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Introduction
Epithelial barriers at mucosal and dermal surfaces form a protec-
tive shield against microbial invasion and environmental dam-
age. Perpetual epithelial renewal is facilitated by stem and pro-
genitor cells that balance proliferation and differentiation signals 
to continuously replace terminally differentiated or dying cells. 
Rapid self-renewal also supports epithelial cells’ essential role in 
barrier regulation and wound repair. Wound healing is a complex 
process characterized by four overlapping stages: hemostasis, 
inflammation, proliferation/re-epithelization, and remodeling. 
Dysregulation of any stage is linked to an increased risk of devel-
oping chronic nonhealing wounds, representing a substantial 
worldwide health care burden associated with considerable mor-
bidity and mortality (1, 2).

During normal gut function, the mucosal epithelium is repet-
itively injured through mechanical and chemical interactions 
with luminal contents. Mucosal injuries are constantly repaired to 
maintain gut homeostasis and provide sufficient nutrients while 
simultaneously preserving barrier function. Typically, superficial 
mucosal damage is associated with acute intestinal inflammation 
that resolves quickly without substantial fibrosis or compromised 
gastrointestinal function. However, chronic disorders of the diges-
tive tract such as inflammatory bowel disease (IBD; encompassing 
Crohn’s disease and ulcerative colitis) are characterized by recurring 
mucosal inflammation and injury (reviewed in ref. 3). While IBD eti-
ology remains elusive, its pathobiology is closely linked to dysreg-
ulated intestinal barrier function and insufficient healing, which is 
associated with perturbed mucosal homeostasis (4). Approximately 
3 million individuals in the United States suffer from IBD (1).

Like mucosal wound repair in the gut, superficial epidermal 
injuries of the skin such as first-degree burns do not undergo 
major remodeling during healing and usually do not produce scar-
ring. However, deeper transdermal injuries heal with consider-
able remodeling, often resulting in fibrosis, permanent scarring, 
and loss of skin appendages including hair follicles and sebaceous 
glands. Failure to resolve cutaneous wounds, formation of chron-
ic ulcers, and excessive scarring represent appreciable health and 
economic burdens to individuals with a number of conditions, 
including vascular insufficiency caused by factors such as aging, 
diabetes mellitus, and smoking (5).

Given the devastating impact of defective intestinal and der-
mal wound healing on human health, this Review highlights cur-
rent mechanisms regulating epithelial wound repair, focusing on 
the intestine as a well-studied example of a simple columnar epi-
thelium and the skin as an example of a more complicated strati-
fied epithelium. As other Reviews in this JCI series discuss adap-
tive immune responses, we limit discussion to the role of epithelial 
and innate immune cell interactions in wound healing. We discuss 
roles of epithelial cells, neutrophils, monocytes, and macrophages 
in wound repair and address interactions between these cell types.

Epithelial cells in cutaneous and intestinal 
wound repair
Intestinal epithelium. The intestinal epithelium lines the largest 
mucosal surface in the body and provides critical barrier between 
microbiota and mucosal immune cells. The initial response to 
intestinal epithelial injury involves hemostasis, which limits blood 
loss and seals damaged tissue. With the onset of hemostasis, the 
inflammatory response begins and includes critical contributions 
from epithelial and immune cells. In vitro and in vivo studies of 
human, rabbit, and rodent epithelia reveal that within minutes of 
intestinal mucosal injury, epithelial cells within crypts adjacent to 
the wound begin migrating as a collective sheet to cover injured/
denuded surfaces (6–10). During repair, epithelial cells under-
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degrade ECM components. Humans express 24 MMPs that regu-
late diverse activities important for ECM remodeling and forward 
movement of the epithelium (reviewed in ref. 19). MMP endopro-
teinase activity facilitates removal of disorganized structural pro-
teins from healing wounds to make room for newly synthesized 
collagen. Furthermore, MMP-mediated conversion of type III 
collagen to more stable type I collagen increases wound tensile 
strength. Fibroblast- and keratinocyte-derived MMP-1 promotes 
breakdown of excess collagen in murine and rabbit models of 
skin repair (20–22). Though not expressed in skin, epithelial cell–
derived matrilysin (MMP-7) is reportedly the key MMP involved in 
repairing injured intestinal mucosa in humans (23, 24).

Signals that trigger epithelial migration and proliferation from 
injured sites are incompletely understood. Loss or modification 
in cell-cell contact and release of intracellular molecules initiates 
repair (25). These events set the stage for recruiting leukocytes 
and mesenchymal cells that orchestrate wound repair. Formylat-
ed peptides and ATP released by damaged cells, also referred to 
as damage-associated molecular patterns (DAMPs), orchestrate 
repair by promoting epithelial cell migration and proliferation. 
Epithelial wounds are also a source of intracellular Ca++ waves 
that are rapidly transmitted into surrounding tissues to influence 
repair. Furthermore, ROS signaling and wound-associated phys-
ical cues influence epithelial repair. Small GTPases in the Rho 
family regulate remodeling of F-actin, intercellular junctions, and 
cell-matrix adhesions (26) and are crucial for epithelial cell migra-
tion and wound sealing. Similarly, the Rho GTPase Rac1 promotes 
intestinal epithelial proliferation by targeting β1-integrin in cellu-
lar protrusions and modulating actin dynamics (26).

