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The heart is an organ with high energy demands. The majority of 
the ATP consumed by the heart (~95%) is derived from oxidative 
metabolism in the mitochondria, organelles that occupy approxi-
mately one-third of the volume of adult cardiomyocytes and are 
colloquially known as the “powerhouses” of the cell. Mitochon-
drial dysfunction has been widely observed in the failing heart 
irrespective of etiology. Although this dysfunction is recognized 
as a maladaptive response, specific mechanisms connecting mito-
chondrial dysfunction and the development or progression of 
heart failure are complex and are not fully understood. Initially, 
decreased energy supply is considered the main consequence of 
mitochondrial dysfunction. However, recent advances have iden-
tified a number of mechanisms that contribute to the pathogen-
esis of heart failure beyond the notion of “power plant” failure. 
Here we will review some of the development in this area with an 
emphasis on the crosstalk between impaired bioenergetics and the 
maladaptive signaling circuit triggered by mitochondrial dysfunc-
tion in the pathophysiology of heart failure.

Overview of mitochondrial function
Mitochondria are double-membraned organelles found in nearly 
all eukaryotic cells. A primary function of the mitochondrion is 
to generate ATP through oxidative phosphorylation. Oxidative 
phosphorylation takes place in the inner mitochondrial mem-
brane, during which reducing equivalents, e.g., NADH and 
FADH2, are transferred from the carrier molecules to the elec-
tron transport chain (ETC) while protons are pumped to the 
intermembrane space. Because the inner mitochondrial mem-
brane is impermeable to most ions and small molecules, proton 
pumping generates a membrane potential that is used to convert 
ADP to ATP by the ATP synthase. Thus, the inner membrane 

impermeability and the mitochondrial membrane potential are 
critical properties of functioning mitochondria.

To maintain oxidative phosphorylation, a variety of carbon 
substrates are metabolized via specific pathways that eventually 
converge on the tricarboxylic acid (TCA) cycle to produce reduced 
equivalents, e.g., NADH and FADH2. Oxidative phosphorylation 
also generates reactive oxygen species (ROS), which were first 
considered by-products but were later found to possess many 
(patho)physiological functions (Figure 1). Moreover, oxidative 
metabolism in the mitochondria is not limited to ATP generation. 
In certain cell types, such as brown adipocytes, uncoupling pro-
teins use the mitochondrial membrane potential for thermogen-
esis (1). Intermediary metabolism in the mitochondria provides 
metabolites for multiple biological processes, such as biosynthesis 
and protein modifications (refs. 2, 3, and Figure 1). Furthermore, 
mitochondria regulate cell signaling by modulating redox state, 
supplying cofactors for biochemical reactions and generating 
ligands for signaling transduction (4–6).

Mitochondria possess active calcium transport systems, and 
multiple enzymes in the oxidative metabolism pathways are acti-
vated by calcium. Thus, calcium is an important second messen-
ger connecting contractile function and mitochondrial metabo-
lism (7–11). Moreover, mitochondrial uptake of calcium has been 
proposed as a mechanism that maintains intracellular calcium 
homeostasis (12). The identification of mitochondrial calcium uni-
porter (MCU) in 2011 (13, 14) stimulated an array of investigations 
on the role of mitochondrial calcium in health and diseases.

The roles of mitochondria are not limited to supporting life; 
rather, they are also actively involved in initiating cell death. Stress 
conditions that lead to calcium or ROS overload trigger the open-
ing of the mitochondrial permeability transition pore (mPTP), 
leading to loss of mitochondrial membrane potential (15–18). This 
results in failure to produce ATP and release of mitochondrial 
proteins such as cytochrome c, which trigger cell death through 
necrotic and apoptotic pathways, respectively (refs. 16, 17, 19, and 
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oxidation is downregulated (29). Notably, ATP generated from 
glycolysis alone contributes less than 5% of the total ATP con-
sumed in a normal adult heart (29). Thus, upregulating glycolysis 
is not an effective method of increasing energy supply.

On the energy demand side, pathological remodeling increas-
es energy expenditure through unfavorable cardiac geometry, 
increased neurohormonal stimulation, and impaired calcium han-
dling (30, 31). Collectively, these changes disturb the homeostasis 
between energy supply and demand, resulting in a stress on myo-
cardial energetics (Figure 2). The hypothesis that a failing heart is 
energy starved is consistent with such a scenario and has inspired  
decades of research to date (refs. 28, 32–34). Clinical evidence 
supporting the energy starvation hypothesis in heart failure comes 
from the observation that therapeutic measures to reduce energy 
consumption, such as vasodilators and beta blockers, improve 
survival in heart failure, while treatments that increase energy 
demand of the heart, such as inotropes, worsen the outcome (refs. 
35–37 and Figure 2). Few strategies of increasing ATP supply have 
been tried clinically thus far (38, 39).

