+ T cell responses and IgG1 and 
IgG3 Ab production (51, 55). Thus, one key commonality of many 
adjuvants is the stimulation of IL-1 cytokine family members (56). 
The mechanisms associated with the performance of licensed 
adjuvanted vaccines is the subject of a recent review (57).

There are several experimental adjuvanted subunit TB vac-
cines in clinical testing (see Global Clinical Portfolio of TB Vac-
cine Candidates, http://www.aeras.org/pages/global-portfolio). 
The M72/AS01E vaccine formulation, which was recently reported  
to have efficacy against pulmonary TB, contains the combination 
adjuvant AS01, which is part of the successful commercial vac-
cine Shingrix (GSK) and a recombinant fusion protein antigen 
(10). AS01 is composed of QS21, liposomes, and the TLR4 agonist 
monophosphoryl lipid A (MPL; a detoxified derivative of bacterial  
lipopolysaccharide). The proposed mechanism of action of the 
adjuvant involves triggering naturally occurring innate immune 
pathways including early release of alarmins by innate immune 
cells and IFN-γ by NK cells (58, 59).

The adjuvant glucopyranosyl lipid adjuvant (GLA) is a syn-
thetic lipid A molecule and TLR4 agonist formulated into a stable 
oil-in-water nanoemulsion (SE) that drives Th1 immune responses  
(55). GLA-SE is part of an experimental TB vaccine formulation 
with fusion of four Mtb protein antigens called ID93 (60). First-
in-human studies of ID93 showed improved Ab and CD4+ T 
cell responses in GLA-SE–adjuvanted versus unadjuvanted vac-
cine (61). The vaccine was safe and immunogenic in previously 
BCG-vaccinated adults (62). A phase IIa clinical trial in treated TB 
patients (NCT02465216) has completed, and a lyophilized formu-
lation has entered phase I (NCT03722472).

In addition, two cationic particulate adjuvants, IC31 (Valneva  
Technologies) and CAF01 (Statens Serum Institut), are being  
tested among experimental TB vaccines. A vaccine comprising the 
H56 fusion protein formulated with IC31 has completed phase I 
testing (63, 64) and is being evaluated in a phase II clinical trial 
for preventing TB recurrence (NCT03512249). A different IC31- 
adjvuanted subunit vaccine, H4:IC31, was evaluated for preven-
tion of Mtb infection (5). Adjuvant formulation is also import-
ant, as shown for the novel TB vaccine candidate M72/AS01E. 
Adjuvants AS01 and AS02 contain the same components (MPL 
and QS21) formulated in either liposomes (AS01) or oil-in-water  
emulsion (AS02). While both formulations generated potent 
and durable Ab responses, AS01 induced a higher magnitude of  
antigen-specific Th1 responses (65). Thus, the choice of adjuvant 
for a vaccine candidate should depend on properties tailored to 
the specific vaccine Target Product Profile (TPP).
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these cells have a relatively short lifespan 
and are less likely to transmit their memory  
phenotype to their progeny and provide 
sustainable protection. In contrast, hemato-
poietic stem cells (HSCs) are long-lived,  
with self-renewal properties that reside in 
the BM, and their transcriptional and func-
tional reprogramming can explain trained 
immunity induction (Figure 3). In verte-
brates, HSCs are generated from endothe-
lial cells in the embryo, which depends on 
type II IFN signaling (79). The BM is the seat 
of hematopoiesis, where HSCs constantly 
undergo asymmetric division, giving rise to 
the full repertoire of myeloid and lymphoid 
cell types while maintaining the HSC niche. 
Importantly, HSCs can directly respond to 
acute and chronic infections. For example, 
in a model of acute Escherichia coli infection 
(80) or chronic Mycobacterium avium infec-
tion (81), there was a significant expansion  
in HSC populations. Similarly, trained 
immunity induced by BCG vaccination (82) 
or β-glucan (83) was recently shown to be 
mediated through increased myelopoiesis 
in the BM. Although the exact mechanisms 
of precursor proliferation/differentiation 
are not well understood, persistent acti-
vation of HSCs can result in BM exhaus-
tion and even complete depletion of HSCs  
over time, leading to devastating effects on 
the systemic immune compartment (84–
86). Thus, the balance between HSC self- 
renewal and differentiation must be tightly 
regulated to maintain the numbers of HSCs 
for the generation of trained immunity.

