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Looking beyond diet to control 
oxaluria
Oxalate (C2O4

2–), a final product of inter­
mediary metabolism of several carbohy­
drates and amino acids, is largely produced 
by the liver and then excreted in the urine 
along with oxalate absorbed in the gut 
from dietary sources. Calcium oxalate in 
the urine is highly insoluble, but in healthy 
individuals, the concentration of this salt 
rarely, if ever, exceeds supersaturation. 
Yet calcium oxalate (CaOx) stones occur 
in a substantial fraction of the world pop­
ulation with estimates of prevalence rang­
ing from 3% to 5% of people worldwide. 
Oxaluria can result from multiple causes, 
including hyperabsorption syndromes and 
genetic causes of overproduction. Dietary 
control of oxaluria is the mainstay of ther­
apy; however, this intervention is difficult 
and may not be sufficient to reduce urinary 
oxalate excretion. Unfortunately, other 
effective treatments are limited. In this 
issue, Le Dudal and colleagues describe 
a welcome serendipitous finding where a 
drug (stiripentol) that is used to treat a rare 

severe form of childhood epilepsy reduced 
urinary oxalate excretion, providing a path­
way for pharmaceutical development (1).

Stiripentol, a drug used to treat the neu­
roepileptic disorder Dravet syndrome, was 
initially thought to directly enhance GABA­
ergic neurotransmission (2). More compel­
ling studies have shown that the drug inhib­
its lactate dehydrogenase (LDH), thereby 
interrupting the astrocyte­neuron lactate 
shuttle (3) where lactate, produced by astro­
cytes through the action of LDH isoenzyme 
5 (LDH5), enters neurons and is converted 
to pyruvate by LDH1, and reduces the intra­
cellular energy reliance on ketones. Lactate 
also signals by binding to neuronal GPCR 
HCAR1. Collectively, the astrocyte­neuron 
lactate shuttle and lactate action on HCAR1 
result in hyperpolarization of neurons and 
a decreased number and duration of par­
oxysmal discharges (4). Stiripentol inhibits 
LDH5, with a half maximal concentration of 
about 500 μM (3), which is close to what the 
recommended 50 mg/kg oral dose might 
produce in vivo, indicating a low specificity 
and affinity for its target.

LDH5, an LDH tetrameter composed 
of 4 A­type subunits, is the isoenzyme 
expressed in muscle and importantly in 
the liver, where it controls hepatic oxa­
late production (Figure 1). Le Dudal et al. 
hypothesized that treatment with stiripentol 
might decrease hepatic oxalate production ­
  —both from endogenous and exogenous 
precursors—and thereby reduce urinary 
oxalate excretion (1). The authors showed 
that stiripentol, when administered to 
hepatocytes in vitro or given to healthy 
rats, decreased oxalate production and uri­
nary excretion. When rats were poisoned 
with ethylene glycol, which induced severe 
hyperoxaluria, coadministration of stiripen­
tol reduced CaOx crystal volume and renal 
failure. Further, in animals given a diet high 
in hydroxyproline, which increases oxa­
late production (Figure 1), stiripentol treat­
ment increased urinary glycolate excretion, 
reduced urinary CaOx crystal volume, and 
limited renal dysfunction compared with 
rats receiving hydroxyproline diet alone. 
Most importantly, Le Dudal et al. adminis­
tered stiripentol to a young woman with type 
I primary hyperoxaluria (AGT1 mutation) in 
graded doses up to 50 mg/kg/d and found 
that her urinary oxalate­to­urinary creati­
nine ratio fell from 0.18 mmol oxalate/mmol 
creatinine to 0.068 mmol oxalate/mmol cre­
atinine. In this multifaceted approach, the 
authors showed that stiripentol is effective in 
decreasing hyperoxaluria in various scenari­
os and preventing renal failure, a major long­
term consequence of oxaluria. It is import­
ant to note that a 50% reduction in urinary 
oxalate concentration is usually enough to 
prevent the formation of CaOx stones.

Implications of stiripentol for 
oxaluria
A review of glyoxylate and oxalate metab­
olism and the exogenous and endogenous 
conditions that lead to increases in urinary 
CaOx concentrations is important to fully 
understand the implications of this new 
therapy for treating oxaluria (Figure 1) 
(5). Under normal physiologic conditions, 
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Excessive excretion of oxalate in the urine results in the formation 
of calcium oxalate crystals and subsequent kidney stone formation. 
Severe forms of hyperoxaluria, including genetic forms and those that 
result from ethylene glycol poisoning, can result in end-stage renal 
disease. Therapeutic interventions are limited and often rely on dietary 
intervention. In this issue of the JCI, Le Dudal and colleagues demonstrate 
that the lactate dehydrogenase 5 inhibitor (LDH5) stiripentol reduces 
urinary oxalate excretion. Importantly, stiripentol treatment of a single 
individual with primary hyperoxaluria reduced the urinary oxalate 
excretion. Together, these results support further evaluation of LDH5 as a 
therapeutic target for hyperoxaluria.
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Dietary hyperoxaluria caused by 
ingestion of high oxalate foods can be 
treated with increased calcium intake, 
which chelates oxalate in the gastrointes­
tinal lumen. Enteric hyperoxaluria results 
when calcium is instead chelated by free 
fatty acids as a result of fat malabsorp­
tion, thereby leading to a high concentra­
tion of free oxalate and increased oxalate 
absorption. There has been recent inter­
est in the role that the gut microbiome (in 
particular Oxalobacter formigenes) plays 
in enteric oxalate degradation, which 
prevents absorption from ever occurring 
(9). Additionally, an increase in oxalate 

