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Introduction
High-throughput sequencing has revolutionized molecular medi-
cine. In hematology, genomic technologies have unveiled the com-
plex genomic landscape of blood pathologies including myelodys-
plastic syndrome (MDS) and acute myeloid leukemia (AML) (1–3). 
The formidable challenge now is to decipher vast genetic blueprints 
harboring abundant “variants of undetermined significance” to dis-
cover clinically important aberrations. Major efforts focus on elu-
cidating how single mutations or combinations thereof cause MDS 
and AML and impact treatment responsiveness or resistance.

The study of familial MDS/AML has unique power to identify  
leukemogenic drivers and elucidate multistep mechanisms in 
which a risk allele enables acquisition of additional mutations 
or confers hypersensitivity to secondary insults, either genetic 
or environmental, thus causing progressive bone marrow (BM) 
failure and/or MDS/AML. Since the identification of RUNX1 as 
the first nonsyndromic monogenic familial MDS/AML gene (4), 
more than 65 genes with diverse biologic functions have been 
implicated in contributing to MDS/AML risk (Table 1, Table 2, 
and refs. 5–7). Efforts to catalog the diverse clinical phenotypes, 
disease penetrance and latency, germline mutation spectra, and 
cooperating acquired mutations have provided insight into the 
organ systems and cell lineages that rely on each gene. These 
data also inform how each germline mutation uniquely disrupts 
protein function(s), whether it generates haploinsufficiency, 

dominant-negative or ectopic protein functions, or amalgamated  
gain-of-function and loss-of-function defects to disrupt cellular 
phenotypes and instigate MDS/AML.

Among MDS/AML risk loci, GATA2, RUNX1, ETV6, and 
CEBPA encode transcription factors with vital functions to 
control hematopoietic stem and progenitor cell (HSPC) devel-
opment and differentiation. Comparing and contrasting pheno-
types caused by germline and somatic mutations in these genes 
in mouse and human systems has yielded fundamental insights 
into the complexity and interconnectedness of networks that 
govern hematopoiesis. This Review describes how germline 
mutations dysregulating hematopoietic transcription factors in 
familial MDS/AML inform pathogenesis.

GATA-2 deficiency syndrome
Mechanistic foundations. Germline GATA2 coding and regulatory ele-
ment mutations cause immunodeficiency, MDS/AML, lymphatic 
vascular dysfunction, and other complex phenotypes (Table 3) (8–13). 
To understand how distinct mutations in one gene instigate diverse 
pathologies, it is instructive to rigorously establish a foundation for 
GATA2 function at the molecular, cellular, and physiological levels.

The discovery of the founding member of the GATA tran-
scription factor family, GATA-1, initiated a richly productive phase 
of research that unveiled numerous mechanistic insights. As 
reviewed elsewhere (14, 15), efforts to elucidate mechanisms gov-
erning developmental changes in globin gene expression identi-
fied a transcription factor termed GATA-1 (16, 17) that bound with 
specificity to WGATAR-containing DNA (18–20). Targeted dele-
tion of murine Gata1 abolished definitive erythropoiesis, yielding 
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switch, represses Gata2 expression, which enables erythroid pre-
cursors to progressively mature into erythrocytes (14, 43).

Mutant mice lacking individual “GATA switch sites” demon-
strate essential activities of enhancers +9.5 and –77 kb relative 
to the Gata2 transcription start site (Figure 2) for hematopoiesis 
and embryogenesis (12, 29). The +9.5 intronic enhancer triggers 
HSC emergence in hemogenic endothelium of the aorta-gonad- 
mesonephros (AGM) region of the embryo, and its deletion 
depletes HSCs (12, 28). The –77 distal enhancer regulates myeloid 
progenitor differentiation but not HSCs or function in the mouse 
embryo (29). Individual emergence of deletions of the other GATA 
switch sites (–1.8, –2.8, and –3.9) (44–46) have little or no impact on 
hematopoiesis (47–49).

Why do deletions of different enhancers at the same locus 
yield embryonic lethality, yet differentially affect hematopoiesis?  
Compound-heterozygous mice lacking one copy each of the +9.5 
and –77 enhancers on different chromosomes are embryonic lethal, 
which resembles homozygous deletions of either enhancer alone 
(50). These compound heterozygous mice exhibit normal HSC 
emergence but defective myeloid progenitors. While one +9.5 copy 
suffices to induce HSC emergence, the +9.5 and –77 enhancers must 
reside on the same chromosome for normal progenitor biology. This 
mechanism, in which both enhancers function in concert in progen-
itors, but not in HSCs, exemplifies the context-dependent nature of 
GATA-2 regulation.

Downstream of GATA-2 expression, GATA-2–regulated 
genetic networks are highly context-dependent (12, 28, 29, 50, 
51), involving variable composition and activity of coregulators 
and transcription factors within distinct cell types and even sub-
nuclear domains within a single cell type. For example, in eryth-

anemia and embryonic lethality (21). GATA-1 also controls mega-
karyocyte (22), eosinophil (23), and basophil (24) differentiation.

In contrast to lineage-restricted GATA-1 functions, targeted  
deletion of Gata2 abrogates multilineage hematopoiesis (25). This 
discovery established GATA-2 as the first protein that endows 
hematopoietic stem cells (HSCs) with the capacity to generate all 
blood cells. Studies of mice with conditional deletions of Gata2 and 
Gata2 enhancer mutations (12, 26–31) extended its vital develop-
mental activity to adult hematopoiesis and delineated GATA-2–
dependent cellular/molecular steps and genetic networks (Figure 1) 
controlling hematopoiesis. GATA-1 and GATA-2 function through 
multimeric complexes assembled on WGATAR motifs or E-box–
spacer–WGATAR composite elements (20, 32). Despite having the 
capacity to function through the same motif at the same locus (in 
different developmental contexts), the influence of GATA-1 versus 
GATA-2 on transcription can differ. Furthermore, reducing the lev-
els of GATA factor complex components can differentially impact 
GATA factor–dependent target gene ensembles (33).