The high-energy phosphate content of the failing heart is 
reduced. This is first manifested as a decrease of the energy 
reserve compound phosphocreatine (PCr) resulting in a lower 
PCr/ATP ratio (40–43). It is puzzling, however, that the ATP con-
tent in a failing heart is largely maintained until the end stage 
(40, 42–45) despite the early signs of a mismatch between energy 
supply and demand. One interpretation of this observation is that 
myocardial energy status is sustained by “adaptive” mechanisms 
mobilized during the progression of heart failure (46, 47). The 
nature of these mechanisms is poorly understood. Whether they 
are ultimately adaptive warrants reevaluation. As the stressed 
heart goes on a downward spiral to failure despite a relatively sta-
ble ATP level, it raises a possibility that mechanisms used during 
cardiac remodeling to restore energy homeostasis, which are 
either originating from or targeted to mitochondria, contribute 
to the vicious cycles that drive cardiac remodeling to heart failure 
(Figure 2). This leads to the question of whether the demise of the 
stressed heart is caused by energy starvation or the effort to fight 
starvation. In sections below, recent studies examining the meta-
bolic and/or mitochondrial responses in the chronically stressed 
heart are reviewed to determine whether efforts to sustain energy 
homeostasis can be potentially costly to the failing heart and thus 
accelerate heart failure. These areas are also potential therapeutic 
opportunities (Figure 2).

Bottleneck of metabolic flux in heart failure
Cardiomyocytes possess a high capacity for oxidative metabolism 
and are capable of using a variety of carbon substrates for ATP 
synthesis. In a normal heart, the flux through intermediate metab-
olism and oxidative phosphorylation can increase substantially 
to meet energy demand during high-performance activities such 
as exercise (48, 49). The heart is also metabolically flexible, able 
to adapt to fuel availability by switching its substrate preference 
(27). If this is the case, what are the bottlenecks that render failing 
hearts incapable of using these mechanisms to maintain energy 
homeostasis during chronic stress?

A hallmark of metabolic remodeling in pathological hypertro-
phy is downregulation of fatty acid oxidation and increased utiliza-

Figure 1). It has been shown that mitochondria-initiated cell death 
is an important mechanism in heart failure (20), and the links 
between mitochondrial calcium content and cardiac dysfunction 
during chronic stress have been a focus of investigation over the 
past decade. Mitochondrial DNA and/or ROS have been shown 
to be triggers of inflammatory response (21–24). Regulation of 
innate immunity by mitochondrial function has been increasing-
ly recognized in both cardiac and noncardiac diseases (21–25). As 
sterile inflammation is common in heart failure, the role of mito-
chondrial function has also emerged as an important pathogenic 
mechanism, which will be discussed in detail below. Collectively, 
these observations suggest that molecular mechanisms promoting 
the transition of mitochondria from energy-producing to death- 
initiating functions (Figure 1) are key to identifying disease mech-
anisms and therapeutic targets.

Mitochondrial dysfunction and energy starvation 
in heart failure
If ATP synthesis were ceased in a healthy human heart, stored ATP 
would sustain heartbeat for only a few seconds (26). It is therefore 
essential that the rate of ATP consumption is matched with the 
rate of ATP synthesis on a beat-to-beat basis. This is accomplished 
by oxidative metabolism in mitochondria using fatty acids as the 
primary fuel (27, 28). During pathological heart remodeling, car-
diac metabolism is reprogrammed toward increased reliance on 
glucose with a significant increase of glycolysis, whereas fatty acid 

Figure 1. An overview of mitochondrial function in health and disease. 
Mitochondria are known as the powerhouse of the cell. Under normal 
conditions, oxidative metabolism in mitochondria produces ATP; it also 
produces heat in certain specialized cell types, such as brown adipocytes. 
In addition to generating ATP, intermediate metabolism in the mitochon-
dria produces metabolites for biosynthesis, protein modification, and 
signal transduction. Oxidative phosphorylation is coupled with genera-
tion of reactive oxygen species (ROS), which can either serve as molecular 
signals or cause cell damage and cell death. Mitochondrial metabolism is 
stimulated by calcium, but under pathological conditions, calcium over-
load can trigger the opening of the mitochondrial permeability transition 
pore (mPTP). The release of mitochondrial content, such as cytochrome c, 
induces apoptosis, or the loss of membrane potential (a consequence of 
prolonged mPTP opening) causes ATP deprivation and necrosis. Leak of 
damage-associated molecular patterns (DAMPs), such as mitochondrial 
DNA and peptides, or excessive ROS generation also causes inflamma-
tion that results in further tissue damage. The transition of mitochondria 
from a powerhouse to a death engine is key to the pathogenesis of many 
diseases, including heart failure (also see Figure 3). 

https://www.jci.org
https://www.jci.org
https://www.jci.org/128/9


The Journal of Clinical Investigation   R E V I E W  S E R I E S :  M I T O C H O N D R I A L  D Y S F U N C T I O N  I N  D I S E A S E

3 7 1 8 jci.org      Volume 128      Number 9      September 2018

phy prevents increased reliance on glucose and thus suppresses 
the effects of glucose on pathological growth (58, 61). Inability to 
oxidize fatty acids under conditions of increased lipid availability, 
such as obesity and diabetes, could lead to accumulation of lipotox-
ic metabolites (62). Moreover, incomplete fatty acid oxidation has 
been implicated in the development of insulin resistance in skeletal 
muscle, although similar studies in the heart are lacking (63, 64).