Reparative signaling events are also regulated by extracellular 
mediators in the epithelial milieu, including annexin A1, annexin 
A2, and serum amyloid A1, which have been shown to influence 
integrin localization, focal adhesion kinase activation, and cell 
matrix remodeling in mouse and human intestinal mucosa (27–30). 
After injury, chemokines/cytokines and growth factors play crucial 
roles in epithelial c ell adhesion, migration, proliferation, and dif-
ferentiation. TGF-β–dependent signaling pathways mediate the 
regulatory effects of many repair mediators, including PDGF, EGF, 
VEGF, IL-1, IL-2, IL-6, and IFN-γ (6). Canonical and noncanonical 
Wnt proteins also modulate epithelial wound repair. A recent in 
vivo study revealed a role of Wnt5a in orchestrating colonic crypt 

go morphologic changes in shape, modify cell-cell contacts, and 
migrate collectively to reseal the barrier.

Collective epithelial cell migration during wound healing 
requires cytoskeletal remodeling and active crosstalk between 
cell matrix and cell-cell junction proteins. To facilitate migration, 
integrin-containing focal adhesive complexes are dynamically 
remodeled in concert with intracellular F-actin–rich extrusions at 
the leading edge that adhere to the extracellular matrix (ECM) to 
propel epithelial sheet migration (Figure 1 and refs. 11, 12).

Dermal epithelium. In contrast to the single layer of columnar 
epithelial cells lining the gut, a multilayered squamous epithelium 
lines the skin. Dermal epithelial cells form an important physical 
barrier against the environment, protecting against pathogens, 
xenobiotics, and dehydration (13, 14). Like intestinal epithelium, 
a reservoir of dynamic basal stem cells capable of generating all 
skin cell lineages facilitates ongoing cutaneous tissue turnover 
and skin regeneration (15, 16). The outermost epidermal layer 
comprises multiple layers of flattened dead cells (stratum corne-
um), making skin highly impermeable. However, skin epidermis 
interfaces with the outside world, making it particularly prone to 
injury, necessitating frequent repair.

Like repair of mucosal wounds, repair of skin injury depends 
on activation of the coagulation cascade followed by immune cell 
infiltration of wounds, contributing to protection against invading 
pathogens and epithelial repair (17). As in the intestine, skin re- 
epithelization also involves collective migration of keratinocytes 
across the injured dermis. Following initial epithelial cell migra-
tion, keratinocytes behind the leading edge proliferate and mature 
to restore epithelial barrier function. Using whole-mount epider-
mis, Aragona et al. confirmed the existence of leading-edge, non-
proliferative migrating cells and a proliferative hub of stem cells 
and their progeny (16), highlighting molecular signatures associ-
ated with these two distinct epidermal compartments. Upon re- 
epithelization, new highly vascularized connective tissue contain-
ing fibroblasts, granulocytes, macrophages, and loosely organized 
extracellular collagen is deposited into the wound bed. The final 
stage of skin wound repair involves tissue remodeling that begins 
2 to 3 weeks following initial injury and lasts up to a year or more, 
depending on wound severity (18).

Epithelial repair signaling. During wound remodeling in 
the skin and gut, matrix metalloproteinases (MMPs) cleave or 

Figure 1. Epithelial reparative triggers and 
events. Cytokines, growth factors, Wnt 
ligands, SPMs, and MMPs released in the 
wound microenvironment in response to injury 
support epithelial cell proliferation as well as 
migration. Dynamic remodeling of focal adhe-
sion complexes and actin promotes interac-
tions with the ECM that facilitate the epithelial 
sheet’s migration. Following initial epithelial 
cell migration, keratinocytes peripheral to the 
leading edge proliferate and mature to restore 
epithelial barrier homeostasis and function.
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junction proteins including E-cadherin, promoting epithelial 
mobility and barrier restitution following injury in vitro and in 
vivo (52, 53). HIF-1α also promotes transcriptional upregulation 
of genes that enhance cutaneous wound repair, including meta-
bolic proteins, adhesion proteins, soluble growth factors (TGF-β 
and VEGF), and ECM components (54, 55). Therefore, neutro-
phil-mediated HIF-1α stabilization in wound microenvironments 
acts through epithelial cells to promote barrier restitution and a 
faster return to tissue homeostasis.