GATA-2 is an unstable protein (t1/2 < 1 hour) degraded by 
the ubiquitin-proteasome system (34, 35). During embryogen-
esis, BMP4 induces GATA-2 expression (36, 37). The blood- and  
vascular-regenerative transcription factor ETV2 (38–40), one of 
the approximately 30-member ETS transcription factor family 
that also includes ETV6, occupies the Gata2 locus (41). GATA-
2 also occupies conserved noncoding DNA regions in the Gata2 
locus that assemble GATA-2 and GATA-1 complexes in a context- 
dependent manner (42–44). Gata2 transcription positively cor-
relates with GATA-2 occupancy at these sites, implying autoreg-
ulation (14, 15, 42). In contrast, GATA-1/FOG-1–dependent dis-
placement of GATA-2 from these chromatin sites, deemed a GATA 

Table 1. Mutations in DNA repair genes implicated in cellular mechanisms of familial MDS/acute leukemia

Base excision repair Homologous  
recombination

Mismatch  
repair

Nonhomologous 
end joining

Transcription  
deficiency

Other DNA  
repair

MBD4 ATM, FANCA, FANCB, FANCC, BRCA2 (FANCD1), FANCD2, FANCE,  
FANCF, FANCG, FANCI, BRIP1, (FANCJ), FANCL, FANCM,  

PALB2 (FANCN), RAD51C (FANCO), SLX4 (FANCP), ERCC4 (FANCQ),  
RAD51 (FANCR), BRCA1 (FANCS), UBE2T (FANCT), XRCC2 (FANCU),  

REV7 (FANCV)  

EPCAM, MLH1, 
MSH2, MSH6,  

PMS2

LIG4 ERCC6L2 BLM, NBN

 

Table 2. Mutations in diverse genes implicated in cellular mechanisms of familial MDS/acute leukemia

DNA damage–
sensing

Cell 
proliferation

Cytokine 
signaling

Hematopoietic 
transcription 

factors

Neutrophil 
biology

Protein 
ubiquitination

RAS 
pathway

Ribosome 
biology

Telomere 
biology

Unresolved 
mechanism

TP53 SAMD9, SAMD9L SH2B3 CEBPA, ETV6, 
GATA1, GATA2, 

IKZF1, MECOM1, 
PAX5, RUNX1

CSF3R, ELANE,  
WAS

RBBP6 CBL, NF1,
PTPN11

RPL11, RPL5, 
RPS19,  
RPS26,  
SBDS,  
SRP54

ACD, CTC1, DKC1, 
NAF1, NHP2, 

NOP10, PARN, 
POT1, RTEL1,  
TERC, TERT,  
TINF2, USB1, 

WRAP53

ANKRD26,  
ATG2B (GSKIP), 

DDX41,  
SRP72

This table includes genes in the listed pathways that have been observed in at least one patient who developed MDS or acute leukemia. Additional genes 
in these pathways that have been observed only in bone marrow failure presentations are not included.
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terminal zinc finger (C-finger) domain was reported in 9% (8 of  
85) of accelerated- or blast-phase chronic myeloid leukemia 
(CML) cases (62, 63). In reporter assays, p.L359V-mutated 
GATA-2 exhibited greater activation and repression activities, 
in comparison with wild-type GATA-2, consistent with a gain of 
function. In mice, p.L359V cooperated with BCR/ABL to induce 
myelomonocytic leukemia. In contrast, GATA-2 N-terminal zinc 
finger (N-finger) mutations are acquired in 20%–39% of biallelic  
C/EBPα-mutated AML (64). However, the function of the  
N-finger, which differs from the C-finger in not being required for 
binding to WGATAR sequences (65), and how acquired N-finger 
mutations alter GATA-2 activity are unclear.

Heterozygous germline GATA2 mutations cause diverse 
clinical presentations, including familial MDS/AML alone (9), 
MonoMAC and DCML syndromes (immunodeficiency syn-
dromes featuring monocytopenia, B cell, NK cell, and dendritic 
cell deficiencies along with pulmonary alveolar proteinosis and/or  
unusual or severe infections including disseminated nontubercu-
losis mycobacterium, extensive HPV-related warts, and opportu-
nistic fungal or viral infections) (10, 11, 66), Emberger syndrome 
(primary lymphedema with predisposition to MDS/AML) (8), 
chronic neutropenia (67), pediatric or young adult–onset MDS 
often with monosomy 7 (68, 69), and aplastic anemia (70). These 
presentations are now considered to be the spectrum of a single 
disease entity, termed GATA-2 deficiency syndrome.

Another enigmatic feature of GATA-2 deficiency syndrome 
is the highly variable time of symptom onset (71). While symp-
toms can present in young children, adults can be asymptomatic, 

roid precursors, GATA-2 induces Gata1 and Kit transcription (50). 
GATA-1 represses Kit transcription (52, 53) to promote prodifferen-
tiation erythropoietin signaling (54) and represses Gata2 transcrip-
tion (43, 55–57). In HSPCs, GATA-2 induces 20 G protein–coupled 
receptors, including GPR65 (58). Downregulating GPR65 increases  
HSC emergence as a result of a negative-feedback loop that 
establishes repressive chromatin, restricts Scl/TAL1 occupancy  
at the +9.5 enhancer, and decreases Gata2 transcription (58). In 
the AGM, GATA-2 induces RUNX1 and other transcriptional reg-
ulators of hematopoiesis, including Scl/TAL1 and the zinc finger  
proteins GFI1 and GFI1b (28). Because these transcription fac-
tors establish/maintain genetic networks (59–61), and because  
GATA-2 is expressed in cells containing these factors, the networks 
are interdigitated, and a subset of the components are coregulated 
(Figure 1). How these networks parse into circuits involving auto-
regulatory, feed-forward, and feedback loops and how circuits 
interdigitate to establish, maintain, buffer, and remodel network 
integrity to mediate GATA-2 function are of considerable interest. 
Deciphering the context-dependent mechanisms governing GATA-
2 regulation and function will be critical to understand and treat the 
diverse GATA-2–dependent pathologies in humans.