Recently, several mechanisms have 
been proposed to explain HSC activation 
(87) in the setting of infectious disease, 
including the following: (i) Direct infec-
tion: HSCs are thought to lack the molec-
ular machinery required for phagocytosis. 
Pathogens including Salmonella, Listeria, 
Yersinia, M. avium, and BCG are unable 
to infect HSCs (81, 82, 88), but Mtb infec-

tion can gain access to HSCs (89, 90). Recent data indicate that 
Mtb infects BM mesenchymal stem cells, which are phagocytic,  
and bacteria can survive within these cells (91, 92). (ii) PRR 
signaling: HSCs express both cell-surface TLRs (e.g., TLR4, 
which recognizes bacterial LPS) and cytosolic NOD-like recep-
tors (e.g., NOD2, which recognizes bacterial MDP) that not 
only play important roles in anti-Mtb immunity, but also drive 
infection-induced myelopoiesis (generation of monocytes and 
macrophages), cell mobilization from BM into infection site, 
and trained immunity (93–96). (iii) Cytokine signaling: Quan-
titative changes in HSC activity are regulated by cytokines 
relevant to TB. In vertebrates, both type I IFNs (IFN-α and -β) 

of NFAT signaling results in loss of H3K4me3 accumulation at 
trained immune genes (75). IPLs are generally conserved across 
mammals at the sequence and syntenic level; however, a key IPL 
regulating trained immunity of the chemokine locus is absent in 
rodents, so CXCL1–3 cannot be trained in mice. Training in mice 
can be restored by inserting the human IPL (UMLILO) proximal 
to the mouse chemokines via gene editing (75).

Trained immunity: the impact on myeloid cell 
progenitors
Although trained immunity was first established in cells of the 
mononuclear phagocyte lineage (i.e., monocytes and macrophages), 

Figure 2. Molecular mechanisms contributing to the induction of trained immunity in myeloid cells. 
Activation of myeloid cells by microbial β-glucan or BCG activates PRRs that in turn activate gene 
transcription, but also cellular metabolism through an Akt/mTOR-dependent pathway. Activation 
of lncRNAs such as UMLILO determines chromatin changes by activation and transport of histone 
methyltransferases. Long-term metabolic changes such as fumarate accumulation maintain these 
changes by inhibiting KDM5 histone demethylases. In turn, mevalonate release amplifies these 
changes through an IGF-1R–dependent loop. TCA, tricarboxylic acid.
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and type II IFN (IFN-γ) can increase HSC proliferation (81, 84, 
86, 97), but they have opposing effects in the killing of Mtb by  
macrophages (98, 99). Furthermore, increased activation of 
HSCs following M. avium infection or the generation of HSC- 
mediated trained immunity via BCG intravenous vaccination 
was shown to be IFN-γ dependent, highlighting the pivotal role 
of IFNs in HSC responses to mycobacterial infection (81, 82). 
While basal levels of IFN signaling are required to maintain the 
balance between HSC self-renewal and differentiation during 
homeostasis, chronic exposure of HSCs to IFNs during chronic 
infections may lead to BM aplasia (79). Interestingly, the role 
of IFN-dependent pathways in regulating HSC responses and 
downstream consequences following infection with virulent 
strains of Mtb is still unknown. Although this study indicates that 
type II IFN is required for generating trained immunity by HSCs 
after BCG vaccination (82), another study showed that β-glucan–
induced trained immunity by HSCs was mediated via GM-CSF 
and IL-1 signaling (83). These observations suggest that different 
stimuli (e.g., live pathogen versus pathogen-derived products) 
may imprint distinct molecular signatures in HSCs that each lead 
to trained immunity.

The molecular mechanisms required for inducing trained 
immunity in the BM require the same epigenetic rewiring events 
described earlier for mature myeloid cells. It was recently demon-
strated that BCG can reprogram HSCs toward myelopoiesis, lead-
ing to generation of protective monocytes/macrophages against 
subsequent Mtb infection. Most importantly, this protective 
signature was transmitted from HSCs to multipotent progeni-
tors (MPPs) to monocytes and macrophages. Epigenetic analysis  
of BCG-trained, BM-derived macrophages indicates that the 
H3K4me3 and H3K27Ac marks are significantly enriched for 
genes associated with resistance to Mtb infection. These results 

provide a mechanism for how in vivo BCG vaccination epigeneti-
cally primes BM-derived macrophages to initiate a robust pro-
tective response against Mtb infection (82). These data are sup-
ported by studies describing similar mechanisms at the HSC level 
in duced by β-glucan (83).