More recently, it was observed that ketone body oxidation 
was increased in the failing hearts of both human and animal 
models (65, 66). This increase is associated with elevated circu-
lating ketone levels in patients with heart failure (65, 67), sug-
gesting a change in systemic metabolism. While emerging work 
suggests that increased ketone body oxidation is cardioprotective 
(68), its underlying mechanisms remain to be elucidated. Besides 
providing energy to compensate for reduced fatty acid oxidation, 
other potential mechanisms have been proposed as benefits of 
increased ketone body utilization, including modulation of oxi-
dative stress and posttranslational modifications (68–70). Fur-
thermore, oxidation of fatty acids or ketone body reduces glucose 
use by the heart (58, 71, 72); thus, the benefit of increasing ketone 
body utilization in the failing heart could also be attributed to 
reduced reliance on glucose.

Mitochondrial oxidation reduction and protein 
modification
Mitochondrial proteins can be modified through acylation of 
lysine residues by thioester-CoAs, such as acetyl-CoA, succinyl- 
CoA, malonyl-CoA, etc., produced by intermediary metabolism 
(73). The most studied modification is acetylation, although 
modifications by other acyl-CoAs also occur in the mitochondria 
(Figure 3). Increased mitochondrial protein acetylation has been 
found in the failing hearts of animal models and patients (74–78). 
A large number of proteins, including those involved in substrate 
oxidation, e.g., pyruvate dehydrogenase and fatty acid oxida-

tion of glucose. Prior studies showed that a greater reliance on glu-
cose in the failing heart led to increased glycolysis that had been 
uncoupled from oxidation, causing increases in lactate production 
and anaplerosis (29, 50). It also drives a greater flux of glucose into 
accessory pathways, all of which reduce the efficiency of ATP syn-
thesis and exacerbate pathological remodeling (27, 29, 50). Pro-
moting glucose oxidation, either directly or by inhibiting fatty acid 
oxidation, has been proposed as a therapeutic strategy (28, 51). 
Partly replacing fatty acids by glucose for energy provision was 
considered beneficial because ATP generation from glucose could 
moderately increase oxygen efficiency (52, 53). However, the 
capacity for glucose-derived ATP production is rather limited in 
adult hearts (27). Increased glucose uptake and metabolism also 
enables growth signaling that promotes the pathological remod-
eling of the heart. A recent study showed that high intracellular 
glucose inhibits branched-chain amino acid (BCAA) catabolism, 
resulting in BCAA accumulation during the development of car-
diac hypertrophy (54). Such a metabolic response is required for 
mTOR activation and cardiomyocyte hypertrophy. These findings 
imply that shifts in substrate preference to glucose support growth 
at the cost of contractile performance. In support of this notion, 
enhancing glucose uptake capacity to a superphysiological level 
was shown to improve myocardial energetics as well as stimulate 
pathological hypertrophy (55, 56).

Fatty acid is the predominant fuel for the adult heart. Its long 
carbon chain makes fatty acid the most effective substrate for ener-
gy provision. Downregulation of fatty acid oxidation pathways and 
accumulation of incompletely oxidized fatty acids were observed 
in an early stage of heart failure, suggesting a mismatch between 
fatty acid supply and oxidation (57). Promoting fatty acid utili-
zation has been shown to be beneficial in a number of models of 
heart failure (58–60). However, the benefit of sustaining fatty acid 
oxidation is likely beyond energy supply. Recent evidence suggests 
that sustaining fatty acid oxidation during pathological hypertro-

Figure 2. Mismatch of energy demand and generation drives the development of heart failure. In a healthy heart, energy production meets energy 
demand on a beat-by-beat basis. Pathological remodeling of the heart results in inefficiencies that increase energy demand but concomitantly reduce the 
capacity for energy supply. The subsequent metabolic remodeling in an attempt to regain energy homeostasis temporarily sustains the ATP level in the 
heart but likely drives the heart to failure via maladaptive circuits that produce mitochondrial stress. Current heart failure therapy aims at reducing the 
energy demand to alleviate the mismatch. Strategies that antagonize metabolic remodeling and/or mitochondrial stress signaling cascade could offer 
novel therapies. FAO, fatty acid oxidation.
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fatty acid oxidation in failing hearts is associated with an increased 
level of short-chain acyl-CoAs in the myocardium (57, 66); thus, a 
mismatch in the supply and oxidation of acetyl-CoA may lead to 
increased protein acetylation (Figure 3).