GATA-2 dysfunction in human pathologies. As expected from 
the discoveries described above in mouse models, acquired muta-
tions in human GATA2 are associated with multiple pathologies 
(Table 3). Although GATA2 mutations are relatively rare, occur-
ring in less than 5% of MDS/AML cases overall (Table 4), specific 
subsets are enriched for different GATA2 mutations. An acquired 
recurrent mutation (p.L359V) in the DNA-binding carboxy- 

Figure 1. Ensuring normal hematopoiesis by establishing and maintaining genetic network integrity. The diagram on the left depicts the GATA-2–
dependent increase in RUNX1 expression (28, 99), and both independent and collective functions of these transcription factors to establish and main-
tain genetic networks. The question mark denotes uncertainty as to whether RUNX1 might control GATA-2 expression. The diagram on the right depicts 
how an inhibitory GATA-2 C-finger mutation corrupts network integrity. The model assumes that network integrity ensures normal hematopoiesis, and 
numerous opportunities exist to corrupt integrity, thereby creating a predisposition or vulnerability to a battery of genetic or environmental insults that 
trigger pathogenesis. For simplicity, the diagram illustrates GATA-2 and RUNX1 actions, yet numerous components are involved, including other genes and 
their respective proteins subject to germline mutations that create a predisposition for MDS/AML, e.g., C/EBPα. In addition, there may be instances in 
which GATA-2–dependent pathogenesis is independent of RUNX1 and vice versa. The rectangles at the bottom represent individual genes, with the colors 
representing variable levels of gene activity. The white rectangles within the corrupted network reflect little or no transcriptional regulation. Red X, blocked 
path; hatched line, disrupted regulatory connection. N, N-finger; C, C-finger; RHD, Runt homology domain; TAD, transactivation domain.
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of GATA2 expression and possibly symptom 
onset in humans with heterozygous muta-
tions, consistent with epigenetic regulation 
of mouse Gata2 (43, 46, 58, 81, 82). Envi-
ronmental factors, e.g., infection or other 
stresses that can sculpt epigenomes (83), 
might also trigger pathogenesis, but these 
remain poorly defined.

More than 100 unique GATA2 germline 
mutations have been reported. From the three 
largest series (67, 68, 73, 74), approximately 
45% are missense or small in-frame inser-
tions or C-finger deletions. C-finger residues 
p.T354, p.R361, p.R396, and p.R398 are recur-
rent germline missense mutation sites. Forty 
percent yield truncations prior to or within the 
C-finger, 5% are whole gene deletions, and 
10% reside in the +9.5 enhancer (68, 73, 74). 
De novo mutations are frequent, seen in 22% 
(6 of 27) of those presenting with chronic neu-
tropenia or GATA-2 deficiency symptoms and 

70% (7 of 10) of children/adolescents with MDS lacking a history of 
GATA2-related symptoms.

Despite growing reports of mutations, the heterogeneous 
disease presentations, small patient cohorts, rarity of individual 
mutations, and dearth of biologically instructive in vitro assays 
have made rigorous genotype/phenotype correlations difficult 
to establish. A recent analysis of p.T354M and p.R307W function 
in a genetic complementation assay in primary cells from Gata2 
–77 enhancer mutant mice revealed defective activity at certain 
loci, with retention of activity or even hyperactivity at other loci 
(84). The locus-specific dysregulation of GATA-2 activity sug-
gests that disease phenotypes involve an amalgamation of loss-of- 
function and gain-of-function phenotypes (Figure 2). In vivo 
correlations observed across two or more human patient series 
currently include differences in symptom penetrance, immuno
deficiency, MDS/AML risk, and lymphedema prevalence. Nearly  
complete penetrance of GATA-2 deficiency–related symptoms 
was observed in carriers of truncating or deletion-type mutations, 
whereas a small subset of carriers of missense and +9.5 enhancer 
mutations remain asymptomatic into adulthood (68, 79, 85). 
Interindividual comparisons of disease phenotypes, including in  
related individuals carrying p.T354M and p.R396Q, have sug-
gested a lower cumulative incidence of immunodeficiency but a 
higher cumulative incidence of MDS/AML with p.T354M (85). It 
remains to be determined whether additional shared genetic or 
environmental risk factors explain these differences or whether the 
functional consequences of individual mutations can be distinct. 
Lymphedema is more frequent in carriers of null mutations (72, 
74) and with some missense mutations (8, 73). Mutation-specific 
effects on GATA-2 activity impact its function through the PROX1 
enhancer (86, 87). PROX1 encodes a lymphatic development reg-
ulator (88), and disruption of GATA-2–dependent PROX1 regula-
tion constitutes a cell type–specific mechanism underlying one 
facet of GATA-2 deficiency syndrome. Establishing mutation- and 
context-specific associations involving other components of the 
pathologies will guide the development of organ-specific therapies.

suggesting that a germline heterozygous GATA2 mutation alone 
is insufficient for disease. Either mechanisms suppress GATA2 
mutation–instigated pathogenesis, or other genetic or environ-
mental insults constitute the breaking point for overt disease 
development. In line with this hypothesis, even before peripheral 
blood (PB) cytopenias develop, clonal hematopoiesis is evident 
in the PB via skewed X chromosome inactivation (72). This may 
progress to an aplastic anemia–like presentation (69, 70), reminis-
cent of HSPC loss in GATA-2–deficient murine models. However, 
acquisition of a second GATA2 mutation at the time of MDS or 
marrow failure in human disease has not been reported.

Also consistent with a mechanism in which additional aber-
rations are disease triggers, the risk of overt hematologic malig-
nancy development increases with age from about 10% by age 10 
to 50%–80% by age 40 (72–74). Most initial presentations involve 
MDS featuring hypocellularity, atypical megakaryocytes, fibrosis, 
and acquired cytogenetic abnormalities, of which monosomy 7 
and trisomy 8 are the most frequent (68, 73, 74). ASXL1 mutations 
are acquired at the time of malignancy in about 30% of cases and 
correlate with a chronic myelomonocytic leukemia (CMML) phe-
notype and monosomy 7 (75–79), suggesting cooperation between 
these genetic lesions and the germline GATA2 mutation in malig-
nant progression. SETBP1 and STAG2 mutations are also recurrent 
in this setting (77, 80).