In addition to eliminating microbes and modulating the 
wound microenvironment through oxygen metabolism, neutro-
phils release pro-repair cytokines, chemokines, and growth factors 
that signal through wound-associated immune and epithelial cells 
to promote healing. Following mucosal damage, infiltrating neu-
trophils secrete TGF-β to activate MEK1/2 signaling and induce 
intestinal epithelial cell–mediated production of the EGF-like 
molecule amphiregulin (AREG) (56). AREG promotes intestinal 
epithelial cell differentiation and proliferation in a positive man-
ner to facilitate efficient return to mucosal homeostasis in vivo 
(56, 57). TGF-β also accelerates re-epithelization, angiogenesis, 
and granulation tissue formation in healing murine and human 
skin wounds (58–60). However, unlike healing intestinal mucosa, 
neutrophils in skin wounds are not yet identified as an import-
ant source of TGF-β. While not implicated in TGF-β production, 
human neutrophils that migrate into skin wounds upregulate a 
transcriptional program that includes chemoattractants (e.g., 
CCL-2 and MIP1α, also known as CCL-3) and genes that promote 
angiogenesis (VEGF, IL-8, GRO-γ, and CCL-2), proliferation, 
and activation of keratinocytes and fibroblasts (IL-8, IL-1β, and  
CCL-2) (61–63). Moreover, several studies reported that neu-
trophils are an important source of de novo TNF-α synthesis in 
healing mouse skin lesions (64, 65). While TNF-α is traditionally 
considered a proinflammatory mediator, it also mediates crucial 
pro-repair mechanisms, including stimulation of fibroblast prolif-
eration, re-epithelization, and angiogenesis (66).

Neutrophils recruited to wounds also respond to the proin-
flammatory cytokine–rich milieu by producing CC chemokines 
such as CCL-20 (67), which attracts CCR-6–expressing inflam-
matory monocytes into murine injured skin (68). Recent work 
identified tissue-infiltrating neutrophils as a major source of IL-23 
in the intestines of individuals with IBD (69). Furthermore, upon 
stimulation with IL-23 and TNF-α, murine and human colonic 
neutrophils produce IL-22, a member of the IL-10 superfamily 
of cytokines. In murine intestinal wounds, neutrophil-produced 
IL-22 stimulated intestinal epithelial production of AMPs RegIIIβ 
and S100A8 and increased epithelial proliferation, differenti-
ation, and migration (70–72). Intestinal injury induces another 
IL-1 family member, IL-36, in epithelial cells and macrophages, 
and signaling through IL-36R promotes neutrophil recruitment, 
IL-22 production, and murine intestinal epithelial repair (73). In 
murine skin, it is known that IL-22 mediates interactions between 
immune cells and fibroblasts to promote wound healing (74, 75). 
However, murine neutrophils have not yet been identified as a 
prominent source of IL-22 during skin repair.

An additional mechanism whereby neutrophil-epithelial 
crosstalk promotes mucosal wound healing is via production of 
chemical mediators, including diadenosine triphosphate (Ap3A). 

regeneration via TGF-β signaling (31). In addition, while tradi-
tionally considered a proinflammatory cytokine, recent evidence 
demonstrated that TNF-α promotes mucosal wound repair in mice 
by activating Wnt/β-catenin signaling, increasing epithelial cell 
proliferation, and upregulating expression of receptors that pro-
mote intestinal healing (Figure 1 and refs. 32, 33).

In summary, intestinal and cutaneous wound repair is in part 
facilitated by remarkable migratory and proliferative capabilities 
of epithelial cells. In the following sections, we highlight the com-
plex spatial and temporal interplay between wound-associated 
neutrophils, monocytes, and macrophages as well as the crosstalk 
between these innate immune cells and dermal and intestinal epi-
thelial cells during tissue repair.

Innate immune cells in intestinal and  
dermal repair
Neutrophils. Neutrophils are the first immune cells to infiltrate 
wounded tissues, arriving in large numbers in response to DAMPs 
released from injured and necrotic cells. Murine neutrophil 
recruitment to wounded tissues begins 4 to 6 hours after initial 
injury, with maximum numbers detected after 18 to 24 hours (34, 
35). The neutrophil’s role in wound healing can be viewed as a 
double-edged sword (36). Too few neutrophils risks infection and 
delayed healing (37), whereas overpersistence of neutrophils in 
injured tissues also delays healing through collateral tissue dam-
age. For example, neutrophils contribute to the crypt loss and 
ulceration that are pathological hallmarks of ulcerative colitis, 
and excessive neutrophil infiltration parallels disease severity and 
patient symptoms (38–40). Therefore, neutrophil activation and 
migration in response to dermal or mucosal injury is tightly reg-
ulated. Impaired leukocyte trafficking delays cutaneous wound 
healing in mice (41, 42), highlighting neutrophils’ critical impor-
tance in orchestrating efficient wound repair. Similarly, neutro-
phil depletion in damaged intestinal mucosa was associated with 
increased inflammation, impaired intestinal mucosal repair, and 
slower recovery from colitis in vivo (43, 44). Furthermore, individ-
uals with neutropenia (or deficiencies in neutrophil trafficking or 
function) display not only higher risk for developing wound infec-
tions but also impaired wound healing (37, 45, 46).