Another potential mechanism of protein hyperacetylation is 
reduced protein deacetylation, which is catalyzed by the sirtuin 
family of NAD+-dependent deacetylases (Figure 3). Three sirtu-
in proteins are localized to the mitochondria: SIRT3, SIRT4, and 
SIRT5, among which SIRT3 is the predominant deacetylase (73). 
SIRT4 and SIRT5 have weak deacetylase function but possess 
demalonylase and desuccinylase activities or ADP-ribosylation 
function (73). Downregulation of SIRT3 has been shown in the 
failing heart (78, 85). Furthermore, sirtuin activity is dependent 
on NAD+ availability. Diminished NAD+ level and reduced NAD+/
NADH ratio have been observed in hearts with mitochondrial 
dysfunction and/or pathological hypertrophy (75, 86, 87). A low-
er NAD+/NADH ratio decreases enzymatic activities for substrate 

tion enzymes, TCA cycle enzymes, and ETC proteins, have been 
shown to be hyperacetylated (75, 76). Protein hyperacetylation has 
been shown to decrease activities of succinate dehydrogenase, 
pyruvate dehydrogenase, ATP synthase, and malate-aspartate 
shuttle enzymes; additionally, hyperacetylation of oligomycin 
sensitivity–conferring protein (OSCP) increased the sensitivity 
to mPTP opening (75, 76, 78–82). Moreover, inhibition of malate- 
aspartate shuttle by acetylation impairs the transport of cytosolic 
NADH into mitochondria, thereby disrupting cytosolic redox state 
and glycolytic ATP production during the transition from cardiac 
hypertrophy to failure (76, 83).

The cause of mitochondrial protein hyperacetylation in the 
failing heart is less understood. One possibility is the presence of 
excessive acyl-CoAs. It has been shown that protein acylation can 
either be mediated by an acyltransferase or occur nonenzymati-
cally (73, 84), and in the latter case, the concentration of the acyl-
CoAs is an important determinant of the modification. Reduced 

Figure 3. Maladaptive mechanisms connecting mitochondrial dysfunction and progression of heart failure. Inadequate stimulation of mitochondrial 
metabolism increases ATP generation at the expense of triggering maladaptive responses such as imbalance among substrate supply, catabolism, and 
oxidative phosphorylation (OXPHOS), as well as increased protein modifications by acylation such as acetylation (LysAc). Increased availability of acyl-CoA 
is a driver for protein modification, while the mismatch between NADH production and oxidation decreases the NAD+/NADH ratio, compromising the sirtuin 
deacetylase function. These effects collectively increase protein acetylation in the failing heart. Increased protein acylation, especially acetylation, impairs 
energy metabolism through negative feedback to substrate metabolism and OXPHOS. Further stimulation of mitochondrial metabolism under these condi-
tions increases the risk of calcium overload, leads to greater ROS generation, and induces mPTP opening. Increased protein acetylation also weakens antiox-
idant defense and sensitizes the mPTP to calcium or ROS. In the face of increased oxidative stress, effort to maintain the mitochondrial antioxidant system 
(e.g., the Gpx or Prx pathway) may divert energy metabolism away from ATP generation through nicotinamide nucleotide transhydrogenase (Nnt). Oxidative 
damage causes ROS-induced ROS release, leading to further injury of mitochondria. Failure to remove the damaged mitochondria results in the leak of 
DAMPs, such as mitochondrial DNA or peptides, that trigger an inflammatory response. NAD+/NADH redox imbalance also promotes NLRP3 inflammasome 
activation. The vicious cycle of these mechanisms ultimately drives mitochondria from being energy-producing to death-initiating organelles.
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Whether mitochondria serve as a major Ca2+ sink is also contro-
versial (12, 98). Few studies have directly examined mitochondrial 
Ca2+ dynamics in heart failure. The majority of data demonstrating 
Ca2+ toxicity in mitochondria are derived from experiments manip-
ulating intracellular Ca2+ homeostasis using genetic approaches. 
Indeed, cytosolic Ca2+ overload in a number of animal models 
results in mitochondrial phenotypes similar to that seen in heart 
failure, e.g., the opening of mPTP, increased mitochondrial oxi-
dative stress, collapse of mitochondrial membrane potential, 
impaired ATP production, and necrosis of cardiomyocytes (16, 18, 
20, 95). Whether a comparable level of mitochondrial Ca2+ over-
load occurs in heart failure, and if so, through what mechanisms, 
remain to be determined.