A unique case study of multiple members of a family with 
the recurrent germline p.T354M mutation provided clues 
regarding mechanisms underlying symptom onset. One family 
member exhibited monoallelic expression of the mutated allele 
during a symptomatic period early in life, but regained biallelic 
expression later when her PB counts and BM normalized (79). 
She also carried an acquired ASXL1 mutation that persisted for 6 
years without progression to overt malignancy, suggesting that 
combined GATA2 and ASXL1 mutations alone are insufficient 
for MDS/AML. Her father and uncle, carriers of the familial 
mutation, had biallelic GATA2 expression and remained asymp-
tomatic into adulthood. This study implicates epigenetic control 

Figure 2. Pathogenic consequences of GATA-2 deficiency and excess. Physiological GATA-2 levels 
in HSPCs are conferred by the Gata2 +9.5 and –77 enhancers in the mouse, and these enhancers 
are conserved in humans (14). While the enhancers are GATA-2–occupied, the ensemble of proteins 
and mechanisms governing enhancer activities are not yet known. Deviations from a physio-
logical window of GATA-2 expression, either deficiency or excess, are pathogenetic (14). Coding 
region mutations decrease or increase GATA-2 levels and/or activity, and these alterations can 
be locus-specific (84). GATA-2 enhancer mutations decrease GATA-2 levels (12, 13). Since GATA-2 
hyperphosphorylation increases GATA-2 activity in a locus-specific manner (183, 184), presumably, 
dysregulated cell signaling mechanisms can also yield excessive GATA-2 activity.
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transcription factor family (91) and mediates CBF-β dimerization 
and DNA binding (92–94).

Targeted deletion of murine Runx1 is embryonic lethal and is 
associated with defective fetal liver hematopoiesis, reduced HSPC 
genesis/function, and hemorrhaging (95–98). During the endo-
thelial-to-hematopoietic transition in the AGM, GATA-2 increases  
Runx1 expression (ref. 28 and Figure 1). GATA and ETS motifs 
within a Runx1 +23.5-kb intronic enhancer are required for hema-
topoietic activity in transgenic mice (99), suggesting that GATA-2 
directly activates Runx1. GATA-2 and RUNX1 can occupy neigh-
boring chromatin sites, along with an ensemble of other factors 
(100, 101), implying their collective function in certain contexts. 
As RUNX1 controls HSC emergence from the AGM (102–104) and 
hemogenic endothelium function in vitro (105), it is attractive to 
consider a model in which GATA-2 activates RUNX1 expression in 
hemogenic endothelium and/or its cell progeny, and both factors 
function collectively (and perhaps independently) at a target gene 
ensemble to establish genetic networks that orchestrate HSPC 

Disorders caused by RUNX1 and ETV6 mutations
The autosomal dominant disorders familial platelet disorder with 
propensity to myeloid malignancy (FPDMM) and thrombocytopenia 
5 (THC5), caused by heterozygous mutations in RUNX1 and ETV6, 
respectively, share the clinical triad of thrombocytopenia with nor-
mal platelet size, mild bleeding tendency, and hematopoietic malig-
nancy predisposition. Given the similarities, it is instructive to con-
sider mechanistic links between these genes and their phenotypes.

Familial platelet disorder with propensity to 
myeloid malignancy (FPDMM)
Mechanistic foundations. RUNX1, formerly known as acute myeloid 
leukemia protein 1 (AML1), resembles GATA-2 in functioning as a 
master regulator of definitive hematopoiesis. RUNX1 encodes the 
α subunit that dimerizes with a β subunit to yield a functional core 
binding factor (CBF) heterodimeric transcription factor that binds 
the DNA consensus YGYGGTY and activates or represses tran-
scription (89, 90). The RUNX1 Runt domain characterizes a small 

Table 3. Hematopoietic transcription factors implicated in familial MDS/acute leukemia syndromes: germline presentations

Hematologic malignancy characteristics Other hematologic 
manifestations

Other organ system 
manifestations

Inheritance pattern and 
penetrance ReferencesGene Type(s) Karyotype Acquired mutations

CEBPA AML often with  
abnormal 

eosinophils

Normal karyotype Second CEBPA mutation 
(100%), GATA2 (56%;  

in ZF1), WT1 (33%),  
EZH2, SMC3, TET2,  

NRAS, others

None None AD with near-complete  
penetrance for AML

171–173

GATA2 MDS, CMML,  
AML,  

T cell ALL

Monosomy 7,  
trisomy 8, normal 

karyotype,  
complex or other 

karyotypes

ASXL1 (29%), SETBP1, 
STAG2, others

Monocytopenia  
(49%–78%),  

B lymphopenia  
(78%–100%), NK cell 
lymphopenia, CD4+ T 

lymphopenia, neutropenia, 
anemia, thrombocytopenia, 

aplastic anemia  
(uncommon)

Lymphedema (11%–20%), 
infections (mycobacterial 
[20%–50%], viral [10%–
20%], fungal [9%–16%], 

bacterial), HPV-related 
warts (60%–70%),  
pulmonary alveolar 

proteinosis or other lung 
abnormalities, venous 

and arterial thromboses, 
miscarriage, autoimmunity

AD with variable penetrance  
for all features, but high  

penetrance for hematologic 
malignancies

8–13, 
66–80

RUNX1 MDS, AML,  
T cell ALL

Trisomy 21,  
various others

Second RUNX1  
abnormality is most 

common; CDC25, TET2,  
CBL, TP53, FLT3, KRAS, 

others

Thrombocytopenia,  
platelet dysfunction,  

aplastic anemia  
(uncommon)

Eczema AD with variable penetrance  
for low platelets and  

hematologic malignancies

4, 118–120, 
125–129

ETV6 B cell ALL,  
MDS, CMML,  

AML, MM

B-ALL: high 
hyperdiploidy  

(64%)

Thrombocytopenia (100%), 
platelet dysfunction, 

macrocytosis  
(uncommon)

Mild learning deficits? 
GI motility deficits or GI 

cancers?