While many previous studies focused on neutrophil trafficking 
(reviewed elsewhere in refs. 47, 48), the DAMP-triggered mecha-
nisms that facilitate neutrophil migration into skin and intestinal 
wounds are not yet well described. Once recruited to wound-
ed dermal or intestinal tissues, neutrophils prevent infection 
by eradicating microbes that enter through disrupted epithelial 
barriers. Neutrophils destroy invading microbes through phago-
cytosis, or sometimes NETosis (formation of extracellular traps; 
ref. 49), while releasing antimicrobial peptides (AMPs, including 
cathelicidins and β-defensins), ROS, and cytotoxic enzymes such 
as elastase and myeloperoxidase (Figure 2 and ref. 50). To pro-
duce microbicidal ROS, neutrophils consume large amounts of 
oxygen, generating a hypoxic microenvironment within wound-
ed tissues that results in stabilization of the transcription factor  
HIF-1α in human and murine intestinal mucosa (51, 52). In wound-
ed intestinal mucosa, HIF-1α stabilization results in enhanced epi-
thelial expression of intestinal trefoil factor (ITF). ITF activates 
epithelial MAPK signaling and induces reorganization of cell-cell 
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selectively deplete inflammatory neutrophil populations from 
poorly healing cutaneous and intestinal wounds. Additional stud-
ies are needed to identify markers and develop antibodies and 
small-molecule inhibitors that specifically target inflammatory 
neutrophils in wounds to promote repair and reduce chronic tissue 
damage in the skin and gut.

Monocytes. Following the initial neutrophil wound influx, 
epithelial, endothelial, lamina propria, and infiltrating immune 
cells release chemokines including CCL-20 and CCL-2 (84). 
These mediators facilitate subsequent recruitment of circulat-
ing monocytes into sites of tissue damage (Figure 2 and ref. 85). 
Wound-infiltrated monocytes play crucial roles in orchestrating 
tissue repair, including regulating angiogenesis, clearing cellu-
lar debris, and recruiting additional immune cells. Monocytes 
recruited into wounded tissues further differentiate into macro-
phages and/or DCs. In murine wounds, chemokines including 
CCL-2 and CX3CL-1 and their respective receptors, CCR-2 and 
CX3CR-1, regulate monocyte recruitment. Previous studies show 
that CX3CR-1 and CCR-2 are essential for wound repair in vivo: 
Cx3cr-1–null mice have delayed healing in skin wounds, and inhib-
iting CX3CR-1 signaling decreases skin angiogenesis and wound 
repair (86). In the gut, Ly6Chi monocyte recruitment requires 
CCR-2, and CCR-2–deficient mice have reduced numbers of 
monocyte-derived macrophages in wounds (87). Other ligands/
receptors involved in monocyte trafficking include CCR-1/CCL-3,  
CCR-5/CCL-5, CCR-6/CCL-20, CCR-7/CCL-19, and CCR-8/
CCL-1 (reviewed in ref. 88).

Human colonic epithelial cells metabolize neutrophil-produced 
Ap3A to adenosine, resulting in downstream activation of surface 
adenosine receptors and enhanced epithelial barrier function and 
mucosal wound-healing responses in the gut (76, 77). In the muco-
sa, neutrophil-derived adenosine signals primarily through cAMP 
(78), which increases expression of human epithelial tight junction 
proteins including ZO-1 and occludin and modulates actin and 
intermediate filament dynamics (79). Like its pro-repair effects 
in the intestine, topical application of adenosine promotes cuta-
neous wound healing by stimulating angiogenesis and suppress-
ing inflammatory cell function in mice (80). However, no direct 
effects of neutrophil-derived adenosine on skin epithelia have 
been reported to date. Taken together, these studies highlight the 
range of neutrophil-produced mediators acting on epithelial cells 
and wound-associated immune cells to promote cutaneous and 
intestinal wound healing.

The above evidence highlights the dual roles of wound- 
associated neutrophils that were once thought to simply maintain 
sterility following injury to include crucial immunomodulatory 
and pro-resolving or wound-healing functions. Further develop-
ment of sophisticated imaging methodology including intravital 
microscopy (81) combined with transgenic strategies that specifi-
cally target/label neutrophil subsets in vivo (82) will allow detailed 
mechanistic analyses of neutrophil behavior within wound-heal-
ing environments. Furthermore, recent advances in understand-
ing neutrophil plasticity and identifying distinct neutrophil sub-
sets (83) should be exploited to develop therapeutic strategies to 

Figure 2. Proinflammatory stage of wound healing. Neutrophils are the first responders to epithelial injury. They clear bacteria present at the wound site, 
limiting infection, and secrete proinflammatory TNF-α, which stimulates fibroblast proliferation and angiogenesis.
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Both healthy intestine and skin contain resident monocyte- 
derived macrophages (90). Given that skin and intestinal epithelia 
are constantly exposed to microorganisms and their products, it 
follows that there is a dynamically changing population of associ-
ated macrophages. Continuous exposure to commensal microor-
ganisms may be viewed as a stimulus that maintains “low-grade” 
chronic inflammation and induces monocyte recruitment (91). In 
summary, monocytes migrate to sites of injury (92) and secrete 
soluble mediators that contribute to wound repair. While many 
studies focus on macrophage functions in wound healing, the 
importance of infiltrating monocytes in mediating key aspects of 
skin and intestinal wound repair remains understudied.