One major player in the control of mitochondrial Ca2+ uptake is 
the recently identified mitochondrial Ca2+ uniporter (MCU) com-
plex (13, 14). Deletion of the MCU eliminates mitochondrial Ca2+ 
uptake in vitro (99). MCU-null mice on C57BL/6 background die 
around E11.5–E13.5 but are viable and grossly normal on mixed 
backgrounds (100). Cardiac-specific deletion of the MCU in adult 
mice also produces a rather mild phenotype, thus calling into ques-
tion the physiological relevance of mitochondrial Ca2+ uptake via 
the MCU (101, 102). The MCU has low affinity but high capacity to 
transport Ca2+, which results in a sigmoidal relationship between 
mitochondrial Ca2+ uptake and Ca2+ concentrations outside mito-
chondria (103). Such characteristics allow the MCU to rapidly 
uptake Ca2+ during the peak Ca2+ transient but prevent uptake 
under basal conditions. The basal Ca2+ level is elevated in the failing 
heart, while the amplitude of Ca2+ transients is reduced. Since the 
basal Ca2+ level in cardiomyocytes is in the nanomolar range while 
the Ca2+ transient reaches the micromolar level, how these chang-
es alter mitochondrial Ca2+ load is difficult to predict. Direct mea-
surement of mitochondrial Ca2+ load in failing hearts is sparse. In 
a mouse model with defective oxidative phosphorylation induced 
by cardiac-specific deletion of mitochondrial transcription factor 
A (TFAM), increased mitochondrial Ca2+ was observed (104). Both 
increased activity of the MCU and diminished efflux via Na+/Ca2+ 
were found to be responsible for increased mitochondrial Ca2+ in 
these hearts. Increased mitochondrial Ca2+ in this model improves 
energy deficits in an in vitro assay, suggesting that increasing Ca2+ 
content in the mitochondria is a compensatory measure to stimu-
late energy production (104). Similar findings are also reported in 
cardiomyocytes from pressure overload–induced heart failure (94). 
However, the TFAM mutant mice develop cardiomyopathy later 
in life, suggesting that recruitment of Ca2+ into the mitochondria, 
which is initially a compensatory response to energy deficit, is det-
rimental over the long term (Figure 3).

The mitochondrial Na+/Ca2+ exchanger (NCLX) is proposed to 
be responsible for the efflux of Ca2+ into the cytosol (105). Deletion 
of NCLX in the mouse heart results in mitochondrial Ca2+ over-
load, necrotic cell death, and sudden death of the animal. These 
observations confirm that NCLX is critical in controlling mito-
chondrial Ca2+ level and reinforce the notion that mitochondrial 
Ca2+ overload is detrimental (106). On the other hand, overexpres-
sion of NCLX, although associated with significantly increased 
Ca2+ efflux, does not change mitochondrial Ca2+ content, suggest-
ing that additional mechanisms are in play to maintain mitochon-
drial Ca2+ homeostasis.

catabolism, and decreased NAD+ level suppresses NAD+-depen-
dent protein deacetylation, resulting in mitochondrial protein 
hyperacetylation and impaired function (88). These changes 
orchestrate a negative regulatory circuit that ultimately limits the 
overall metabolic flux and increases the mitochondrial suscepti-
bility to stress (refs. 76, 87, and Figure 3). Increasing intracellular 
NAD+ level by pharmacological or genetic approaches normalizes 
the NAD+/NADH ratio, restores protein acetylation, and improves 
cardiac function in mouse models of heart failure (76, 87, 89).

There is, however, still a large gap in our knowledge of how 
acylation of each individual lysine residue of a specific protein 
contributes to its ultimate functional change. Most studies have 
not quantified the occupancy of the modification. Evaluation of 
the impact of acetylation on enzymatic activity has only been done 
with overexpression of acetyl-mimetic or acetyl-resistant muta-
tions that replace the target lysine residue. Furthermore, regula-
tion of metabolism by protein acylation likely operates through a 
network of proteins. The ultimate impact on metabolism may not 
be predicted from the functional change of an individual protein. 
For example, increased protein acetylation has been associated 
with opposite changes in fatty acid oxidation in different organs 
(90–92) or in different diseases (90, 93). Notably, a number of 
proteins also show decreased acetylation in heart failure (75), the 
significance of which is not understood. Furthermore, the obser-
vation of decreased NAD+/NADH ratio in the failing heart is ini-
tially counterintuitive to the concept of an energy-starved heart. 
It has been reported that myocytes isolated from failing hearts 
present a higher NAD+/NADH ratio during rapid electrical pacing, 
suggesting an inability to maintain NADH production and energy 
exhaustion (94). Similarly, the end-stage failing heart shows low-
er levels of fatty acyl-CoA levels, suggesting that mitochondria 
are depleted of fuel supply (66). These findings seem to present 
a picture of transition from a desynchronized metabolic network 
during the development of heart failure to an overall impairment 
of energy metabolism at late stages. Mechanisms that initiate and 
promote this transition are likely multiple and are only beginning 
to be understood.