Targeting NK memory for TB vaccines
NK cells are prominent components of the innate immune system 
that play a central role in resistance to microbial pathogens. NK 
cells protect against viruses, bacteria, and parasites by destroying  
infected cells and secreting cytokines that shape the adaptive 
immune response (100–103). NK cells contribute to immunity 
against Mtb infection by lysing Mtb-infected human monocytes and 
alveolar macrophages and upregulating CD8+ T cell responses (104, 
105). The pleural fluid of TB patients is enriched for NK cells, which 
are the predominant source of IFN-γ (106), and a subpopulation 
expresses the memory-associated marker CD45RO, thus exert-
ing robust immune responses when stimulated by IL-12 (107). NK 
cells lyse Mtb-expanded Tregs (108), and eliminating NK cells at 
the time of BCG vaccination enhances Treg expansion and inhibits 
BCG-induced protection against challenge with Mtb (109). Accord-
ingly, in mice, memory-like NK cells develop during BCG vaccina-
tion, expand, and provide protection against challenge with Mtb 
(110). Recently, a multicohort study found higher numbers of cyto-
toxic NK cells in persons with latent TB than in uninfected individ-
uals. These NK cells decreased during the progression from latent 
infection to active disease and returned to the baseline level after 
TB treatment, suggesting a protective role for NK cells during Mtb 
infection (111). BCG revaccination of adults with latent TB infection 
also induces long-lived BCG-reactive NK cell responses (112). Stud-
ies suggest that NK cells distinguish antigens, and memory NK cells 
expand and protect against viral pathogens (113–115). These stud-

Figure 3. Induction of trained immunity in myeloid cells. Induction of trained immunity by vaccination leads to cellular reprogramming toward a myeloid 
bias in the BM. Monocytes with rewired transcriptional and epigenetic programs differentiate into trained recruited lung macrophages with increase anti-
microbial activity. CMP, common myeloid progenitor; GMP, granulocyte-monocyte progenitor; BMDM, BM-derived macrophage.
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ies provide new evidence that memory-like NK cells survive long-
term and could be targeted to promote vaccine-induced protective 
immunity against Mtb infection. A comprehensive evaluation of the 
role of memory-like NK cell phenotype and function in household 
contacts who develop active TB will improve our understanding of 
the protective mechanisms against infection and subsequently facil-
itate development of interventions to prevent development of active 
TB. Further understanding of these mechanisms will also lay the 
groundwork for developing novel methods to stimulate memory- 
like NK cell–mediated immunity against TB.

Insights gained from BCG vaccination in human 
studies
Historically, it was not known whether the benefits of BCG were 
conferred predominantly through prevention of Mtb infection or 
through prevention of progression to TB disease in those infected. 
Autopsy data from 150 people and national tuberculin data sup-
ported the conclusion that there was no evidence to support the 
suggestion that BCG vaccination can prevent the establishment of 
infection in an exposed human (116). Since there was no difference 
in TST positivity between BCG-vaccinated and unvaccinated indi-
viduals, but BCG vaccination was accompanied by differences in 
TB pathology, it was assumed that BCG protected mainly against 
progression to disease.

With the introduction of IFN-γ release assays (IGRAs), which 
assess the T cell response to Mtb antigens that are not secreted by 
BCG, protection against Mtb infection could be assessed without 
confounding test results based on BCG itself. Soysal et al. stud-
ied more than 900 child household TB case contacts in Turkey 
and found a significant reduction in ELISPOT positivity in those 
who were BCG vaccinated (117). A subsequent systematic review 
(118) by Roy et al. confirmed this result across 14 cross-sectional 
studies, with an estimated protection against infection of 19% 
(95% CI, 8%–29%). Longitudinal studies whereby an IGRA test 
was repeated after about 3 months in those initially negative, 
suggested that the protective effect is even greater in relation to 
a specific exposure. Hill et al. showed that BCG vaccination was 
associated with a 50% (95% CI, 20%–100%) reduction in the risk 
of ELISPOT conversion after 3 months in Gambian contacts (119). 
A remarkably similar estimate (45%; 95% CI, 24%–60%) was 
obtained by Verrall et al. in Indonesian case contacts (120). Fur-
thermore, in the Indonesian contacts, BCG protection decreased 
with increasing exposure, suggesting that the immune mechanism 
for protection could be overcome with increased exposure to the 
pathogen. This latter finding could have implications for under-
standing different levels of protection from BCG across popula-
tions with varying intensity of Mtb transmission, protection being 
weakest in high-TB-burden settings (121). In addition, the study by 
Verrall et al. found evidence of BCG protection against infection 
up until the age of 30 years, which is consistent with recent studies 
suggesting that BCG protection against TB disease lasts at least 20 
years when given at birth or at school age (122, 123).

