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Introduction
Fibrosis is a progressive scarring process arising from tissue dam-
age or inflammation that can result in both organ damage and 
failure (1). Fibrotic diseases are responsible for a large proportion 
of human illness and are estimated to cause almost half of all 
human deaths in the United States (2). Atrial fibrillation, athero-
sclerosis, hypertrophic cardiomyopathy, nonalcoholic steatohepa-
titis (NASH), diabetic nephropathy, idiopathic pulmonary fibrosis 
(IPF), inflammatory bowel disease, scleroderma, and pancreatic 
cancer are all examples of major illnesses with a fibroproliferative 
component (3–5). Despite major advances in our understanding of 
these fibrotic diseases, there are no currently available treatments 
to halt fibrogenesis, the active development of new scar forma-
tion, or reverse established fibrosis.

The few antifibrotic treatments available at best modify the 
rate of fibrosis progression (6, 7). Fibrotic diseases represent chal-
lenging targets for the development of new therapies for multiple 
reasons. Disease progression can be slow, e.g., in NASH, resulting 
in long and costly clinical trials. The patient population may be het-

erogeneous and hard to phenotype, e.g., in IPF, making clinical tri-
al data interpretation difficult when slow progressors are enrolled 
alongside fast progressors. For novel therapeutic targets, evaluation 
of target expression (is there increased expression of the therapeu-
tic target in diseased tissue?) and target engagement (does the drug 
engage the target of interest?) in the intended patient population is 
paramount. In most cases, methods to better stratify patients, quan-
tify target expression or target engagement, and monitor early treat-
ment response within fibrotic diseases are lacking.

Clinical imaging techniques, such as computed tomography 
(CT), ultrasound, and magnetic resonance imaging (MRI), can 
detect established fibrosis in the lung, liver, and heart but are less 
sensitive at detecting early-stage disease, and cannot distinguish 
active disease (fibrogenesis) from stable scar. As effective treat-
ments become available, earlier detection strategies are needed 
to enable earlier interventions. There likely also exists significant 
molecular heterogeneity, differences in the molecular pathways 
activated within specific fibrotic entities and within different indi-
viduals affected by the same fibrotic diseases, that has yet to be 
elucidated. Such knowledge may allow for targeted therapies to 
be developed and used. Biopsy is an imperfect strategy for under-
standing activated molecular pathways and is not without risks.

Molecular imaging emerges as a method to potentially address 
these important challenges in a safe and noninvasive manner (8, 
9). Molecular probes are small molecules, peptides, or antibodies 
that recognize a specific protein, receptor, or biological process and 
are tagged with an imaging reporter for visualization. Most imag-
ing modalities can utilize molecular probes, and there is no ideal 
modality. Positron emission tomography (PET) and single-photon 
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Particularly promising in the application of molecular imaging 
to fibrosis is that the molecular pathways involved in fibrogenesis 
span multiple fibrotic disease processes (11). Thus, validated probes 
for assessing one fibrotic disease, e.g., cardiac fibrosis, may have 
the potential to assess others, e.g., hepatic fibrosis. Here we review 
available molecular probes to image pathways involved in fibrosis, 
their application to different fibrotic processes, the role of molecular 
imaging in answering unmet challenges in fibrosis, and the next steps 
needed to translate molecular imaging into human fibrotic diseases.

Molecular imaging in human diseases
Molecular imaging is invaluable in a number of diseases. In oncol-
ogy, for example, 18F-fluorodeoxyglucose PET-CT is standard 
of care for diagnosis, staging, and determination of treatment 
response for many cancers. In cardiology, SPECT radionuclide 

emission computed tomography (SPECT) can detect picomolar 
concentrations, bringing most biological targets into detection 
range, and PET can provide absolute quantification. The sensi-
tivity and quantitation of PET make it well suited to measuring 
target engagement. However, PET and SPECT have lower spatial 
resolution than other modalities, require daily probe production, 
and involve ionizing radiation, which makes these techniques less 
suitable for following patients over time. MRI provides much high-
er resolution, no radiation, and additional anatomic and function-
al imaging, but is more limited in the range of molecular targets 
that can be detected. Ultrasound contrast agents are limited to the 
vascular space, while optical imaging requires light access to the 
tissue, limiting it to superficial or semi-invasive applications. All 
of these techniques can be made quantitative (10). Modalities can 
also be combined to provide additional information.