Mitochondrial Ca2+ and the development  
of heart failure
Dysregulation of Ca2+ homeostasis is a hallmark of heart failure. 
Impaired Ca2+ reuptake by the sarcoplasmic reticulum (SR) and 
increased Ca2+ leak through ryanodine receptors in failing hearts 
result in reduced cytosolic Ca2+ transients during excitation but 
increased cytosolic Ca2+ at baseline. Since the SR and mitochon-
dria are in close proximity, it is speculated that mitochondria act 
as a Ca2+ sink under pathological conditions and the resultant Ca2+ 
overload contributes to mitochondrial dysfunction (95–97). A 
number of metabolic enzymes in the mitochondria are activated 
by Ca2+, such as pyruvate dehydrogenase, isocitrate dehydroge-
nase, and α-ketoglutarate dehydrogenase (7, 9, 10). Ca2+ also reg-
ulates other proteins involved in oxidative phosphorylation, ROS 
scavenging, or mPTP opening (8, 9, 11). These roles make Ca2+ an 
important regulator of mitochondrial function as well as a poten-
tial player in the development of heart failure (Figure 3).

However, the exact amount of Ca2+ taken up by mitochondria 
on a beat-by-beat basis in normal and failing hearts is unclear. 
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In support of the mitochondrial Ca2+ overload hypothesis, 
overexpression of NCLX in mouse hearts is beneficial in cardiac 
remodeling after myocardial infarction (106). In contrast, another 
study suggests that increased activity of mitochondrial Na+/Ca2+ 
exchange in a hamster heart failure model results in decreased 
mitochondrial matrix Ca2+, impaired energy supply, and increased 
myocyte death (107). In models of diabetic cardiomyopathy, mea-
sures that increase mitochondrial Ca2+ level appear to be beneficial, 
which argues against the Ca2+ overload hypothesis (108, 109). Mito-
chondrial Ca2+ uptake is also reduced in human myocardium from 
explanted end-stage failing hearts (110). However, this decrease 
could reflect the overall impairment of mitochondrial function at 
the end stage of the disease, rather than its pathogenesis.

Mitochondrial ROS in heart failure
ROS were originally viewed as a by-product of mitochondrial res-
piration. Electron leakage from multiple sites of complex I and 
complex III in the ETC results in partial reduction of oxygen to 
superoxide (111). It has been shown that superoxide generated in 
complex I is released into mitochondrial matrix, whereas super-
oxide generated by complex III can be deposited into either mito-
chondrial matrix or intermembrane space (111). At either location, 
superoxide is quickly dismutated to hydrogen peroxide by super-
oxide dismutase (SOD), with SOD2 being the primary mitochon-
drial isoform. Mitochondrial hydrogen peroxide is removed by the 
antioxidant systems of peroxiredoxin (Prx) and glutathione perox-
idase (Gpx) in the mitochondria (112). Depending on the amount 
of mitochondrial ROS (mtROS) and the conditions under which it 
is generated, mtROS can play a physiological or pathological role 
(113–117). Damage caused by mtROS has been shown as a major 
pathogenic mechanism in heart failure. Furthermore, the sig-
naling role of mtROS is being increasingly recognized in cellular 
response to mitochondrial stress (Figure 3).

In the failing heart, damage caused by excessive mtROS is evi-
dent in human patients and animal models (118–120). Mitochon-
dria-targeted ROS scavenging has demonstrated benefit in animal 
models of heart failure (118, 121, 122). Age-related cardiac patholo-
gy was delayed in mitochondrial catalase–transgenic mice, in which 
ectopic overexpression of catalase reduced mitochondrial hydrogen 
peroxide (123). Reduction of mitochondrial hydrogen peroxide by 
overexpression of the mitochondrial Prx or Gpx system is beneficial 
for hearts under pathological stress, whereas the deficiency of anti-
oxidant systems shows adverse consequences (122, 124). Operation 
of mitochondrial Prx and Gpx systems requires continuous reduc-
tion of thioredoxin 2 (Trx2) or conversion of oxidized glutathione 
to glutathione using NADPH. In mammals, the supply of mitochon-
drial NADPH is dependent on isocitrate dehydrogenase 2 (IDH2) 
and nicotinamide nucleotide transhydrogenase (Nnt). Impairments 
of these enzyme activities could contribute to oxidative stress and 
the development of heart failure (125–127). However, these enzyme 
reactions produce NADPH by diverting substrate metabolism away 
from generating NADH for ATP production. A recent study sug-
gests that increased oxidative stress in the failing mouse heart leads 
to excessive activation of Nnt, which supplies NADPH for antioxi-
dant (126). This compensatory response turns out to be detrimen-
tal, as the Nnt reaction directs NADH away from ATP production, 
resulting in impaired myocardial energetics (Figure 3).

