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Familial focal epilepsy with 
variable foci
When first described, autosomal domi-
nant familial focal epilepsy with variable 
foci (FFEVF) was initially puzzling, as 
family members with this disorder had 
seizures originating from different cortical 
regions (1). This presentation is unlike oth-
er genetic partial epilepsy disorders, such 
as autosomal dominant lateral temporal 
lobe epilepsy (ADLTE), which arises from 
leucine-rich glioma-inactivated 1 (LGI1) 
mutations, which are characterized by sei-
zures with symptoms (auditory auras in 
ADLTE) suggestive of more limited seizure 
initiation sites. Subsequently, mutations of 
DEP domain–containing 5 (DEPDC5) were 
shown to underlie FFEVF (2, 3); however, 
the molecular mechanisms responsible 
for the variable foci were unclear. Subse-
quently, it was determined that in a subset 
of patients, the seizure foci contains areas 
of cortical dysplasia (4, 5). As DEPDC5 is 
part of the GATOR1 complex, which neg-
atively regulates mammalian target of 
rapamycin complex 1 (mTORC1) (6), the 
stage was set for a second-hit mechanism 

of cortical dysplasia, as has been found 
for cortical tubers that result from muta-
tions of the tuberous sclerosis (TSC) gene. 
Like the DEPDC5-containing GATOR1 
complex, the TSC complex (TSC1/2) also 
inhibits mTORC1. A second-hit somatic 
mutation in TSC1/2 in cortical neuron pro-
genitors explains the variable sites of cor-
tical dysplasia that generate seizure foci as 
in tuberous sclerosis.

DEPDC5 takes a second hit  
in focal seizures
In this issue, Ribierre et al. (7) present a 
tour-de-force study that provides strong 
evidence for a germline and second allele 
somatic hit (nonsense loss-of-function 
mutation) of DEPDC5 in familial focal 
epilepsies with focal cortical dysplasia. 
The authors evaluated cortical resection 
specimens from DEPDC5 heterozygous 
subjects with focal epilepsy. In addition 
to the genetics, mTORC1 signaling was 
hyperactive, as evidenced by increased 
neuronal soma size and elevated phos-
phorylated S6 in the dysplastic neurons of 
the human seizure resection specimens. 

These detailed genetic and biochemical 
correlations in the human tissues then led 
them to design tests of causality in a mouse 
model, in which they reconstituted many 
features of the human disorder. Together, 
the results of Ribierre et al. provide com-
pelling evidence to support the conclusion 
that focal epilepsy arising from DEPDC5 
heterozygous mutations occurs through a 
second-hit loss of function of the second 
allele, as occurs in tuberous sclerosis.

The mouse model developed by Rib-
ierre and colleagues allowed for further 
investigation into the cellular and molec-
ular mechanisms of DEPDC5 mutation–
driven focal epilepsy (7). The authors used 
an elegant approach of in vivo, in utero 
electroporation to deliver a CRISPR-Cas9 
vector that allowed targeted homozygous 
deletions of Depdc5 alleles in cortical neu-
ronal progenitor cells of the subventricular 
zone of fetal mouse brains. This targeted 
deletion led to deficits in neuronal migra-
tion, which were rescued by the treatment 
of pregnant dams with the mTORC1 inhib-
itor rapamycin. Moreover, neurons with 
homozygous Depdc5 inactivation had ele-
vated levels of phosphorylated S6, which 
is indicative of mTORC1 activation, and 
increased soma size. These observations in 
the murine neurons recapitulated the find-
ings in the human seizure resections (Fig-
ure 1). Importantly, mice with focal cortical 
mosaic homozygous deletions of Depdc5  
suffered seizures, recorded by EEG, with 
tonic-clonic posturing in some cases and 
sometimes ending in seizure-related  
spontaneous death (a potential focal  
seizure–induced sudden death in epilepsy 
[SUDEP] model).

Conclusions
The evidence that pathogenic somatic 
mutagenesis is a cause of neurologic dis-
orders is rapidly growing. Many genes 
involved in the mTOR and related signal-
ing pathways have now been identified in 
focal and hemimegalencephaly cortical 
dysplasia cases (8–12). For many of the 
identified genes, it remains unclear exactly 
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Loss-of-function mutations in a single allele of the gene encoding DEP 
domain–containing 5 protein (DEPDC5) are commonly linked to familial 
focal epilepsy with variable foci; however, a subset of patients presents with 
focal cortical dysplasia that is proposed to result from a second-hit somatic 
mutation. In this issue of the JCI, Ribierre and colleagues provide several 
lines of evidence to support second-hit DEPDC5 mutations in this disorder. 
Moreover, the authors use in vivo, in utero electroporation combined with 
CRISPR-Cas9 technology to generate a murine model of the disease that 
recapitulates human manifestations, including cortical dysplasia–like 
changes, focal seizures, and sudden unexpected death. This study provides 
important insights into familial focal epilepsy and provides a preclinical 
model for evaluating potential therapies.
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