Figure 1. Conceptual applications of molecular imaging in human fibrotic diseases. (A) Target engagement. PET imaging  in an early stage clinical trial for 
a novel antifibrotic therapy. PET ligand binds to the molecular target of Drug A. Modeling the Drug A dose-dependent change in PET signal provides target 
concentration and affinity of Drug A for the target. (B) Target expression. PET imaging with a molecular probe that binds to a molecular target implicated 
in pulmonary fibrosis pathogenesis. PET imaging differentiates high versus low expression of the molecular target, selecting patients for treatment with 
an inhibitor of the molecular target. (C) Diagnosis and staging. Patients at risk for liver fibrosis undergo conventional liver MRI and liver MRI with a molec-
ular probe. Degree of MRI signal enhancement enables earlier detection of fibrosis and noninvasive determination of disease stage. (D) Cohort enrichment 
for clinical trials. PET imaging with a molecular probe performed on IPF subjects for noninvasive detection of disease activity.  Conventional CT demon-
strates degree of fibrosis but does not inform as to disease activity. PET signal uptake differentiates subjects by degree of disease activity. This informa-
tion can be utilized in clinical trials to enrich for subjects most likely to meet prespecified primary endpoints. (E) Treatment response. Subjects with cardiac 
fibrosis undergo treatment with a novel therapy that reverses fibrosis. MRI using a fibrosis-specific Gd probe detects regression in fibrosis earlier than late 
gadolinium-enhanced MRI. Note: these are hypothetical scenarios that have not yet been performed in humans.
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ing injury. At any one point in time, the responses to tissue injury 
can become dysregulated, shifting the balance from repair and 
regeneration to fibrogenesis and resultant fibrosis. Many of these 
processes can be imaged by targeted molecular probes (Figure 2). 
To date, more than 25 available molecular probes, the majority of 
which are in the preclinical stage of development, are available 
to perform molecular imaging of fibrosis and fibrosis-associated 
processes, such as vascular leak, coagulation, and immune system 
activation, as we will discuss here (Table 1).

The ideal fibrosis molecular probe should target a molecu-
lar process that is specific to fibrosis. The target should be highly 
expressed in fibrotic tissue and be present at much lower levels 
elsewhere. Background signal should be low, and this is achieved 
through low nonspecific binding, rapid elimination, and low 
off-target uptake. For quantification and disease staging, the 
uptake (signal) should increase linearly and steeply with increas-
ing disease to provide a large dynamic range. For staging, the pre-
cision of the measurement must be high enough that signal chang-
es associated with different stages of disease can be accurately 

imaging can assess cardiac perfusion and viability. In neurology, 
molecular imaging techniques may assist with earlier diagnosis of 
neurodegenerative conditions such as Parkinson’s disease. While 
molecular imaging already has an important clinical applicability 
in many human diseases, to date it has been sparingly applied to 
fibrotic diseases. With the recent development of molecular probes 
that target fibrosis-specific or fibrosis-associated processes, molec-
ular imaging is poised to enter the realm of fibrotic diseases. In this 
context, molecular imaging may enable earlier diagnosis, allow 
accurate staging of disease, improve phenotyping of those with 
active disease, select patients for personalized treatment, deter-
mine whether a drug is engaging its target, and provide earlier 
assessments of treatment responses (Figure 1).

Molecular probes for imaging fibrosis
Fibrosis is the end result of multiple wound-healing processes 
gone astray (12). While the etiology of the initial tissue insult(s) 
may be quite varied, from radiation to infection to infarction, the 
responses to tissue injury are nearly identical regardless of incit-

Figure 2. Schematic representation of wound-healing responses resulting in fibrosis. (A) Tissue injury occurs, resulting in cell death and influx of 
immune cells. Resident and recruited macrophages migrate to the area of injury. (B) Tissue injury also results in increased endothelial permeability (i.e., 
vascular leak), and activation of the coagulation cascade with formation of a fibrin clot. (C) Fibroblasts migrate to the area of injury. (D) Recruited fibro-
blasts become activated and differentiate into myofibroblasts. (E) Formation of a provisional extracellular matrix develops and cross-linking occurs. In the 
setting of normal wound healing, tissue regeneration occurs. During fibrosis, excessive matrix accumulation occurs instead, resulting in organ damage. 
Available molecular probes are noted by the specific wound-healing response they target or for LPA and αvβ6, the wound-healing responses they activate. 
Some probes target or activate more than one wound-healing process. Adapted with permission from the American Journal of Respiratory and Critical Care 
Medicine (ref. 12), copyright 2018, American Thoracic Society.
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sarcoidosis subjects. IPF subjects in this study, however, had a 
normal uptake index (18, 19). Somatostatin analogs have also been 
derivatized with PET reporters (20), including the recently FDA- 
approved 68Ga-DOTATATE (NETSPOT). 68Ga-DOTANOC PET-
CT was performed in IPF and nonspecific interstitial pneumonia 
subjects (21). Probe uptake was higher in IPF subjects, consistent 
with increased somatostatin expression, and occurred in areas of 
CT-detected fibrosis. In the IPF subjects, PET signal correlated 
linearly with the amount of fibrosis on CT. However, somatostatin 
type 2 receptors are also expressed in “proinflammatory” M1 mac-
rophages, which may be present during fibrosis and fibrogenesis 
(22). 68Ga-DOTATATE was recently used in a prospective clinical 
trial to image atherosclerotic inflammation (22). In excised carot-
id plaques, SSTR2 gene expression occurred exclusively in M1 
macrophages. 68Ga-DOTATATE tissue-to-blood ratios correctly 
identified culprit versus nonculprit arteries in patients with acute 
coronary syndrome and transient ischemic attack/stroke.