During the development of heart failure, increased oxidative 
stress in mitochondria could be the cause and/or the consequence 
of mitochondrial dysfunction. Stimulation of mitochondrial res-
piration for ATP production is associated with increased ROS 
generation due to increased ETC activity. Running counter to the 
notion that increased energy demand in the chronically stressed 
heart should stimulate mitochondrial ATP synthesis, recent stud-
ies suggest that ATP synthase activity is inhibited in the failing 
heart because of increased protein acetylation (78). Inhibition of 
ATP synthase activity not only impedes ATP production but also 
impairs electron flow and enhances ROS emission (128, 129). 
As discussed above, mitochondrial protein hyperacetylation has 
been observed in the failing human heart and animal models of 
heart failure. Whether this is a common mechanism for increased 
ROS production remains to be investigated. Other mechanisms, 
including mitochondrial Ca2+ overload or failure to remove dam-
aged mitochondria due to defective mitochondrial protein quality 
control, are also implicated in the increase of mtROS during patho-
logical remodeling (95, 130, 131). Mitochondrial damage incurred 
by initial increase of oxidative stress will cause further increases 
of ROS generation and more severe damage, resulting in so-called 
ROS-induced ROS release in mitochondria (18). Animal models of 
heart failure demonstrate downregulation of the ROS scavenging 
system, such as decreased protein expression and reduced activity 
of SOD2, which occurs due to protein modification (75, 132). Thus, 
increased mtROS can be attributed to both increased ROS gener-
ation and decreased scavenging. Changes of SOD activity in the 
failing human heart are, however, mixed, showing either decreases 
or no change of SOD activities (133–136).

Mitochondrial ROS have been shown to affect a broad range of 
cellular functions in the context of heart failure (Figure 3). Excessive 
ROS triggers mPTP opening and causes cell death (18). Increased 
oxidative stress is associated with mtDNA damage and impaired 
mitochondrial biogenesis (120, 137). Oxidative modification of pro-
teins and lipids resulted in decreased enzyme activities that com-
promise the metabolic capacity of the mitochondria (138). mtDNA 
leakage, a consequence of ROS-induced damage, is a potential trig-
ger of inflammation (discussed in greater detail below). Further-
more, superoxide reactions with NO produce highly toxic peroxyni-
trate and at the same time reduce the bioavailability of NO (112). 
In recent years, mtROS was also shown as a molecular mediator 
of hypoxia signaling, MAP kinase pathway, inflammation, and ret-
rograde communication between mitochondria and nucleus (115, 
116). The specific role of these mechanisms during the development 
of heart failure needs to be fully elucidated.

Mitochondrial dysfunction and inflammation  
in heart failure
Heart failure is associated with heightened inflammatory 
response, but clinical trials targeting the proinflammatory cyto-
kines have yielded disappointing outcomes (139, 140). Thus, a bet-
ter understanding of the mechanisms underlying the inflammato-
ry response is required to develop effective therapy. Inflammation 
associated with most cases of heart failure is “sterile,” i.e., with no 
infection by microorganisms (140), suggesting a state of activated 
innate immunity. In the absence of pathogen invasion, the release 
of endogenous molecules containing damage-associated molecu-
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lar patterns (DAMPs) triggers an inflammatory response (21, 141, 
142). Mitochondrial DAMPs retain at least two unique molecular 
features that are evolutionary endosymbionts derived from bac-
teria: mtDNA rich in unmethylated CpG motifs and N-formyl 
peptides. Emerging evidence suggests that mtDNA and N-formyl 
peptides act on TLR9 and formyl peptide receptors, respectively, 
to induce inflammatory responses through the assembly of the 
NLRP3 inflammasome (143–146).

It is increasingly recognized that NLRP3 inflammasome acti-
vation is an important mechanism linking mitochondria function 
and integrity to innate immunity (147). During the development 
of heart failure, increased mitochondrial damage associated with 
higher oxidative stress and impaired quality control through auto-
phagy/mitophagy contributes to cardiac inflammation (21, 147, 
148). Release of mtDNA into circulation is found in mice after 
transverse aortic constriction surgery, and elevated levels of cir-
culating mtDNA are also observed in patients after myocardial 
infarction (149); both can trigger activation of circulating immune 
cells. It is also observed that mtDNA-induced inflammatory 
responses do not require the release of mtDNA into circulation, 
suggesting that cells that reside within the heart, including macro-
phages and myocytes, contribute to pathogenesis (21). In addition 
to the release of mtDNA, recent studies suggest that mitochondrial 
redox state and NAD+ availability modulate NLRP3 activity (150, 
151). Given the emerging role of NAD+/NADH redox imbalance in 
the development of heart failure, this mechanism likely presents 
another link between mitochondrial dysfunction and inflamma-
tion of failing heart.