Macrophages. Macrophages contribute to wound repair and 
tissue remodeling by clearing apoptotic neutrophils (efferocyto-
sis) and helping to reduce autoimmune and chronic inflammato-
ry responses (92). These effector functions are achieved, in part, 
through secretion of cytokines, growth factors, and specialized 
pro-resolving mediators (SPMs) (93). Wound-associated macro-
phages undergo polarization, a process involving integration of 
complex signals from the microenvironment followed by commit-
ment to a functional program directed at restoring tissue homeo-
stasis. Polarization continuously changes throughout the phases 
of wound healing. Historically, macrophage characterization 
was based on M1 (inflammatory) or M2 (antiinflammatory/pro- 
repair) phenotypes. M1 macrophages are induced by inflammatory 

Interestingly, in mice, some monocytes that leave the circu-
lation to migrate into injured tissues do not differentiate into tis-
sue macrophages or DCs but instead undergo apoptosis and are 
removed from wound sites. Before removal, these monocytes 
contribute to wound-healing responses by releasing cytokines and 
chemokines (88). Tissue-infiltrating monocytes can have inflam-
matory or antiinflammatory/pro-repair properties. Inflamma-
tory monocytes, typically characterized as Gr1+Ly6Chi, CCR-2+,  
CX3CR-1lo in mice or CD14+, CD16– in humans, are the major pop-
ulation of mononuclear cells initially recruited to sites of injury 
(Figure 3). They are a potent source of proinflammatory cytokines 
such as IL-6 and TNF-α. Shortly after arrival of inflammatory 
monocytes into wound sites, monocytes with antiinflammatory 
properties marked by expression of Gr1−Ly6Clo, CCR-2−, CX3CR-1hi  
in mice and CD14lo, CD16+ in humans are observed. Antiinflam-
matory monocytes release pro-repair molecules such as VEGF and 
IL-10, promoting cell proliferation and angiogenesis (Figure 2 and 
ref. 88). While precise mechanisms are unclear, differential che-
moattractant signaling from CCR-2 versus CX3CR-1 may regulate 
recruitment of proinflammatory versus pro-repair monocytes into 
murine healing wounds (89). However, it remains unclear wheth-
er infiltrated monocytes transition from a proinflammatory to an 
antiinflammatory phenotype before differentiating into macro-
phages, or whether independent monocyte populations migrate 
from the blood and differentiate into these cell types.

Figure 3. Resolution of inflammation and repair. Regenerating epithelial cells express pro-repair molecules including CCL-2, COX2, LGF1, and IL-11, possibly 
as a result of their activation by TRMs. Wound-associated macrophages (WAMs) and neutrophils also produce pro-repair signals, including annexin A1, 
VEGF-A, TGF-β, IL-10, and SPMs, that enhance resolution of inflammation at the wound site. In addition to supporting epithelial repair and migration, 
these pro-repair signals polarize macrophages to M2-like phenotypes that clear apoptotic neutrophils. In the presence of SPMs, neutrophil-derived micro-
particles may serve as a negative feedback mechanism to suppress additional neutrophil recruitment. TGF-β also stimulates fibroblast differentiation into 
myofibroblasts, which produce collagen that provides structural support to the healing epithelium.
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stimuli such as lipopolysaccharide and, when stimulated, release 
proinflammatory cytokines such as TNF-α, IL-1β, IL-6, IL-8, and 
IL-12. In contrast, M2 macrophages are induced by IL-4/IL-13 as 
well as IL-10. M2 macrophages release antiinflammatory/pro- 
repair molecules including TGF-β, IL-10, and SPMs such as mares-
ins, resolvins, and protectins (see ref. 94 for a detailed review on 
SPMs, and refs. 95, 96). It is increasingly appreciated that M1/M2 
macrophage classification is oversimplified; substantial overlap in 
the responses of these two types of macrophages is undoubtedly 
due to intermediate or transitional stages of differentiation. In sup-
port of such “plasticity” in tissue macrophage responses, M1-type 
macrophages were shown to switch to an M2 phenotype depend-
ing on the composition of the local extracellular milieu (97). Fur-
thermore, M1/M2 macrophage classification is largely based on in 
vitro differentiation, and increasing evidence suggests that such 
in vitro analyses do not accurately reflect the complexity of in vivo 
macrophage plasticity and heterogeneity. Adding to the complex-
ity of macrophage classification, current evidence also suggests 
that monocytes that have entered tissues differentiate into mac-
rophages displaying varying M1- or M2-like characteristics (98). 
These observations and emerging evidence increasingly imply 
that diverse macrophage populations mediate healing responses 
by releasing cytokines/chemokines, SPMs, proteases, and other 
mediators to orchestrate host defense, proliferation, and migration 
of wound-associated cells as well as matrix remodeling. Further 
studies are needed to better understand the role(s) of specific tis-
sue macrophage subsets during the stages of wound repair (99).