Within the liver, hepatic stellate cells (HSCs) become acti-
vated and differentiate into myofibroblasts (23). This activation 
is essential to the development of hepatic fibrosis (24). Increased 
expression of the αvβ3 integrin in activated HSCs affects their pro-
liferation and survival (25, 26). The binding of αvβ3 to the ECM 
is dependent on an amino acid complex consisting of arginine–
glycine–aspartic acid (RGD) (27). SPECT with 99mTc conjugated 
to a cyclic RGD peptide was used to assess activated HSCs in a 
CCl4-induced rodent model of liver fibrosis (28). Increased αvβ3 
expression, determined by an increased liver-to-heart signal ratio, 
was higher in CCl4-treated rats than in uninjured rats, with the 
greatest liver-to-heart signal observed in histologically confirmed 

quantified. To measure target engagement, probe uptake should 
be blockable in a dose-dependent manner by a competing ligand. 
Not all of the probes described below meet all of these require-
ments. In some cases the target is not specific to fibrosis (scar), 
but may still provide useful information about disease activity or 
the pathogenesis. Since molecular probes are themselves treated 
as drugs, there is a large regulatory barrier to testing new probes 
in humans. Thus there is often an application of existing clinical 
probes for evaluation in fibrosis, e.g., the αvβ3 and somatostatin 
receptor probes that were developed for oncology applications.

Fibroblast activation and myofibroblast 
differentiation
In response to tissue injury, fibroblasts produce extracellular 
matrix (ECM) and contribute to formation of granulation tissue, 
the connective and vascular tissue on the surface of a healing 
wound (13). During fibrosis, fibroblasts become activated, pro-
liferate, and differentiate into myofibroblasts (14). Somatostatin 
receptors expressed on normal fibroblasts (15, 16) become upreg-
ulated in fibrosis (17). 111In-octreotide scintigraphy, currently 
available as the FDA-approved Octreoscan, uses a somatostatin 
peptide mimic derivatized with a chelated gamma ray–emitting 
111In isotope. 111In-octreotide scintigraphy was performed in sub-
jects with IPF, pulmonary fibrosis due to systemic sclerosis (SSc), 
and control subjects (18, 19). Octreotide expression was increased 
in IPF and SSc compared with control subjects, with expression 
higher in IPF than in SSc subjects. 111In-octreotide scintigraphy 
has also been performed on subjects with sarcoidosis and idio-
pathic interstitial pneumonia. Octreotide uptake was highest in 

Table 1. Molecular probes for fibrosis-specific and fibrosis-associated processes

Probe Molecular process Molecular/cell target Stage of development Imaging type Potential clinical uses
68Ga-DOTANOCA Activated fibroblasts Somatostatin receptor Human studies PET Disease activity
111In-octreotide Activated fibroblasts Somatostatin receptor FDA approved SPECT Disease activity
99mTc-cyclic RGD αvβ3 expression αvβ3 Animal studies SPECT Disease activity
99mTc-3PRGD2 αvβ3 expression αvβ3 Animal studies SPECT Disease activity
99mTc-CRIP αvβ3 expression αvβ3 Animal, human studies SPECT Disease activity
EP-3533 Collagen deposition Type I collagen Animal studies MRI Diagnosis, disease activity, treatment response
CM-101 Collagen deposition Type I collagen Animal studies MRI Diagnosis, disease activity, treatment response
68Ga-CBP8 Collagen deposition Type I collagen Animal, human studies PET Diagnosis, disease activity, treatment response
99mTc-collagelin Collagen deposition Type I and III collagen Animal studies SPECT Diagnosis, disease activity, treatment response
99mTc-CBP1495 Collagen deposition Type I collagen Animal studies SPECT Diagnosis, disease activity, treatment response
Gd-ESMA Elastin deposition Elastin Animal studies MRI Diagnosis, disease activity, treatment response
Gd-Hyd Lysyl oxidase activity Allysine, oxidized collagen Animal studies MRI Disease activity, treatment response
Gd-OA Lysyl oxidase activity Allysine, oxidized collagen Animal studies MRI Disease activity, treatment response
Gadofosveset Vascular leak Albumin FDA approved MRI Disease activity
Gd-P Coagulation Fibrin-fibronectin Animal studies MRI Disease activity
EP-2104R Coagulation Fibrin Animal studies MRI Disease activity, treatment response
64Cu-BMV101 Activated macrophages Cysteine cathepsins Animal studies PET Disease activity
68Ga-BMV101 Activated macrophages Cysteine cathepsins Human studies PET Disease activity
MPO-Gd Neutrophil degranulation Myeloperoxidase Animal studies MRI Disease activity, treatment response
111In-A20FMDV2 αvβ6 expression αvβ6 Animal, human studies PET, SPECT Disease activity, target expression, treatment response
[18F]FP-R01-MG-F2 αvβ6 expression αvβ6 Human studies PET Disease activity, target expression, treatment response
11C-BMT-136088 LPA expression LPA1 receptor Animal studies PET Target expression, treatment response
AA similar compound, 68Ga-DOTATATE, is FDA-approved for imaging of neuroendocrine tumors.
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est (43). In a mouse model of pancreatic ductal adenocarcinoma, 
delayed EP-3533 signal enhancement correlated to the amount of 
hydroxyproline on histologic analysis (42).