AD with near-complete  
penetrance for low platelets; 

variable penetrance for  
hematologic malignancies

 149–156

IKZF1 Pre–B-ALL,  
T cell ALL

High hyperdiploidy 
(38%),  

ETV6-RUNX1, MLL,  
and other 

rearrangements;  
9p loss

PAX5 (19%),  
KRAS or NRAS  
(26%), TP53,  

JAK2, FLT3, MTOR

Common variable 
immunodeficiency with  

low immunoglobulin levels,  
B and T cell  

deficits; myeloid deficits  
also seen with dominant-

negative alleles  
(p.N159T/S in ZF2)

Autoimmunity,  
infections (bacterial,  

fungal, viral)

AD with variable penetrance 189–193

PAX5 Pre–B-ALL 9p loss via i(9)(q10) 
or other

None None AD with variable penetrance 194

AD, autosomal dominant; ALL, acute lymphoblastic leukemia; AML, acute myeloid leukemia; CMML, chronic myelomonocytic leukemia; MDS, 
myelodysplastic syndrome; MM, multiple myeloma; ZF, zinc finger.
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emergence and function (Figure 1). In support of this model, 
GATA-2 (106, 107) and RUNX1 (108, 109) control megakaryopoie-
sis, and disrupted megakaryopoiesis and atypical megakaryocytes 
are hallmarks of GATA-2– and RUNX1-linked pathologies (4, 70).

Conditional Runx1 deletion studies identified PU.1, another  
ETS-family transcription factor, as a major component of the 

RUNX1-regulated genetic network (110). Restoration of PU.1 
expression in Runx1-knockout mice or mice with mutations in 
PU.1 upstream regulatory elements where RUNX1 binds can 
partially or fully rescue hematopoietic defects in either system. 
Expression profiling of patient platelets containing a heterozygous 
RUNX1 mutation revealed the downregulation of direct RUNX1 

Table 4. Hematopoietic transcription factors implicated in familial MDS/acute leukemia syndromes:  
germline versus acquired genetic variation	

Gene Hematopoietic phenotypes  
in knockout mice

Germline mutation types 
and locations

Germline mutation 
frequency

Acquired mutation 
types and locations

Acquired mutation 
frequency

Impact of acquired 
mutations on 
hematologic 

malignancy prognosis

References

CEBPA Myeloid maturation block  
similar to M2 AML

N-terminal frameshift prior 
to second ATG (majority), 
C-terminal leucine zipper  

in-frame insertions or 
deletions (rare)

AML: 1% N-terminal frameshift 
prior to second ATG, 
C-terminal leucine 

zipper in-frame 
insertions or deletions

AML: 4% AML: favorable 
prognosis in biallelic 

CEBPA-mutated cases

1, 162, 164, 
170–176

GATA2 Embryonic lethal; abrogates 
multilineage hematopoiesis

Missenses or small in-frame 
insertions or deletions 
in C-terminal ZF (45%) 

(p.T354M, p.R361, p.R396, 
and p.R398 are recurrent 
sites); truncating prior to 

C-terminal ZF (40%); intron 
5 (“+9.5”) enhancer (10%); 

large deletions (5%)

Childhood MDS: 7%; 
chronic neutropenia: 

6 of 14 probands with 
other GATA2 features; 

adult MDS/AML/
CMML: unknown

Accelerated-/blast-
phase CML: 10% and 
located in C-terminal 
ZF (p.L349V); biallelic 
CEBPA mutated AML: 

20%–39% and 
located in N-terminal 

ZF

MDS: <5%;  
AML: <1%

No clear impact on 
outcome other than 

adverse effect of inv(3) 
translocation that brings 
GATA2 enhancer (“–77”) 
near EVI1 in MDS/AML

1, 25, 62–64, 67, 
68, 73, 74, 186   

RUNX1 Embryonic lethal; defective fetal 
liver hematopoiesis

Truncations and large 
deletions (70%); missenses 

cluster in RUNT domain; 
complex 21q abnormalities

MDS/AML: unknown B cell ALL: 
translocations, 

amplifications; MDS: 
missense, truncating; 
AML: translocations, 
missense, truncating

B cell ALL: ETV6-RUNX1 
in 22%; MDS: 10%–
15%; AML: 7%–9% 

including RUNX1-
RUNX1T1 in 5%

B cell ALL: favorable 
prognosis with ETV6-
RUNX1 translocation; 
MDS: adverse; AML: 

favorable with RUNX1-
RUNX1T1 translocation; 
inconclusive with other 
RUNX1 abnormalities

1, 4, 95–98, 
118–120, 186, 

187, 195

ETV6 Embryonic lethal; lack of all 
hematopoietic lineages if  
absent in bone marrow

Missenses most common 
with majority in ETS domain 
and 1 recurrent mutation at 
p.P214L in linker domain; 
truncations throughout 

the gene

Childhood ALL: 
0.8%; inherited 

thrombocytopenia: 
2.6%

B cell ALL: 
translocations most 

common; MDS: 
missenses, truncating; 
AML: translocations, 

missenses, and 
truncating

B cell ALL: ETV6-RUNX1 
in 22%; MDS: 3%; 

AML: 1%

B cell ALL: favorable 
prognosis with ETV6-
RUNX1 translocation; 