Most tissues (including skin and intestine) contain macro-
phages termed tissue-resident macrophages (TRMs). TRMs rep-
resent a heterogeneous population of nonmigratory cells that 
respond to injury or infection by sensing DAMPs. TRMs in the 
skin and gut are continuously replenished by blood monocytes 
(100–102). TRM phenotypic markers vary depending on tissue 
location. In skin, they have surface expression of F4/80+, CD11b+, 
CD11clo, CD206+, MHCIIlo, Dectin-1+, CD301+, and Dectin-2+, 
while in intestine, their cell surface markers include CX3CR-1hi, 
F4/80+, CD11b+, CD11c+, and CD64+. Intestinal (and a subset 
of dermal) MHCIIhi macrophages have been shown to originate 
from bone marrow monocytes. These macrophages lack capaci-
ty for self-renewal and have an estimated half-life of 4 to 6 weeks 
(103). An interesting subset of resident macrophages are epider-
mal Langerhans cells. While Langerhans cells were historically 
considered DCs, they are now believed to represent a specialized 
subset of TRMs. Unlike dermal TRMs, Langerhans cells are self- 
replicating and can migrate to lymph nodes to present antigens 
to T cells (104). Importantly, Langerhans cells were reported to 
repopulate the epidermis during re-epithelialization of acute skin 
wounds (105). Despite these observations, mechanisms regulat-
ing TRM-mediated wound repair are poorly understood, although 
increasing reports implicate contributions of dermal TRMs to 
homeostatic maintenance, renewal of skin appendages, epitheli-
al repair, and barrier recovery (106, 107). Important functions of 
intestinal TRMs include scavenging bacteria, helping maintain 
Tregs, and promoting epithelial cell renewal via production of 
IL-10 and prostaglandin E2 (89, 100, 108, 109). Taken together, 
current evidence supports an emerging concept of multiple roles 
for TRMs, including maintenance of homeostasis in epithelial tis-

sues as well as facilitating inflammatory responses and mediating 
repair following injury.

Macrophages in sites of injury are critical for skin and gut 
wound repair. Such wound-associated macrophages (WAMs) are 
adaptive, highly dynamic cells that can rapidly respond to cues 
within wound microenvironments (Figure 3). Current observations 
indicate that WAM phenotype is influenced by complex factors that 
are incompletely understood, including wound size, tissue loca-
tion, and stage of the inflammatory process (acute versus chronic). 
Like other macrophages, WAMs can have varied M1/M2 pheno-
types depending on the inflammatory/repair microenvironment, 
exhibiting characteristics of both proinflammatory and pro-repair 
macrophages (89). Given these observations, it is unsurprising that 
current literature is inconsistent on the types of cytokines produced 
by WAMs. Some studies report that WAMs are not an important 
source of the antiinflammatory cytokine IL-10 in skin wounds, 
whereas other groups demonstrate that both skin and gut WAMs 
are active producers of IL-10 with pro-repair properties (110, 111). 
Such discrepancies are likely related to the temporal nature of 
IL-10–dependent responses during wound repair. Supporting this 
notion, analyses of WAM-mediated IL-10 production suggest that 
IL-10 is produced at very specific times during the wound repair 
process, indicating that variables including wound size profoundly 
influence macrophage cytokine production responses.

Macrophages and other immune cells sense the metabolic 
environment and modulate function, an activity referred to as 
immunometabolism (112). Sites of injury have a hypoxic micro-
environment generated primarily by neutrophils consuming high 
levels of oxygen while producing ROS in response to injury (113). 
Hypoxia also promotes increased HIF-1α expression in inflamma-
tory macrophages, which increases glycolytic enzyme expression 
and IL-1β synthesis (114). Balanced IL-1β release is important, as 
excess inflammasome signaling associated with IL-1β generation 
is linked to development of chronic wounds (115). Phagocytosis of 
cellular debris in association with IL-4 and IL-13 signaling facil-
itates dampening of inflammatory signals and initiation of the 
proliferative phase of tissue repair (116). Glucose is an important 
source of energy for inflammatory macrophage–mediated clear-
ance of cellular debris that influences the proliferative phase in 
wound repair. Importantly, glucose availability likely influenc-
es macrophage secretion of proinflammatory mediators such as 
IL-1β and TNF-α (117). Interestingly, pro-repair macrophages have 
a highly oxidative metabolism, and therefore restoring oxygen lev-
els is important in achieving resolution of inflammation (118).