To enable clinical translation of this technology, an improved 
probe, CM-101, was developed (44). CM-101 uses the more stable 
macrocyclic gadolinium chelate, Gd-DOTA, and has improved 
pharmacokinetic properties compared with EP-3533, with 
decreased blood half-life, and less probe retention in the liver, 
bone, and kidneys. CM-101–enhanced MRI was performed in two 
rodent models of liver fibrosis induced by CCl4 or bile duct ligation 
(BDL), and increased image contrast was observed in the fibrotic 
animals with signal correlating with hydroxyproline content and 
morphometric analysis of collagen by histologic analysis.

The same type I collagen–binding peptide was also adapted 
for PET imaging (45, 46). 68Ga-CBP8 binds type I collagen with 
low micromolar affinity and is quickly cleared from the circulation 
into the urine (45). In two mouse models of bleomycin-induced 
pulmonary fibrosis, there was an excellent correlation between 
probe lung uptake and the amount of fibrosis at 7 and 14 days, 
as determined by Ashcroft score (a numerical index based on 
microscopy scoring of lung specimens) as well as hydroxyproline 
content. Probe uptake occurred in areas of fibrosis but not in areas 
of normal lung. Samples of explanted human lung tissue from pul-
monary fibrosis patients undergoing lung transplantation were 
incubated with 68Ga-CBP8 to determine the ability of the probe to 
bind to human tissue. The degree of probe binding correlated pos-
itively with collagen content. Together these results suggest that 
68Ga-CBP8 can accurately detect and stage collagen deposition.

Several other molecular probes allow for noninvasive collagen 
detection using SPECT or PET imaging techniques (45, 47–49). 
Collagelin is a high-affinity collagen probe identified from a screen 
focused on the platelet glycoprotein VI binding site on collagens 
I and III (47). 99mTc-collagelin imaging was performed in mouse 
models of myocardial infarction and pulmonary fibrosis, with trac-
er uptake occurring in areas of histologically confirmed fibrosis. 
Another type I collagen–targeted SPECT probe, 99mTc-CBP1495, 
was used to detect liver and pulmonary fibrosis in rat models, with 
probe uptake correlating with organ hydroxproline content (49).

Elastin is an ECM protein that is abundant late in the fibro-
sis process (50, 51). A gadolinium-based elastin-specific probe, 
Gd-ESMA, was reported to detect atherosclerosis extent using 
apolipoprotein E–deficient mice fed a high-fat diet (HFD) (52). Gd- 
ESMA demonstrated rapid clearance from the blood pool with low 
uptake in organs except for the kidneys. Mice were imaged at 4, 8, 
and 12 weeks after the start of HFD. Vessel wall signal increased 
as the degree of atherosclerosis progressed and decreased in the 
setting of statin therapy. Gd-ESMA–enhanced liver imaging was 
performed in mice treated with CCl4, with increased signal intensi-
ty detected in the livers of CCl4-treated versus untreated mice (53).

Collagen cross-linking is a marker of active fibrogenesis and 
is dependent on ECM-associated enzymes like the lysyl oxidases 
(36). These enzymes catalyze the oxidation of lysine residues to 
the aldehyde allysine as a precursor to the formation of cross-
linked collagen (54). Gd-Hyd is an allysine-reactive MR probe that 
detects fibrogenesis (55). In normal mice, Gd-Hyd quickly cleared 
from the blood with no uptake in the liver or lungs. Gd-Hyd–
enhanced MRI was performed in bleomycin-treated mice, with 

advanced fibrosis. 99mTc-3PRGD2, a probe with two cyclic RGD 
moieties, and SPECT/CT imaging were used to monitor the devel-
opment and resolution of thioacetamide-induced liver fibrosis in 
rats (29). Liver-to-background ratios correlated with the amount of 
collagen and expression of β3 integrin. Thioacetamide withdrawal 
and treatment with IFN-α2b resulted in a significant decrease of  
99mTc-3PRGD2 liver uptake.