Therapeutic implications
Mitochondrial function has been considered a therapeutic tar-
get for a variety of diseases, including heart failure. Prior efforts, 
primarily focused on reducing oxidative stress and improving 
bioenergetics, have yielded limited clinical success despite posi-
tive results from preclinical studies (38, 39). A new generation of 
ROS-scavenging compounds that demonstrated improved tissue 
permeability and subcellular targeting are currently being tested 
in humans (e.g., NCT03506633, NCT02966665, NCT01925937, 
ClinicalTrials.gov). The lack of effective compounds to manipu-
late cardiac substrate metabolism in vivo is also a barrier to trans-
lating the concept of metabolic modulation into clinical practice. 
Recent studies have tested the efficacy of perhexiline on surro-
gate end points in heart failure patients. Perhexiline is thought to 
act by inhibiting mitochondrial carnitine palmitoyltransferase-1, 
thus increasing glucose oxidation through inhibition of fatty acid 
oxidation. Short-term treatment with perhexiline has improved 
symptoms and bioenergetics in heart failure patients (51, 152, 153). 
However, the clinical benefits of perhexiline have recently been 
attributed to pleiotropic mechanisms, as perhexiline did not alter 
cardiac substrate utilization in heart failure patients (153, 154).

Along the lines of metabolic modulation, unexpected cardio-
vascular benefits of SGLT2 inhibition were recently observed in a 
diabetes patient population (155, 156) and suggest an intriguing 
opportunity to modulate glucose and ketone body metabolism in 
the heart. SGLT2 is a sodium/glucose cotransporter responsible 
for glucose reabsorption in the kidney. Inhibition of the transport-
er reduces blood glucose level in type 2 diabetes patients. Inter-

estingly, administration of SGLT2 inhibitors demonstrated a sig-
nificant reduction of cardiovascular death and hospitalized heart 
failure in these patients that had not been observed with other 
glycemic control measures. SGLT2 inhibition removes glucose 
from the body and triggers ketosis, whereas traditional treatment 
controls blood glucose level by promoting tissue glucose uptake. It 
is thus speculated that switching cardiac metabolism from glucose 
to ketone bodies protects against heart failure. However, patients 
with diabetes present different metabolic signatures during the 
development of heart failure than do nondiabetic patients. Ongo-
ing trials (e.g., NCT02653482, NCT03485222, ClinicalTrials.
gov) will evaluate the effects of SGLT2 inhibition in nondiabetic 
heart failure patients. Moreover, SGLT2 inhibition affects multiple 
mechanisms in cardiovascular regulation; the role of metabolic 
modulation versus other effects requires further evaluation (157).

As discussed above, a novel target for mitochondrial dys-
function is the balance of NAD+/NADH redox, which regulates 
substrate oxidation, NAD+-dependent protein deacetylation, and 
mitochondria-initiated inflammatory response. Thus, restoration 
of NAD+/NADH redox is a promising breakpoint for the vicious 
cycle of mitochondrial metabolic imbalance in heart failure pro-
gression. A number of studies have shown benefits of increasing 
the NAD+ level and normalizing the NAD+/NADH ratio in failing 
hearts. Using pharmacological or genetic approaches to target 
NAD+ salvage pathway, these studies found that increasing intra-
cellular NAD+ level enhanced mitochondrial stress tolerance, 
improved myocardial energetics, reduced the contractile dys-
function caused by pressure overload or adrenergic stimulation, 
and improved cardiac function in mouse models of mitochon-
drial cardiomyopathy (76, 87, 89, 158). Several NAD+ precursors 
are available for human use. A recent clinical study described the 
pharmacokinetics of nicotinamide riboside (NR), one of the NAD+ 
precursors, in healthy volunteers, and provided dosing informa-
tion for NR to raise blood NAD+ level (159). Prior studies also 
showed that NR was safe and well tolerated in normal individuals 
(159, 160). Additional information on the safety and tolerability of 
NAD+ precursors in heart failure patients is required before its effi-
cacy on heart failure progression can be determined.

Conclusion
Heart failure is a complex clinical syndrome that represents the 
final outcome of failed compensation for cardiac injury caused 
by a variety of etiologies. Mitochondrial dysfunction develops as 
the result of unsuccessful adaptation to energy stress in the heart, 
which, in turn, perpetuates a maladaptive spiral to further cardiac 
damage. As summarized here, a number of mitochondria-mediat-
ed mechanisms have been identified that drive the demise of the 
heart prior to the ultimate ATP depletion. These observations will 
not only provide important links between cardiac stress and ener-
gy starvation during the development of heart failure but will also 
inspire therapeutic approaches for mitochondrial dysfunction.
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