Regenerative responses are likely mediated, in part, by inti-
mate physical contact between macrophages and epithelial cells 
that promotes intestinal epithelial transcription of multiple pro- 
repair genes, including Ccl-2, Cox-2, Igf-1, and Il-11 (Figure 3). 
Furthermore, since Cox-2 (encoding cyclooxygenase-2) is nec-
essary for SPM synthesis, macrophage-mediated “activation” of 
epithelial cells might contribute to the generation of SPMs (119). 
Current evidence suggests that intestinal WAMs are required for 
amplification of colonic epithelial cell progenitors that contribute 
to wound repair. WAMs physically contact epithelial stem cells 
located within crypts, resulting in secretion of pro-proliferative 
and remodeling factors. Furthermore, recent evidence indicates 
that intestinal macrophages promote regenerative responses by 
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integrating cues from mesenchymal stem cells, other immune 
cells, microbiota, and injured epithelia. Efficient colonic wound 
repair also depends on Trem2 signaling in WAMs, which skews 
cellular machinery toward a pro-repair phenotype (119, 120). 
CD206+CD301b+ skin macrophages also produce the crucial 
pro-repair molecule TGF-β1, a potent inducer of fibroblast prolif-
eration and subsequent differentiation into myofibroblasts, lead-
ing to collagen deposition in the wound (121–125). WAMs also pro-
mote epithelial repair through release of IL-10 and PDGF-β (125).

Macrophages can also directly transition into fibrosis-promot-
ing cells, secreting ECM components such as collagen (126). These 
macrophages, referred to as fibrocytes or M2a macrophages, are 
implicated in pathogenesis of skin scarring. Interactions between 
macrophages and fibroblasts are critical in determining whether 
wounds heal with or without scarring. Regulatory-like, or M2c, 
macrophages within remodeling skin wounds release proteases 
and phagocytose cellular debris and ECM to clean out wounds 
and facilitate repair (127). In skin, WAMs are hypothesized to 
synthesize several members of the EGF family, e.g., EGF, TGF-α, 
and heparin-bound EGF (EGF-HB), which enhance keratinocyte 
migration and proliferation, thereby promoting skin re-epitheli-
alization (128–132). Inactive EGF family members are tethered to 
the cell membrane and require MMP-mediated cleavage to signal. 
Therefore, WAMs likely indirectly activate these growth factors 
by modulating MMP activity. IL-1, IL-6, TNF-α, and TGF-β also 
promote re-epithelialization (133). Interestingly, in human kerati-
nocytes, WAM-derived TNF-α promotes expression of genes asso-
ciated with cell movement, division, and survival (134). Presently, 
no studies highlight contributions of M2a and M2c macrophages 
to repair in the intestine. Recent observations indicate that WAMs 
in close proximity to wounded dermal and intestinal epithelial 
cells (and underlying fibroblasts) play important roles in orches-
trating matrix remodeling and wound repair. As such, aberrations 
in macrophage function at different stages of wound repair mark-
edly contribute to persistence of excessive ECM, resulting in skin 
fibrosis and permanent scarring.

Recently, further insights into the role of macrophages in 
wound repair have been gained from mouse models using deplet-
ed subsets of macrophages. Mice lacking the Spi-1 proto-oncogene 
protein lack mature macrophages as well as functional neutrophils. 
Surprisingly, these mice lack a skin wound-healing defect but rath-
er exhibit marked reduction in scar formation (135). In support 
of macrophages’ critical importance in skin wound repair, abla-
tion of macrophages impaired murine skin wound healing (136, 
137). These studies support an important role of macrophages in 
removing apoptotic neutrophils from wounds, thereby preventing 
ongoing release of tissue-degrading enzymes. Furthermore, when 
macrophages fail to appropriately clear apoptotic neutrophils, 
there are persistently high levels of proinflammatory cytokines 
and decreased local antiinflammatory and pro-repair mediators 
in wounds (138–140). Depletion of macrophages was also shown 
to reduce myofibroblast differentiation, which is necessary to pro-
mote wound contraction and accelerate skin wound healing (141).

Genetically engineered and inducible depletion models in 
mice enable selective macrophage depletion at different stages 
of the healing process, providing insights into the role of macro-
phages at various stages of wound repair. Macrophage depletion 

at early and mid-stages of skin repair results in delayed wound clo-
sure and decreased scar formation, while macrophage loss during 
later stages of repair did not affect healing. Depletion of macro-
phages at mid-stages of skin wound repair resulted in decreased 
VEGF-A and TGF-β1 expression, as well as reduced angiogenesis 
and repair. Consistent with these observations, it was noted that 
during mid-stages of repair, macrophages secrete substantial 
amounts of VEGF-A and TGF-β1 (106). The above-mentioned 
mouse models have not yet been used to study the role of macro-
phages in orchestrating intestinal mucosal repair in vivo. Howev-
er, analogous temporal changes in macrophage function are likely 
necessary for mucosal repair in the gut. These findings highlight 
macrophages as critical to epithelial wound repair, displaying a 
dynamic capacity to polarize in response to environmental cues 
that change as wound healing progresses.