RGD-based probes have been used to image myofibroblasts 
in cardiac tissue after myocardial infarction (30, 31). 99mTc-labeled 
Cy5.5-RGD imaging peptide (99mTc-CRIP) SPECT was performed 
using a mouse model of myocardial infarction resulting from 
artery occlusion (30). In contrast to healthy mice, tracer uptake 
was greatest in the infarcted area 2 weeks after myocardial injury 
and decreased at subsequent measured time points. 99mTc-CRIP 
uptake colocalized to myofibroblasts, which were identified by 
α-smooth muscle actin staining. The degree of 99mTc-CRIP uptake 
was mitigated in mice treated with an angiotensin-converting 
enzyme inhibitor and/or an angiotensin II receptor blocker. A 
similar RGD probe, 99mTc-RGD imaging peptide (RIP), was used 
at weeks 1, 3, and 8 after myocardial infarction in 10 subjects. Myo-
cardial uptake at 3 weeks corresponded to the location of scar at 
1 year determined by late-gadolinium enhancement on MRI (32).

Matrix deposition and cross-linking
Fibrosis results from increased deposition of ECM proteins (33). 
Activated fibroblasts and myofibroblasts produce structural pro-
teins, including type I collagen, fibronectin, and elastin, which 
together form fibrous tissue in the area of injury (33, 34). Type I 
collagen is the most abundant collagen in the body (35). Collagen 
is secreted from the cell as procollagen and undergoes modifica-
tion, cleavage, and cross-linking to form mature collagen fibrils 
(36). At present, no available clinical imaging modalities can 
assess the activity of collagen synthesis or the degree of collagen 
deposition. Currently used imaging techniques detect the end 
result of collagen deposition, such as cirrhosis or fibrotic intersti-
tial lung abnormalities.

EP-3533 is a peptide-based gadolinium probe with specificity 
for type I collagen (37). EP-3533–enhanced MRI was first evalu-
ated in mouse models of myocardial infarction (37, 38). Imaging 
performed at 40 days after myocardial injury demonstrated sus-
tained signal enhancement of the infarcted myocardium, and this 
signal was demonstrated to be specific to collagen binding (37). 
The circumferential extent of myocardial scarring was measured 
in high accuracy with EP-3533–enhanced MRI, using Picrosirius 
red staining of excised myocardium as the gold standard (38). 
EP-3533 MRI was also used to assess the amount of type I colla-
gen in liver fibrosis, pulmonary fibrosis, and pancreatic cancer 
(39–42). In murine models of carbon tetrachloride–induced (CCl4- 
induced) liver fibrosis and bleomycin-induced pulmonary fibrosis, 
EP-3533 accurately detected collagen deposition with changes in 
magnetic resonance (MR) signals correlating linearly to collagen 
content determined biochemically by hydroxyproline (40, 41). 
Within pancreatic cancer, the accumulation of fibrotic stroma 
plays an important role, with the extent of stromal growth (desmo-
plasia) inversely correlating with survival (5). The fibrotic tumor 
stroma also contributes to the resistance of pancreatic cancer to 
chemotherapy, making stroma-targeted therapies of great inter-
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the Gd-Hyd–induced change in lung-to-muscle contrast-to-noise 
ratio (CNR) being the primary measure. The change in CNR peak-
ed at week 2 and decreased at week 4, consistent with a sponta-
neous decrease in active fibrogenesis over time. The time course 
of the change in CNR paralleled tissue lysyl oxidase activity and 
total allysine content of the lung.

An oxyamine group substitution for the hydrazide in Gd-Hyd 
gave Gd-OA (56). Gd-OA binds allysine with a greater affinity 
than Gd-Hyd and also has a higher relaxivity, a measure of its 
signal-enhancing capability. Gd-OA had a rapid blood clearance 
with no uptake in the lungs of healthy mice, but high uptake in the 
lungs of bleomycin-injured mice, resulting in higher MRI signal. 
Treatment with a lysyl oxidase inhibitor resulted in decreases in 
lysyl oxidase activity, total allysine lung content, and MRI signal 
change to values approaching those of uninjured mice.

Fibrosis-associated processes
Vascular leak is one of the cardinal responses to tissue injury (13). 
While necessary to promote resolution of disrupted tissue integ-
rity, marked increases in vascular leak can become pathogenic. 
The persistence or overexuberance of leak can contribute to the 
development of fibrosis (57). Gadofosveset is an FDA-approved 
gadolinium-based contrast agent that reversibly binds serum 
albumin. After injection, at least 80% of circulating gadofosveset 
is albumin-bound at any one time (58). Gadofosveset can image 
vascular leak by assessing extravascular albumin accumulation. 
Gadofosveset’s ability to detect albumin extravasation was val-
idated using Evans blue dye (EBD) in a mouse model of accel-
erated atherosclerosis (59). Using apolipoprotein E–deficient 
mice fed HFD, MR signal intensity of the brachiocephalic artery 
vessel wall correlated with degree of EBD uptake and increased 
with atherosclerotic progression (59). We performed gadofosve-
set-enhanced lung MRI to detect vascular leak in patients with 
pulmonary fibrosis (60). Using an albumin extravasation index 
(the change in lung parenchyma signal intensity with contrast 
administration normalized to the change in aorta signal inten-
sity), we found that the lungs of patients with pulmonary fibro-
sis had increased albumin extravasation in all measured lung 
regions compared with the lungs of healthy volunteers. The 
increased vascular leak detected in pulmonary fibrosis occurred 
in areas of radiographically normal lung, as determined by CT, in 
addition to areas of known fibrosis.