A recent randomized controlled trial among adolescents 
in South Africa provided further support for a protective effect 
of BCG against Mtb infection. Among 990 HIV- and QFT- 
negative adolescents, sustained QFT conversion was 11.2% in 
those who received placebo and 6.7% among those who were 

BCG revaccinated over 2 years of follow-up, representing a 
45.5% reduction (5).

The mechanisms of protection against Mtb infection induced 
by BCG vaccination are likely to involve innate immune mecha-
nisms, including trained immunity. Interestingly, in the recently  
published randomized trial that showed a protective effect of 
BCG revaccination against Mtb infection, unrelated respirato-
ry tract infections were also significantly less common (5, 124), 
supporting a strong increase in heterologous protection against 
infections, which is suggestive of trained immunity. Epidemio-
logical reports suggest protection against nonspecific infections 
by BCG for up to 4–5 years after vaccination in infants (125), and 
experimental studies in humans have shown the persistence of 
trained immunity for at least one year after BCG vaccination 
(126). In addition, BCG-induced protection against Mtb infec-
tion was associated with higher production of proinflammatory 
cytokines following heterologous stimulation with Streptococcus  
pneumoniae and E. coli (120), an observation reminiscent of 
trained immunity (127, 128). Thus, while murine studies suggest 
that training of HSCs requires access to the BM (82), whether  
intradermal BCG vaccination in humans similarly accesses 
the BM is not known and will no doubt be the target of future 
research. We envision that there are two major pathways that 
can lead to trained immunity in HSCs during vaccination: (i) a 
direct pathway, functioning via access of the vaccine (e.g., BCG) 
in the BM, likely by generation of an inflammatory milieu that 
leads to HSC training; and (ii) an indirect pathway, via systemic  
release of exogenous (e.g., PAMPs) or endogenous mediators 
(e.g., DAMPs, cytokines, colony-stimulating factors). HSCs 
express receptors that are important in the activation/mobiliza-
tion of HSCs (95, 129). Thus, systemic release of DAMPs as well 
as cytokines (e.g., GM-CSF, IFN-γ) (81) during vaccination can 
reach the BM to train HSCs. Following intradermal BCG vaccina-
tion in humans, the systemic release of PAMPs, DAMPS, and/or 
cytokines is most likely responsible for training HSCs.

Harnessing innate immunity for better vaccines
The studies reviewed above provide evidence that innate immune 
processes and, in particular, adjuvant activity and trained immu-
nity, are important components of the protective effects of BCG 
vaccination against TB. A detailed understanding of these pro-
cesses brings hope that they can be used for the design of new and 
more effective vaccines.

Which processes may be enlisted for this end? First, under-
standing the molecular mechanisms that mediate the biological 
action of adjuvants is a step toward precise fine-tuning of the type 
of T or B cell needed in an infection in general, and in TB in par-
ticular. For example, understanding the PRR and signaling path-
ways leading to the induction of a Th1/Th2/Th17/TFH response 
will permit the design of adjuvants with specific activity toward 
inducing a particular type of Th response. Second, integration of 
trained innate immunity within the biological effects of future 
vaccines holds promise for improved vaccine effectiveness. 
Indeed, a vaccine that combines improved antimicrobial effects 
of both innate (trained immunity) and adaptive (classical immune 
memory) mechanisms would likely be more effective than current 
vaccines. Third, these developments should improve the outcome 
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of vaccination in populations at higher risk from infection, such 
as the elderly. Indeed, adaptive immune responses are defective 
at extreme ages, and incorporation of trained immunity into vac-
cines designed for use in the elderly may circumvent this problem.

In conclusion, future studies are needed to investigate the 
impact of the induction of trained immunity on vaccination effects. 
These studies must focus on the mechanisms involved and how to 
effectively trigger them. We predict that the impact of combining 
trained immunity with classical adaptive immune memory will be 
fully realized in the vaccine community in the years to come. Fur-
ther definition of trained immunity should enhance approaches to 
our vaccine armamentarium.
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