While we have discussed contribution of macrophages in 
orchestrating wound repair, DCs are also implicated as important 
innate mediators of repair. This topic is discussed in previous pub-
lications and reviews (142–144).

Therapeutic opportunities. Several studies have either target-
ed neutrophils/macrophages or used these cells as tools as part 
of strategies to improve wound healing. Nevertheless, such ther-
apeutic targeting of innate immune cells has been limited by 
incomplete understanding of underlying mechanisms by which 
these cell populations regulate repair. Early research focusing on 
promoting neutrophil apoptosis yielded promising results, but 
off-target cell death presented a challenge (145). Novel technol-
ogies and drugs aided in the development of new strategies to 
promote wound repair by inducing resolution of inflammation 
without reducing neutrophil recruitment. A recent study observed 
that neutrophils “retrotax,” or reverse-migrate, away from inflam-
matory sites when exposed to SPMs (146). Manipulating this pro-
cess could potentially improve healing as well as infection control. 
Other studies showed potential “therapeutic benefit” through 
controlled delivery of leukocyte-derived SPMs. For example, 
nanoparticles containing neutrophil-derived microparticles with 
aspirin-triggered resolvin D1 or lipoxin A4 analogs reduced neu-
trophil recruitment in murine peritonitis and accelerated keratino-
cyte wound healing (147).

Strategies to improve wound healing through increased mac-
rophage recruitment and polarization toward a pro-repair pheno-
type have also been investigated. Direct injection of IL-1β–acti-
vated macrophages into murine skin wounds increased VEGF-C 
production and improved wound repair (148). Furthermore, local 
GM-CSF application to dermal wounds resulted in increased 
WAMs and enhanced wound healing (149). Since the complex bio-
molecular microenvironment within wounds plays a critical role 
in regulating macrophage polarization, strategies to enhance pro-
duction or delivery of pro-repair molecules have been explored. 
For example, glutamine-loaded hydrogels increased the rate of 
wound closure and re-epithelialization in wounded skin. In this 
study, collagen deposition within wounds was consistent with 
increased activity of alternatively activated macrophages (150). 
Conversely, strategies targeting inhibition of alternative macro-
phage activation and resulting Arg-1 activity may help prevent 
scarring and fibrosis by reducing excessive collagen deposition 
(151). From these observations, it is clear that methods promot-
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(158). To overcome challenges arising from species differences, 
new approaches using transcriptomics, metabolomics, humanized 
mice, and simple human/animal models (such as the skin blister 
model) must be exploited to directly compare and contrast func-
tional biology of immune cell subsets between species (159–161).

While this brief overview highlights increased mechanistic 
evidence of the role of epithelial cells, neutrophils, monocytes, 
and macrophages in orchestrating skin and intestinal wound 
repair, it is also clear that many other cellular contributions remain 
understudied. Given the plethora of chronic diseases associated 
with impaired wound-healing responses, much investigation 
remains to facilitate design of new therapeutic approaches to pro-
mote repair of wounds in chronic diseases.
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ing macrophage activity or polarization to a wound-healing phe-
notype have considerable promise, further supported by multiple 
other reports employing mesenchymal stem cells, growth factors, 
and biomaterials to modulate macrophage phenotype, function, 
and transcriptome (152–154).

Concluding remarks
Repair of injured epithelial barriers is a highly regulated process 
orchestrated by resident cells and spatiotemporal immune cell 
recruitment, which not only contributes to host defense but is 
vital for tissue homeostasis and wound repair. Temporal interplay 
between immune cells and wound-associated cells, secreted pro-
teins, and lipids ensures efficient resolution of inflammation in 
concert with epithelial repair. One caveat is that most wound-heal-
ing research is performed in animal models, raising the question 
of relevance to human health. Notably, the relative abundance of 
circulating neutrophils and monocytes in the blood differs consid-
erably between humans (50%–70% neutrophils, 10% monocytes) 
and mice (10%–25% neutrophils, 4% monocytes). However, many 
studies report similar dynamics of innate immune cell recruitment 
to sites of injury in mice and humans. Furthermore, a similar prev-
alence of activated neutrophils is observed in chronic nonhealing 
wounds of both species, highlighting the relevance of murine mod-
els for studies of innate immune cell biology in wound healing (155–
157). Human and mouse mononuclear phagocytes lack overlapping 
phenotypic markers, a challenge that hinders the identification 
and characterization of homologous populations between species 
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