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Introduction
The accumulation of mutations in mitochondrial DNA (mtDNA) 
and subsequent reductions in mitochondrial oxidative phosphor-
ylation (OxPhos) are thought to occur during the course of neuro-
degenerative disorders such as Alzheimer’s disease (AD) and Par-
kinson’s disease (PD) (1). Since we are often looking for the answer 
where we see clues, it should not come as a surprise that over the 
years a large body of literature has led to the controversial, but 
nevertheless popular, hypothesis that mitochondrial defects are 
instrumental in provoking neuronal death in common adult-onset 
neurodegenerative disorders.

When mitochondria are studied in isolation from the rest of 
the cellular machinery, and from the traditional bioenergetic point 
of view, their role in the regulation of overall cellular homeosta-
sis is usually overlooked. Mitochondria are not only “powerhous-
es” that generate energy via OxPhos but also integrate numerous  
cellular signaling and metabolic pathways (2) that have only 
recently been considered in the study of disease. Alterations in 
these pathways can result in mitochondrial dysfunction that, in 
turn, can affect OxPhos output, rather than vice versa.

Thus, while the alterations in mitochondrial respiration 
reported in many neurological conditions (Tables 1–3) may truly 
reflect a primary OxPhos defect, they might also be mere bystander  
consequences of non–OxPhos-related cellular problems. Further-
more, detection of an OxPhos defect often leads the disorder to 
be labeled a mitochondrial disease that is conceptually no differ-
ent from a classic OxPhos disease (see below). Yet, could it be that 
altered OxPhos is a metabolic feature of many disorders without 
necessarily being etiologically or pathogenically significant? The 
question, incidentally, applies not only to common neurodegen-
erative disorders (Table 1) such as AD and PD, but also to other 

neurological conditions (Tables 2 and 3) such as very common 
peripheral neuropathies (Table 3), including those induced by 
chemotherapeutic agents and HIV as well as those associated 
with diabetes that are reported to comprise a mitochondrial com-
ponent (3). The task of deciphering the role of mitochondria in 
neurodegeneration is further complicated by the fact that enhanc-
ing mitochondrial respiration within compromised neurons may 
well be beneficial even if the actual disease mechanism is not 
OxPhos-dependent.

In this Review, we first provide a brief historical context for 
how the mitochondrial OxPhos hypothesis of neurodegeneration 
emerged. We then take the provocative position that the links 
between adult-onset neurodegenerative disorders and OxPhos 
have been misconstrued. Finally, in light of newly published 
data, we offer an alternative explanation as to how mitochondrial  
deficits may participate in the neurodegenerative process.

Reduced OxPhos and ATP production in 
neurological conditions
Before discussing potential links between mitochondria and neu-
rodegeneration, we need to clarify what is an “authentic” mito-
chondrial disease due to OxPhos deficiency. Primary mitochon-
drial disorders result from mutations in nuclear DNA or mtDNA 
that encode subunits of the OxPhos system or factors involved in 
its expression and assembly (4). Many primary mitochondrial dis-
orders present with a range of neurological manifestations, and, 
conversely, neurological conditions highly suggestive of being 
due to a mitochondrial problem typically include a relapsing- 
remitting pattern, with incremental worsening and partial recov-
ery; an age at onset prior to 40 (generally during childhood); a 
maternal pattern of inheritance; a multisystem presentation, 
reflecting the involvement of different parts of the nervous system 
and frequently affecting other organs; and the presence of lactic 
acidosis in blood and cerebrospinal fluid as well as mitochondrial 
proliferation in skeletal muscle (ragged-red fibers). Furthermore, 
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It is increasingly recognized that identical molecular abnor-
malities may give rise to heterogeneous clinical and neuropatho-
logical phenotypes, as illustrated by the tauopathies (6) and  
leucine-rich repeat kinase 2 (LRRK2) mutations (7). This raises the 
possibility that adult-onset neurodegenerative disorders might 
indeed be authentic mitochondrial disorders that simply do not fit 
into the canonical mold of mitochondrial disease depicted above. 

even if cognitive decline, parkinsonism, ataxia, or other common 
signs of neurodegenerative disorders occur in authentic mito-
chondrial diseases, they are almost never observed in isolation, 
in contrast to prototypical neurodegenerative disorders. In rare 
instances in which parkinsonism was indeed observed in patients 
with mtDNA mutations, atypical PD features, such as deafness 
and peripheral neuropathy, were also noted (5).