Tissue injury also triggers the coagulation cascade as part of the 
normal wound-healing response, resulting in the formation of extra-
vascular fibrin (61); however, dysregulated coagulation contributes 
to the development of fibrosis (62). Through protease-activated- 
receptor signaling, coagulation factors like thrombin can trigger 
multiple profibrotic processes, including the influx of profibrotic 
mediators, TGF-β activation, fibroblast proliferation, and myofi-
broblast differentiation (63). EP-2104R is a fibrin-specific gadolin-
ium-based contrast agent that showed good efficacy in detecting 
thrombi in preclinical and clinical studies (64, 65). EP-2104R binds 
fibrin with a high specificity and has an 18-fold higher relaxivity than 
conventional gadolinium contrast agents (66). EP-2104R–enhanced 
lung MRI was used to detect increased fibrin deposition associated 
with fibrosis and to monitor the treatment effect of the thrombin 
inhibitor dabigatran in a murine model of pulmonary fibrosis (67). 

Fibrin deposition in the liver was also evaluated using Gd-P, a pep-
tide-gadolinium probe that binds to the fibrin- fibronectin complex 
(68), which is increased during liver injury (69). Using a CCl4 model 
of liver fibrosis, greater signal enhancement was demonstrated in 
injured mice compared with controls (70).

The innate and the adaptive immune system also become active 
in response to tissue injury (71), resulting in an influx of mononu-
clear cells and macrophages to the area of injury and the release of 
profibrotic cytokines, such as TGF-β, that activate fibroblasts and 
promote myofibroblast differentiation (33). Macrophage activity 
has been assessed using the cysteine cathepsin optical imaging 
probe BMV109 (72). Dual PET and optical imaging was performed 
in bleomycin-treated mice using 64Cu-BMV101. PET signal uptake 
peaked at day 14 and decreased by day 21. This decrease at day 21 
paralleled a reduction in macrophages detected on immunofluo-
rescence. 68Ga-BMV101 PET imaging was performed in a cohort 
of 3 subjects with IPF, 3 subjects with nonclassifiable pulmonary 
fibrosis, and 3 healthy controls (72). Standardized uptake values 
(SUVs) for all three groups were similar in the liver; however, SUVs 
in the lung were greatest in the IPF group, with nonclassifiable pul-
monary fibrosis values closer to those of healthy controls.

Myeloperoxidase (MPO) is released in the setting of neutro-
phil degranulation and activated macrophages (73). Increased 
MPO has been implicated in the pathogenesis of multiple disease 
processes, including atherosclerosis and NASH (74, 75). MPO may 
be important in the development of liver fibrosis through activa-
tion of hepatic stellate cells (HSCs) (76). The gadolinium contrast 
agent MPO-Gd was used to detect MPO activity in early myocar-
dial infarcts in a mouse model of coronary artery ligation (77). 
MPO-Gd was also able to differentiate steatohepatitis from ste-
atosis in mice and in human liver biopsy specimens (78).

Assessing target expression and confirming 
target engagement
There is increasing recognition that heterogeneity within fibrot-
ic diseases, such as IPF, is to some degree the result of underlying 
molecular heterogeneity yet to be elucidated (79). In oncology, the 
ability to stratify disease molecularly has revolutionized cancer care 
by allowing for a personalized and targeted treatment approach. 
Identifying molecular heterogeneity becomes a central issue for 
drug development for fibrotic diseases as clinical trials for new ther-
apies may fail when tested on all comers but could prove beneficial 
when tested in a subgroup with increased target expression. With-
out the ability to molecularly phenotype such patients, an effective 
treatment for a subset of patients may not be recognized. As tissue 
sampling can carry significant risk in fibrotic diseases (80), nonin-
vasive strategies for assessing target expression are needed.