MDS: adverse

1, 136–140,  
149–155,  

185–188, 195

IKZF1 B cell, T cell, erythroid,  
and myeloid deficits

Missenses throughout 
gene (majority); truncating 

throughout gene; large 
deletions

Childhood B cell ALL: 
0.9%

B cell ALL: deletions 
most common 
(isoforms with 

exons 4–7del have 
dominant-negative 

activity whereas 
larger deletions are 
haploinsufficient); 

truncations and 
missenses less 

common

T cell ALL: 4%; B 
cell ALL: 20%–30% 

(includes 3% of ETV6-
RUNX1 translocated 

cases and 70% of BCR-
ABL or BCR-ABL–like 

ALL)

Adverse 189–193

PAX5 B cells arrested at  
pro–B cell stage

p.G183S 2 Families B cell ALL: deletions 
most common; 

missenses (including 
p.G183S), truncations 
throughout the gene, 
and rearrangements 

less common

B cell ALL: 30% No clear impact on 
outcome

192, 194–197

Transcript numbers: CEBPA, NM_004364; GATA-2, NM_032638; RUNX1, NM_001754; ETV6, NM_001987; IKZF1, NM_006060; PAX5, NM_016734.
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target genes including 12-lipoxygenase (ALOX12), platelet myosin 
light chain (MYL9), pallidin (PLDN), and thrombopoietin recep-
tor (MPL) (111). These genes are involved in diverse platelet path-
ways, mirroring human FPDMM platelet abnormalities, including 
decreased platelet aggregation and ATP secretion in response to 
agonists, dense and α-granule deficiencies, and decreased platelet 
thrombopoietin receptors (112).

RUNX1 occupies target sites in the 5′-UTR of ANKRD26, 
which encodes an ankyrin repeat protein that associates with the 
inner cell membrane and is expressed in many tissues, including 
brain, liver, and adipose tissue, and the hematopoietic system 
(113). Homozygous mutation of murine Ankrd26 causes mas-
sive obesity, insulin resistance, and large body size. In humans, 
mutations that cluster in a 22-nucleotide region of the 5′-UTR of  
ANKRD26 cause THC2 syndrome, a familial thrombocytopenia 
and hematologic malignancy syndrome that is strikingly similar to 
FPDMM and lacks the murine obesity phenotype (114–116). Stud-
ies in human megakaryocytes revealed that these 5′-UTR muta-
tions occur at RUNX1 binding sites, where RUNX1 and the ETS 
factor FLI1 function to suppress ANKRD26 expression. RUNX1/
FLI1 failure to bind these sites led to increased thrombopoietin, 
MAPK and ERK signaling, and defective proplatelet formation 
(117). As expected, ANKRD26 expression is elevated in FPDMM 
patient platelets with RUNX1 mutations, implicating this network 
in the thrombocytopenia of both disorders.

RUNX1 dysfunction in human pathologies. Heterozygous 
RUNX1 germline mutations cause FPDMM, featuring platelet 
dysfunction, thrombocytopenia, and hematopoietic malignancy 
predisposition (Table 3) (4). As with GATA-2 deficiency syndrome, 
even thrombocytopenia in FPDMM is incompletely penetrant, 
with a subset of affected individuals displaying normal platelet 
counts throughout their lifespan (118, 119). This suggests that a 
single RUNX1 allele can support thrombopoiesis, and other factors 
contribute to this disease phenotype and MDS/AML progression.

In FPDMM, truncating mutations, including nonsense, 
frameshift, splice-site, as well as large deletions, occur throughout 
RUNX1 and account for the majority (70%) of reported mutations 
(Table 4). RUNX1 loss due to whole gene deletions alone or as part 
of larger, multigenic abnormalities on chromosome 21q in the con-
text of additional syndromic features such as intellectual disability  
are also seen (118). Missense mutations clustering in the RUNT 
domain, especially at sites p.R201 and p.R204, are also common. 
Whereas the nonsense and deletion mutations decrease protein 
levels, some missense mutations generate mutant proteins that 
retain CBF-β dimerization, but are DNA binding–defective (93, 
120) and dominant-negative inhibitors in vitro (120). An asso-
ciation between carrying a mutation that generates dominant- 
negative activity in vitro and a higher proportion of individuals 
developing leukemia has been described (120); however, larger 
cohorts need to be analyzed.

As with GATA2, whether diverse insults or a predominant 
genetic or environmental insult triggers the transition to MDS/
AML in FPDMM remains unresolved. Analyses of somatic events 
occurring before MDS/AML development in FPDMM have begun 
to yield insights. In a small FPDMM cohort, 67% of asymptom-
atic patients younger than 50 years old displayed clonal hemato-
poiesis in PB (77). This is remarkably higher than the less than 1% 

frequency expected in the general population (121–123), suggest-
ing a baseline increase in mutagenic events in FPDMM HSPCs. 
Although the mechanistic underpinnings of this observation are 
unknown, the RUNX1 link to DNA repair pathways (e.g., RUNX1 
interacts with the homologous recombination pathway compo-
nent FANCD2; ref. 124) necessitates future investigation.

In FPDMM, the age of onset of hematologic malignancy 
development is a median 33 years but ranges widely (5–79 years) 
(Table 3). MDS and AML occur most frequently, although T cell 
acute lymphoblastic leukemia (ALL), non-Hodgkin lymphoma, 
and other lymphoid malignancies have been observed (125). At the 
onset of MDS/AML, loss of the normal RUNX1 allele and acquisi-
tion of various chromosomal abnormalities have been described 
(126). Somatic mutations in the cell cycle–regulatory phosphatase 
CDC25C were detected in 53% of a small Japanese RUNX1 mutant 
cohort with FPDMM (127), but these were not detected in French 
or American studies (77, 128). Acquired mutations in other genes, 
e.g., PDS5B, TET2, PHF6, and DNMT3A, have been detected in 
individual cases (77, 129). It will be important to elucidate global  
RUNX1-dependent genetic networks and functional circuits, as 
the deleterious consequences of target gene alterations often 
remain elusive when the focus is on individual genes. As GATA-2  
activates Runx1 transcription, and at least certain GATA-2 and 
RUNX1 target genes overlap, the integrated GATA-2/RUNX1 net-
work constitutes an invaluable resource for establishing whether 
pathogenic network perturbations are highly specific, or whether 
any deviation from the physiological network promotes the transi-
tion of benign hematologic disorders to malignancy.