Table 1. Main clinical syndromes reported to be associated with OxPhos deficiency

Neurological disorder Typical clinical presentation Main neuropathological features
Alzheimer’s disease Cognitive impairment primarily featuring memory problems; as 

the disease progresses, language, perceptual skills, attention, 
constructive abilities, orientation, problem solving, and 
functional ability difficulties also arise, as well as behavioral and 
neuropsychiatric changes, including wandering, irritability, and  
labile affect

Cerebral cortex atrophy associated with amyloid plaques and neurofibrillary 
tangles and gliosis

Parkinson’s disease Association of shaking, slowness of movements, stiffness, and poor 
balance

Loss of pigmented neurons in ventral midbrain (e.g., substantia nigra pars 
compacta) and other pigmented nuclei (e.g., locus caeruleus, dorsal motor 
nucleus of the vagus); intraneuronal Lewy body inclusions; gliosis

Amyotrophic lateral sclerosis Muscles weakening, wasting away, and twitching; increased muscle 
tone, brisk reflexes

Loss of cortical and spinal motor neurons; degeneration of corticospinal 
tract; multiple forms of proteinaceous inclusions; gliosis

Huntington’s disease Uncontrolled movements (called chorea), abnormal body postures, 
and changes in behavior, emotion, judgment, and cognition

Atrophy of caudate nucleus and putamen accompanied with mild 
frontal and temporal atrophy; loss of medium-size spiny neurons in the 
striatopallidal and striatonigral pathways associated with striatal gliosis

Charcot-Marie-Tooth disease Progressive muscle wasting and weakness; sensory loss Loss of large myelinated motor and sensory fibers in peripheral nerves

Modified with permission from Neuron (1).

Table 2. Other suspected mitochondria-related diseases

Neurological disorder Typical clinical presentation Main neuropathological features
Leigh’s syndrome Progressive loss of mental and movement abilities (psychomotor 

regression) with high serum lactic acid levels
Bilateral symmetrical lesions in the brainstem and basal ganglia with 
gliosis, vacuolation, capillary proliferation, relative neuronal preservation

Mitochondrial encephalomyopathy, 
lactic acidosis, and stroke-like 
episodes (MELAS)

Episodes of muscle weakness on one side of the body (hemiparesis), 
altered consciousness, vision abnormalities, seizures, and severe 
headaches; can progress to vision loss, problems with movement, 
and dementia

Multifocal infarct-like lesions in the posterior cortex; recurrent stroke-like 
episodes; lactic acidosis and ragged-red fibers

Kearns-Sayre syndrome Progressive external ophthalmoplegia, retinitis pigmentosa; 
common additional features include deafness, cerebellar ataxia, and 
heart block

Loss of neurons and gliosis of the basal ganglia; spongy change of the white 
matter in the cerebrum, brain stem, and cerebellum; retinal degeneration; 
muscle ragged-red fibers

Optic atrophy Bilateral visual loss; central vision affected prior to peripheral vision Degeneration of the retinal ganglion cell bodies and axonal pathways up to 
the lateral geniculate nuclei

Friedreich’s ataxia Incoordination of gait and often of hands; other features include 
gradual loss of strength and sensation in the arms and legs, muscle 
stiffness (spasticity), and impaired speech, hearing, and vision; often 
the heart is also affected

Thinning of dorsal roots, degeneration of dorsal columns, atrophy of the 
neurons in the Clarke’s column and dorsal spinocerebellar fibers, atrophy of 
gracile and cuneate nuclei, and neuropathy of sensory nerves; lesions of the 
dentate nucleus and the corticospinal tracts are also observed

Spinocerebellar ataxia Incoordination of gait and often of hands, speech,  
and eye movements

Degeneration of the spinal cord and the cerebellum, as well as many nuclei 
of the basal ganglia and the brainstem

Primary coenzyme Q10 deficiency 
syndrome

Syndrome affecting brain (incoordination and poor balance), 
muscles (weakness), and kidney (nephrotic syndrome); other 
neurological abnormalities include seizures, intellectual disability, 
hypotonia, dystonia, spasticity, nystagmus, vision loss, and deafness

Multisystem neurodegeneration with gliosis

Progressive encephalopathy associated 
with cytochrome c oxidase deficiency

Progressive uncoordinated gait, dysarthria, lower limb areflexia, 
deafness, and high serum lactic acid levels, followed by dementia