The αvβ6 integrin is an important activator of the profibrotic 
cytokine TGF-β (81). αvβ6 is expressed on epithelial cells and upreg-
ulated in tissue injury (82). Increased αvβ6 expression has been 
demonstrated in fibrosis and cancer (83, 84). In the bleomycin mod-
el, an anti-αvβ6 antibody mitigated the development of fibrosis (85). 
A phase IIa clinical trial evaluating the safety and efficacy of an αvβ6 
humanized monoclonal antibody in IPF has been completed (Clin-
icalTrials.gov identifier NCT01371305). A20FMDV2 is a ligand 
with high affinity and specificity for αvβ6 that has been used to per-
form noninvasive imaging of αvβ6 expression (86, 87). 111In-labeled 
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A20FMDV2 SPECT/CT imaging detected increased expression of 
αvβ6 in bleomycin-treated versus untreated mice, and probe uptake 
was reduced when a large blocking dose of an anti-αvβ6 antibody 
was administered (87). The degree of expression correlated with the 
amount of αvβ6 protein and hydroxyproline content. This probe is 
being translated into humans with IPF for detection of αvβ6 expres-
sion using PET. A clinical trial is under way to evaluate the ability of 
a fluorine-18–labeled analog, [18F]FP-R01-MG-F2, to detect αvβ6 in 
IPF subjects (ClinicalTrials.gov identifier NCT03183570).

Lysophosphatidic acid (LPA) is an important profibrotic media-
tor that signals though its receptor LPA1 to promote vascular leak and 
fibroblast recruitment (88). The LPA/LPA1 pathway contributes to 
the development of fibrosis across multiple human disease process-
es (88–92), and a phase II clinical trial of an LPA1 receptor antagonist 
in IPF demonstrated a reduction in the degree of pulmonary func-
tion decline in the treatment arm (93). 11C-BMT-136088, a PET radi-
oligand for the LPA1 receptor (94), has been used in rhesus monkeys 
to determine LPA1 receptor expression in the lungs and other organs, 
volume of drug distribution, and amount of LPA1 receptor antagonist 
needed to block half of the receptor uptake of the PET probe (94).

Diagnosis and staging
While specific imaging findings can obviate the need for tissue sam-
pling, currently used imaging techniques often detect established 
or late-stage disease, making noninvasive methods for early diag-
nosis of fibrosis an urgent need. Staging of certain fibrotic diseases, 
such as liver fibrosis, still relies on histologic assessment, making a 
noninvasive staging strategy an ideal clinical alternative. Several of 
the imaging probes discussed were used early in the time course of 
murine models of fibrosis. In the bleomycin model, the EP-3533–
enhanced lung MR signal increased as early as day 5 after bleomy-
cin injury (41), while 68Ga-CBP8 detected collagen deposition at day 
7 (45). The use of EP-3533 in murine models of liver fibrosis was 
also able to detect early fibrotic changes, e.g., distinguishing Ishak 
stage 0 from Ishak stage 2 in histologically scored tissue (39, 95). 
EP-3533–enhanced MR was performed alongside MR elastography 
(MRE) in rats with liver fibrosis induced by different durations of 
diethylnitrosamine (95). Rats were staged for degree of fibrosis by 
Ishak score and collagen proportionate area. EP-3533 distinguished 
early-stage fibrosis with a high sensitivity, whereas MRE was best 
at distinguishing late-stage fibrosis. Combining EP-3533 molecular 
imaging with MRE increased the diagnostic accuracy for all stages 
of disease. Together these data suggest that collagen-specific probes 
can detect early fibrosis and noninvasively stage disease; however, 
validation in human fibrotic conditions is needed.

Measuring disease activity and cohort 
enrichment
Fibrotic diseases are also clinically heterogeneous in terms of dis-
ease progression. In IPF there can be marked differences in pace 
of disease progression between patients (96). This heterogeneity 
is also prominent in NASH, as some patients progress to cirrhosis 
while some experience disease stability or even regression (97). 
There are no clinically used methods to assess fibrotic disease 
activity or the pace at which an individual’s disease is progressing 
at any one point in time. From a clinical perspective, the determi-
nation of disease activity would enable improved prognostication 

and tailoring of an individual patient’s treatment plan. From a 
drug development perspective, the ability to determine disease 
activity would allow clinical trials for evaluation of novel therapies 
to be enriched with subjects most at risk for disease progression 
and most likely to benefit should a therapy be effective (98). Such 
a cohort enrichment strategy may increase statistical power, there-
by reducing the number of subjects needed to meet a prespecified 
endpoint and thereby decrease overall trial costs.

Several molecular imaging targets are aptly suited for assess-
ing disease activity in human fibrotic diseases. As type I collagen 
is the major ECM protein present in fibrotic tissue, recognition of 
freshly deposited type I collagen may serve as a marker of disease 
activity. When evaluated in two models of pulmonary fibrosis, the 
type I collagen–specific PET probe 68Ga-CBP8 accurately detect-
ed collagen deposition (45). Minimal probe uptake was detected 
in bone and skin, suggesting that 68Ga-CBP8 recognizes recently 
synthesized collagen. A clinical trial is currently ongoing to eval-
uate the ability of 68Ga-CBP8 to detect collagen deposition in IPF 
subjects (ClinicalTrials.gov identifier NCT03535545).