Thrombocytopenia 5 (THC5)
Mechanistic foundations. ETV6, formerly termed TEL (transloca-
tion-ETS-leukemia) (130), is an ETS transcription factor (131) iden-
tified from its frequent involvement in leukemogenic translocations 
that yield fusion proteins. RUNX1 (132) is one of numerous ETV6 
fusion partners (130, 133–135). Targeted deletion of murine Etv6 is 
embryonic lethal and disrupts yolk sac angiogenesis (136). While 
analysis of ETV6 function in adult mice via embryonic stem cell 
aggregation chimeras revealed it to be dispensable for yolk sac and 
fetal liver hematopoiesis (137), it was essential for BM hematopoi-
esis, providing an example of a transcription factor required in one 
hematopoietic compartment and not others. Conditional deletion 
studies confirmed an ETV6 requirement for BM HSC survival (138).

Contrasting with other ETS transcription factors that acti-
vate genes (131), ETV6 has been reported to function predom-
inantly as a transcriptional repressor (139–141). ETV6 harbors 
an N-terminal helix-loop-helix domain, also deemed a “point-
ed” or sterile α motif (SAM) domain, that mediates dimeriza-
tion and repression (142–145). This domain distinguishes ETV6 
from most ETS factors, which lack this domain, and serves as 
a corepressor docking site (141, 142). An autoinhibitory domain 
(“linker region”), residing between the SAM domain and the 
C-terminal DNA-binding domain (146), restricts ETV6 DNA 
binding. This autoinhibitory mechanism is opposed by ETV6 
self-association, which facilitates DNA binding to sites contain-
ing multiple ETS motifs (146–148).

ETV6 dysfunction in human pathologies. The majority of 
the heterozygous germline ETV6 mutations reported are mis-
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specificities (e.g., C/EBPα and GCN4) are exchanged, preserving 
dimerization and the DNA-binding specificity imparted by the 
respective basic region (160).

Targeted ablation of murine Cebpa is lethal several hours after 
birth and is characterized by severe dysregulation of liver meta-
bolic processes (161). From a hematopoietic perspective, Cebpa 
homozygous mutant mice are defective in granulopoiesis, but 
not other hematopoietic processes (162), highlighting its lineage 
specificity. RUNX1 induces C/EBPα expression, which inhibits 
myeloproliferation and promotes granulocytic differentiation. 
Lack of C/EBPα expression is an important component of the 
myeloproliferative phenotype of Runx1 mutant mice (163).

CEBPA dysfunction in human pathologies. Acquired CEBPA 
mutations occur in 6%–9% of adult-onset AML cases (Table 4) 
(1, 164) and generate mutant proteins with or without dominant- 
negative activity (165–169). Approximately 5%–11% of these 
patients carry one of the detected mutations in the germline (170). 
In acquired and germline settings, the majority of causative CEBPA 
mutations are frameshifts occurring 5′ to a second transcriptional 
start site encoding a shorter isoform (p30) (171–173). These muta-
tions reduce expression of full-length C/EBPα (p42 isoform) and 
increase expression of a dominant-negative isoform (p30), dimin-
ishing p42 availability to promote differentiation and cell cycle 
arrest (169, 174). Among germline cases at the time of AML devel-
opment and AML cases with acquired biallelic mutations, nearly all 
cases have acquired a second CEBPA mutation on the previously 
normal allele, commonly disrupting the C/EBPα C-terminal leu-
cine zipper. Rare families with germline missense mutations dis-
rupting the leucine zipper have been reported (175, 176).

Germline upstream frameshift versus leucine zipper missense 
mutations appear to differ in expected penetrance, highlight-
ing differences in biologic mechanisms. Whereas approximately 
100% of those carrying an upstream frameshift are expected to 
develop AML, a lower proportion of those with distal leucine zip-
per mutations develop AML (estimated at 45%) (171, 176). These 
differences closely parallel findings in model systems. Whereas 
mice with a heterozygous upstream frameshift do not develop 
overt AML, mice with biallelic frameshifts develop AML with 
100% penetrance and more rapidly than mice carrying biallelic  
distal leucine zipper mutations (174, 177). Mice with both an 
upstream frameshift and a distal leucine zipper mutant allele 
develop AML the fastest, suggesting a synergism that explains the 
observed pattern in germline and sporadic CEBPA-mutated cases 
described above (164, 178, 179).

As with the other MDS/AML predisposition syndromes 
described, the single germline CEBPA mutation alone appears to be 
insufficient to induce AML. Individuals in the dozen or so pedigrees 
reported with a germline CEBPA mutation are clinically normal 
until the emergence of AML (180). The AML phenotype is uniform 
across pedigrees, usually featuring a French-American-British M1, 
M2, or M4 morphology with abnormal eosinophils and a normal 
karyotype (171). In addition to the uniform acquisition of a second 
CEBPA mutation, GATA2, WT1, and EZH2 mutations are the most 
frequent co-occurring mutations acquired at the time of AML (171). 
This uniform AML phenotype differs from the diverse hematologic 
malignancies seen in GATA-2 deficiency syndrome, FPDMM, and 
THC5, and parallels the more lineage-restricted phenotypes of C/

sense mutations within the C-terminal DNA-binding domain 
(Table 4) (149–153). One linker region mutation, p.P214L, is 
also recurrent (152, 154). Rare truncating or missense muta-
tions outside the DNA-binding and linker domains have been 
reported. These mutations decrease ETV6 nuclear localization, 
DNA binding, and/or transcriptional repression (149, 155), and 
certain mutants exhibit dominant-negative activity in vitro. All 
of the mutations disrupt ETV6-mediated repression and ETV6- 
dependent genetic networks.