Cortical atrophy and basal ganglia calcifications as well as severe 
mitochondrial myopathy with numerous COX-negative ragged-red fibers

Hereditary spastic paraplegia Difficulty in walking and poor balance followed by increased  
muscle tone, brisk reflexes, muscle weakness, bladder disturbances, 
and paresthesia 

Degeneration primarily in the corticospinal tracts and the fasciculus gracilis, 
and to a lesser extent in the spinocerebellar tract

Modified with permission from Neuron (1).
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in dying neurons or result from technical artifacts (51). Another  
possibility as to why findings of mtDNA mutations in neuro-
degenerative disorders have been inconsistent is that they may 
be acquired in the course of the disease as a consequence of a 
prior specific insult. For example, an initial error might cause 
defects in the replication and repair of mtDNA (52), resulting 
in genome instability and the appearance mtDNA defects in 
the course of neurodegeneration (53, 54). As in the aging pro-
cess (27, 55–57), these mutations would accumulate in cells until 
they crossed a threshold beyond which decline in bioenergetics 
emerges (58, 59). Thus, given that different tissues and cells 
have different thresholds and compensatory mechanisms (58, 
60), understanding mitochondrial defects in neurodegenerative 
disorders as consequences instead of as initiators would help 
explain not only some of the contradictory results obtained by 
different groups (61), but also the differences in the clinical pre-
sentations as compared with authentic OxPhos disorders (62).

Common neurodegenerative disorders  
and the mitochondrial hypothesis
If common neurodegenerative disorders depart clinically from 
authentic mitochondrial diseases, how did the hypothesis arise 
that a causal link might exist between adult-onset neurodegen-
eration and mitochondria? Historically it is likely that the first 
proposal of such a connection involved PD. In the early 1980s, 
contemporaneously with the identification of a number of mito-
chondrial syndromes, it was discovered that exposure to the  
neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) 
via illicit drug use led to an acute parkinsonian syndrome that was 
clinically indistinguishable from PD (63). This PD-like condition 
was shown to result from blockade of mitochondrial electron flow 
at the level of CI (64, 65). Subsequently, reports that MPTP (66) 
and other CI inhibitors (67–69) produced some of the features 
of PD in rodents strengthened the idea that CI inhibition can 
cause PD-like neurodegeneration. The similarity between MPTP- 
induced parkinsonism and PD led investigators to assess mito-
chondrial respiration in biospecimens from PD patients. They 
found significant reductions in respiratory chain activity in PD  
tissues (70), particularly in CI in PD brain (71, 72) and platelets 
(73, 74), as well as structural alterations in CI subunits (75), lead-
ing to the conclusion that deficient CI function was key to PD 
pathogenesis. However, other results cast doubt on this view, as 

Therefore, if the clinical presentation is of little help in clarify-
ing the link between mitochondria and neurodegeneration, can 
genetics be a more fruitful approach?

Efforts to find specific mtDNA alterations in PD yielded con-
fusing results, as some groups demonstrated the existence of 
mtDNA mutations, including partial deletions, in patients with 
parkinsonism (8–13) whereas others found few or none (14–17). 
Sequencing of aged healthy individuals showed the accumulation 
of somatic mtDNA mutations, leading to the proposal that mtDNA 
point mutations in PD patients rendered their mitochondria sus-
ceptible to failure (18, 19). Data from other groups, however, chal-
lenged these results (20). Likewise, the quest for mtDNA candidate 
genes in PD revealed a significant risk associated with the A4336G 
mutation in mt-tRNAGlu (21), which was challenged by others (22, 
23). Lastly, specific mtDNA haplotypes conferring susceptibility to 
PD were reported (24), but how much of a role these gene variants 
play in the occurrence of PD remains to be established.