Since collagen cross-linking precedes the development of 
mature collagen, imaging of lysyl oxidase activity may be used to 
detect fibrogenesis. Gd-Hyd–enhanced MR accurately detected 
disease progression caused by CCl4 and reduced fibrogenesis in 
mice after withdrawal of CCl4 as assessed by histology and lysyl 
oxidase gene expression (55). These results suggest that lysyl 
oxidase–targeted MR probes can specifically detect and monitor 
fibrogenesis. Such information may be of significant clinical ben-
efit as currently used imaging techniques cannot differentiate 
between new and established fibrosis at any one point in time.

Determining treatment response and developing 
surrogate endpoints
Determination of treatment response for fibrotic diseases has 
relied on histologic changes, organ functional assessments, such 
as pulmonary function, and mortality. In NASH, for example, 
assessment of treatment response for investigational therapies 
has hinged on histologic analysis (99, 100). In IPF, recently con-
ducted clinical trials have used change in forced vital capacity at 
52 weeks as the primary outcome (6, 7). As disease progression 
within fibrotic diseases may be slow, prolonged trial duration is 
needed to detect such primary outcomes. Thus, surrogate end-
points for fibrotic diseases are needed to enable earlier determi-
nations of treatment response, thereby reducing trial duration 
and increasing trial feasibility (101, 102). Because of the ability 
to noninvasively detect upregulated pathways involved in fibrosis 
pathogenesis, molecular imaging becomes a promising candidate.

Several of the imaging probes discussed measured early changes 
with treatment in animal models of fibrosis. MRI using the MPO-tar-
geted probe MPO-Gd was performed sequentially in mice 4 and 24 
hours after myocardial infarction to assess changes in signal inten-
sity with atorvastatin treatment (77). CNR decreased from 4 to 24 
hours in mice treated with atorvastatin compared with untreated 
mice, in which CNR increased over the same time interval. Myofi-
broblast-targeted imaging with the RGD probe 99mTc-CRIP was per-
formed to assess anti-remodeling therapy after myocardial infarc-
tion in mice (31). 99mTc-CRIP imaging was performed 4 weeks after 
infarction in mice treated with losartan, captopril, spironolactone, 
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ducibility among subjects and different vendors’ scanners. Ultimate-
ly outcome data will be required to establish the clinical utility of 
the imaging test. In addition, imaging probes themselves are novel 
drugs and require extensive preclinical safety evaluation before they 
can be tested in humans, although this is relaxed with PET/SPECT 
probes because of the very low mass doses involved. Despite these 
challenges, we anticipate that several probes will successfully be 
translated into clinical use in the next few years (Table 1).

Conclusions
Over the past decade, molecular imaging has become a valuable 
tool for the assessment of cardiac disease, neurological disorders, 
and cancer. It is now poised to address the many pressing and 
unmet needs in fibrosis, including target engagement, noninvasive 
assessment of disease stage, patient stratification, and treatment 
response (Figure 1). While much of the work has relied on preclin-
ical models, the next steps will hinge upon successful translation 
into humans, and several of the molecular probes available are apt-
ly suited for clinical application. It is our hope that validated molec-
ular probes can be applied to multiple fibrotic indications and aid 
in the development of novel therapies and the advancement of care 
for those patients living with these debilitating diseases.
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or combination therapy and untreated mice. 99mTc-CRIP uptake 
decreased with treatment, with the greatest decrease detected with 
combination therapy. The degree of 99mTc-CRIP uptake correlated 
with echocardiographic parameters and histologic measurement of 
collagen deposition.

PET imaging with the type I collagen–specific probe 68Ga-CBP8 
was performed to assess the effect of an αvβ6-targeted antibody 
in the bleomycin model (45). Injured mice receiving antifibrotic 
treatment had reduced PET signal that paralleled a lower histolog-
ic fibrosis score and decreased hydroxyproline content compared 
with injured mice that received a noneffective antibody. EP-3533 
was used to monitor response to rapamycin therapy in a rat BDL 
model and accurately distinguished therapy responders from non-
responders (103). EP-3533 also quantified reduced fibrosis in BDL 
rats treated with the farnesoid X receptor agonist EDP-305 (104). 
In a mouse model of NASH, Gd-Hyd detected reduced fibrogen-
esis after treatment with EDP-305 (104). Reductions in Gd-Hyd–
enhanced MR signal correlated with decreases in collagen propor-
tionate area, hydroxyproline, and lysyl oxidase gene expression. 
Gd-Hyd–enhanced MRI could also be combined with other MRI 
protocols such as quantitative MR fat imaging to provide a com-
prehensive assessment of NASH. These data suggest that such 
probes could be used to detect early response to treatment.

Challenges and future directions
Several important challenges exist in developing molecular imag-
ing probes for human fibrotic disease. First, animal models may not 
reflect target concentrations in human disease, and probe pharma-
cokinetics and metabolism may also differ. Furthermore, quantifica-
tion of sensitivity and specificity will require an accurate truth stan-
dard, e.g., histology, which may not be readily available or feasible 
to obtain. Quantification also requires rigorous assessment of repro-
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