Nearly 100% of affected individuals with THC5 described 
to date have thrombocytopenia, with a mean observed platelet 
count of 86 (149–155), suggesting that a single copy of ETV6 is 
insufficient for normal platelet development. In vitro cultures of 
patient-derived ETV6 mutant megakaryocytes revealed proplate-
let maturation deficits and decreased polyploidization (Table 
3) (155), supporting this hypothesis. In contrast with the diverse 
platelet pathologies of FPDMM, THC5 platelets exhibit only mild, 
inconsistent defects in platelet aggregation studies in vitro, and 
granule deficiencies have not been reported (155), suggesting 
quantitative and/or qualitative differences in the consequences of 
ETV6 and RUNX1 mutations in megakaryocytes.

As with FPDMM and GATA-2 deficiency syndrome, hema-
tologic malignancies occur only in a subset, suggesting that the 
germline ETV6 mutation alone is insufficient for transformation 
to malignancy and likely requires additional genomic or envi-
ronmental insults (Table 3). Individuals with THC5 can have an 
increased number of circulating CD34+ hematopoietic progen-
itors in PB (153), suggesting a potential role for ETV6 in HSC/
BM niche interactions in this pathophysiology. Among the 25%–
39% of THC5 mutation carriers reported who progressed to  
develop a hematologic malignancy (149–151, 153–155), child-
hood-onset ALL has been the most frequently occurring  
hematopoietic malignancy. Subsequently, rare, germline ETV6 
variants were identified in 1% (31 of 4,405) of unselected children 
with ALL and were associated with an older age at ALL diagnosis 
(10 vs. 5 years, P = 0.02) and a hyperdiploid karyotype (64% vs. 27%,  
P < 0.01) (152), suggesting a larger role for ETV6 germline vari-
ation in ALL risk. Biphenotypic acute leukemia, MDS, AML, and 
polycythemia vera have also been observed in THC5, reflect-
ing ETV6 activity to regulate myeloid development as well 
(149–151). Considering ETV6 function in BM hematopoiesis, it 
is unclear why heterozygous ETV6 dysregulation predominantly  
predisposes to ALL. Furthermore, the cooperating genomic 
lesions that cause ALL versus myeloid malignancy progression 
are not established.

Familial AML due to germline CEBPA mutation
Mechanistic foundations. C/EBPα is a basic leucine zipper (bZip) 
transcription factor that has been studied extensively in diverse 
systems. C/EBPα contains a leucine zipper that forms an amphipa-
thic α helix that combines with the leucine zipper on a partner pro-
tein to mediate dimerization (156–158). The C/EBPα basic region 
contains DNA-binding specificity and affinity determinants (159). 
Since C/EBPα binds DNA as a homo- or heterodimer, by medi-
ating dimerization, the leucine zipper domain indirectly confers 
DNA binding. This concept is exemplified by a leucine zipper swap 
in which leucine zippers from proteins with distinct DNA-binding 
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Multidisciplinary studies with large patient cohorts and diverse 
models are required to forge principles to understand the complex 
path from germline mutation to benign pathology to MDS/AML. 
In contrast to the opportunity for large-scale clinical studies with 
somatic mutants, germline mutations are considerably less fre-
quent, and international collaboration is vital to achieve analytical 
power. The propensity for germline mutations to generate a pre-
disposition or to induce disease may vary in different populations 
owing to additional genetic and/or environmental parameters. It 
will be crucial to forge new systems that enable the discovery of 
disease triggers, as well as disease suppressors. Identifying aber-
rant networks, triggers, and suppressors may catalyze the devel-
opment of therapeutic alternatives to HSC transplantation. The 
momentum in gene-editing technologies may ultimately bene-
fit those with germline mutation–linked disease. Though efforts 
have begun to correct genetic defects in patient-derived induced- 
pluripotent cells (181, 182), the path to rigorously gauge utility, safe-
ty, and broad applicability of this strategy will require intense efforts 
and considerable perseverance. Leveraging mechanistic insights 
involving aberrant networks and circuits to develop normalization 
therapies, to repress mutant allele expression, or to elevate wild-
type allele expression constitutes a high-priority line of investiga-
tion that will translate into transformative clinical advances.
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EBPα dysregulation, rather than the broader spectrum of hemato-
poietic-regulatory activities of GATA-2, RUNX1, or ETV6.

AML prognosis in these cases is favorable and similar to that 
of sporadic AML featuring biallelic acquired CEBPA mutations 
(171). However, later relapses involving leukemic clones molec-
ularly independent of the initial leukemic presentation and more 
favorable postrelapse survival characterize familial in comparison 
with sporadic cases (171), suggesting that these are actually de novo 
AML episodes arising from a leukemia-prone HSC pool in germline 
CEBPA mutation carriers. The exact mechanisms favoring acquisi-
tion of the second CEBPA mutation or other cooperating genomic  
lesions remain unknown, and elucidating these mechanisms is crit-
ical to facilitate progress in preventing AML in individuals with this 
syndrome.

Summary
Next-generation sequencing has revealed that germline mutations 
predisposing to MDS/AML are considerably more common than 
previously thought. Analyses of these mutations in genes encod-
ing transcription factors continue to unveil mechanistic insights 
that may provide new avenues for innovating much-sought-after 
molecularly targeted therapies. The transcription factors described 
herein exhibit varying degrees of mechanistic overlap. A factor can 
regulate expression of the other, and multiple factors expressed at 
the same time and in the same cell can function collectively in het-
eromeric complexes at target genes. Genetic networks established 
and maintained by these factors are still being discovered. While 
it is relatively straightforward to conduct transcriptional profiling 
to tabulate gene expression changes resulting from a given tran-
scription factor perturbation, now even at the single-cell level, it 
is highly challenging to integrate this rudimentary information 
with other -omic data sets to yield a lucid view of the regulatory 
networks. Furthermore, new approaches are required to decipher 
functionally critical circuits within the networks and elucidate how 
altering the expression and activity of components within these 
circuits impacts cell function. It would not be surprising if MDS/
AML resulting from germline mutations of transcription factor– 
encoding genes involves a multitude of perturbations of network 
components to yield a spectrum of disease phenotypes with impli-
cations for precision medicine therapeutics.
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