A search for AD-specific mtDNA mutations was equally 
inconclusive (25–27). An early report identified a point muta-
tion in the NADH dehydrogenase 2 (ND2) subunit of complex I 
(CI) in brain tissue of 19 AD patients (28), despite the lack of evi-
dence for maternal inheritance in familial AD (29). These results 
were not replicated by others (30), nor were reports of mtDNA 
mutations (31, 32) in mt-tRNAGln (33) and in subunits I and II 
(COX I/II) of complex IV (CIV; also known as cytochrome c oxi-
dase) (34). Also, the ND2 mutation is not present solely in AD 
(28), implying that it is likely a neutral polymorphism (35). Some 
groups found elevated levels of the relatively common mtDNA 
4977-bp deletion (36) in AD brain compared with controls (37, 
38), but this deletion has also been associated with aging (39) 
and other neurodegenerations, such as amyotrophic lateral scle-
rosis (ALS) (40). Similarly, reports of reduced mRNA levels for 
mitochondrial CI and CIV subunits in AD brains (41–44) were 
not correlated with the appearance of disease phenotypes (45). 
More recent studies have corroborated the increased presence 
of mtDNA partial deletions (46, 47) and point mutations (48), 
altered mtDNA methylation (49), and reduced expression and 
activity of respiratory chain complexes (50) in AD.

It may thus be concluded from the above that even if future 
studies unequivocally link mutations in mtDNA to neuro-
degenerative disorders such as AD and PD, they do not appear 
to be primary causes and may even reflect nonspecific changes 

Table 3. Mitochondria-related neuropathies

Neurological disorder Typical clinical presentation Main neuropathological features
Chemotherapy-induced peripheral 
neuropathy

Burning/shooting pain, tingling, cramping, and weakness in hands 
and feet; impaired balance and walking, falls; loss of heat sensitivity

Peripheral nerve neuronopathy and/or myelinopathy; axonopathy, 
particularly intraepidermal nerve fiber degeneration; there are differences in 
the pathobiology depending on the drug used

Diabetic neuropathy Sensory impairment with loss of sensory function or spontaneous 
feeling of touch, vibration, pricking, and hot and cold pain; bilateral 
and symmetric damage to nerves of the feet and hands

Retrograde neurodegenerative disease of the peripheral nervous system; 
damage to the small sensory nerve fibers accompanied by continuous and 
episodic pain

HIV-induced neuropathy Debilitating chronic neuropathic pain that is constant and severe; 
bilateral pain on the soles; the dysesthesias ascend to lower 
extremities and may involve fingertips

Retrograde axonal degeneration of long axons in distal regions of legs or 
arms, loss of unmyelinated fibers, and macrophage infiltration in peripheral 
nerves and dorsal root ganglia
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Can impaired OxPhos and low ATP induce 
neurodegeneration?

Before addressing the question of whether impaired 
OxPhos and low ATP can induce neurodegeneration, it is use-
ful to summarize how mitochondrial energy is produced. 
From a broad view, oxidative energy metabolism comprises 
two elements: a respiratory chain that generates a proton gra-
dient (derived from the NADH and FADH2 that are produced 
in the Krebs cycle) across the inner mitochondrial membrane 
(IMM), and an ATP synthase that uses this gradient to power 
the conversion of ADP to ATP. The respiratory chain complexes  
(CI, CIII, and CIV, but not CII) embedded in the IMM pump 
these protons “vertically” from the matrix to the intermem-
brane space (IMS), while transferring the NADH- and FADH2- 
derived electrons “horizontally” via a series of redox reactions: 
from CI and CII to coenzyme Q to CIII to cytochrome c to CIV and 
eventually to molecular oxygen (producing water) (Figure 1). The 
excess of H+ ions in the IMS relative to their paucity in the matrix 
sets up a proton gradient favoring the movement of H+ ions in the 
opposite direction, from the IMS to the matrix. These protons 
traverse the IMS through ATP synthase, which uses this “proton- 
motive force” to drive the conversion of ADP to ATP (98).

Defects in energy synthesis can arise at many steps in this 
process. For example, problems in glycolysis or the Krebs cycle 
can reduce the production of NADH/FADH2; problems in proton 
pumping can reduce the strength of the gradient, reducing ATP 
synthesis efficiency; problems in electron flow can divert elec-
trons from the respiratory chain to other molecules (e.g., proteins, 
lipids, DNA, and free oxygen [forming reactive oxygen species]); 
and alterations in the IMM’s permeability can allow protons to 
dissipate across this membrane, bypassing ATP synthase (a phe-
nomenon called “uncoupling”), and so forth.

some groups were unable to confirm CI deficiencies in PD muscle 
(76). Moreover, the chronic use of levodopa, a widely used anti-
PD therapy, was found to alter OxPhos activity in rodent brains 
(77, 78). Finally, the cellular origin of reported reductions in CI 
activity was called into question, as postmortem brains from PD 
patients are mostly devoid of dopaminergic neurons, a main target  
of PD neurodegeneration (66).