in both mechanical obstructive tubular 
injury as well as inflammatory injury from 
necroptosis that results from indigestible 
crystals in phagolysosomes. This intra­
tubular and parenchymal CaOx crystal 
deposition and the consequent inflam­
matory reaction can lead to progressive 
interstitial fibrosis, nephrocalcinosis, and 
even end­stage renal disease. As the glo­
merular filtration rate declines, or in the 
setting of ethylene glycol toxicity, system­
ic concentrations of oxalate rise and CaOx 
levels surpass the supersaturation level 
systemically, leading to CaOx deposition 
in tissues throughout the body.

oxalate is produced as an end­product of 
metabolism and secreted into the extra­
cellular space by solute­linked carrier 
26a1 (SLC26a1) (6). In the intestine, oxa­
late is secreted by SLC26a6 but absorbed 
by passive paracellular diffusion (7). In 
the kidney, oxalate is freely filtered, and 
SLC26a1 and SLC26a6 also play a role in 
tubular secretion and reabsorption of oxa­
late, resulting in net excretion of less than 
0.5 mmol/d (8). As urine is concentrated 
through its journey down the nephron, 
urinary levels of calcium and oxalate rise, 
and if supersaturation is reached, precipi­
tation and crystallization occur, resulting 

Figure 1. Multicompartment glyoxylate-oxalate metabolism. Multiple metabolic pathways converge to produce glyoxylate before conversion to oxalate. 
Defects in enzymes responsible for metabolism of glyoxylate and its precursors (denoted in blue) underlie specific forms of primary hyperoxaluria (PH) 
and lead to accumulation of glyoxylate and consequently to increased oxalate production which leaves the hepatocyte via SLC26a1 on its basolateral 
membrane. Mutations in AGT1 associate with PH1, mutations in GR are linked to PH2, and HOGA mutations underlie PH3. Inhibition of LDH5 by the drug 
stiripentol decreases enzymatic conversion of glyoxylate to oxalate and decreases urinary oxalate levels. Vitamin B6 (also known as pyridoxal phosphate) 
has been shown to increase enzymatic activity and decrease oxalate production in PH1. PH1, primary hyperoxaluria type I; PH2, primary hyperoxaluria type 
II; PH3, primary hyperoxaluria type III; ADH, alcohol dehydrogenase; ALDH, aldehyde dehydrogenase; GR, glycolate reductase; GO, glycolate oxidase; LDH5, 
lactate dehydrogenase 5; OH-OG, 4-hydroxy-2-oxoglutarate; HOGA, 4-hydroxy-2-oxoglutarate aldolase; AGT1, alanine glyoxylate aminotransferase 1; AGT2, 
alanine glyoxylate aminotransferase 2; DAO, D-amino oxidase; B6, vitamin B6/pyridoxal phosphate.
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oxalemic and hyperoxaluric phenotype in 
Slc26a1 knockout animals (21), whereas 
more recent knockout studies have not 
been able to reproduce this phenotype 
(22), instead highlighting a limited role for 
SLC26a1 in net oxalate excretion.

The largest unmet need for reduc­
ing oxaluria is the case of CaOx kidney 
stones, which affect tens of millions of 
people worldwide. The identification of 
LDH5 as a potential target raises the hope 
that this pathway might yield a specific 
inhibitor that is safe and free of too many 
drug­drug interactions. One such agent, 
isosafrole, which has a similar structural 
backbone as stiripentol but a more potent 
inhibitory effect on the conversion of 
pyruvate to lactate in LDH1 and LDH5, 
resulted in greater suppression of epilep­
tiform activity than stiripentol in vivo (3). 
It remains to be seen whether small mole­
cules with greater specificity for inhibiting 
the conversion of pyruvate to lactate will 
result in a more favorable side effect pro­
file than stiripentol.

While the current study raises some 
concerns and leaves issues to be addressed, 
it does renew interest in this pathway and 
highlights the complicated nature of gly­
oxylate and oxalate metabolism. Contin­
ued efforts in developing novel, targeted 
therapies may significantly impact public 
health given the high prevalence of CaOx 
nephrolithiasis.
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The goal of all interventions for hyper­
oxaluria is to decrease systemic and uri­
nary concentrations of oxalate, thus pre­
venting cocrystallization with calcium. 
Efforts to reduce dietary oxalate, increase 
urine volume, and alkalinize the urine with 
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