Almost contemporaneously with the discovery of MPTP’s par-
kinsonian effect, the connection between mitochondria and AD 
emerged from reports of mitochondrial morphological alterations 
in postmortem brain sections (79, 80) and metabolic alterations in 
fibroblasts from patients, such as reduced glucose and deficits in 
calcium homeostasis (81). Given the neuronal vulnerability to these 
insults, it was hypothesized that mitochondrial dysfunction under-
lay the behavioral deficits in AD. Furthermore, cytoplasmic hybrids 
(cybrids) repopulated with mitochondria from AD patients reportedly  
displayed mitochondrial alterations (82) resembling those found in 
the disease (83–86). And, reported reductions in CIV activity (87) and 
CI and CIV deficiencies in AD platelets and brain tissue (88–90) led 
to the idea that CIV deficiency could be behind AD pathogenesis (91, 
92). However, detractors pointed out not only that the reported CIV 
reductions in AD are below the threshold for dysfunction (93, 94), 
but that similarly small reductions in CIV subunits were observed in 
other neurodegenerative diseases (95), implying that the CIV defi-
ciencies likely reflected non–AD-specific changes. Moreover, as in PD,  
additional studies challenged the aforementioned findings, by show-
ing that mitochondrial respiration capacity was unaffected in AD brain 
and arguing that metabolic alterations in AD are unlikely to be driven 
by primary OxPhos deficiencies (96). Finally, exposing cell cultures, 
isolated mitochondria, and cells to amyloid-β oligomers — key play-
ers in AD — resulted in mitochondrial dysfunction (97), thus reversing  
the purported cause and effect.

Figure 1. Simplified model of mitochondrial aerobic energy production (stoichiometries not implied). The mitochondrial electron transport chain (ETC) 
is composed of enzymatic complexes (I–V) that transfer electrons from electron donors (NADH and FADH2) to electron acceptors embedded in the IMM via 
redox reactions, ultimately generating water. The ETC couples electron transport to the transfer of protons (H+) across the IMM, creating an electrochemi-
cal proton gradient that drives the synthesis of ATP by ATP synthase. OMM, outer mitochondrial membrane. CytC, cytochrome c; CoQ, coenzyme Q10.
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enough to trigger cell death? While reports vary, some groups 
found that, depending on the tissue, reductions of 70% to 85% 
for CI and CIII, and approximately 60% for CIV, were necessary 
to produce a significant decrease in ATP production (107–110). 
Thus, reported reductions of 30% to 50% in CI or CIV activi-
ties in PD and AD, respectively, would not necessarily impact on 
ATP production significantly.

In support of this idea of reserve capacity, a T8993G muta-
tion in mtDNA-encoded MTATP6, specifying the ATP6 subunit 
of ATP synthetase (complex V [CV]), results in a 50%–80% 
reduction in mitochondrial ATP production (111), but not in 
overall ATP content, as long as glucose is available (112). This 
mutation provokes a clinical picture that is not reminiscent of 
any common neurodegenerative diseases, but rather of a syn-
drome characterized by neuropathy, ataxia, and retinitis pig-
mentosa (known as NARP; ref. 113). On the other hand, at high 
mutation loads (>90%) this same mutation can provoke a mater-
nally inherited form of Leigh’s syndrome (MILS) that can cause 
neuronal death in basal ganglia and midbrain (114, 115). Nota-
bly, the amount of ATP produced at the threshold for the NARP 
phenotype is only approximately 35% of the total ATP available 
(116, 117), implying that the remaining approximately 65% is still 
available for other non-OxPhos functions. Moreover, in these 
mitochondrial disorders, the loss of neurons observed within 
the affected brain areas follows a patchy, stochastic distribution 
(118, 119) rather than following a logic of differential susceptible 
subpopulations typical of neurodegenerative disorders. Indeed, 
in PD, nigral dopaminergic neurons die more than ventral teg-
mental area dopaminergic neurons (66); in ALS, motor neurons 
innervating fast fatiguing muscles die more than those inner-
vating slow muscles (120); and in Huntington’s disease, striatal 
neurons expressing GABA and enkephalin die more than those 
expressing GABA and substance P (121).

Finally, mitochondria are often analyzed as an isolated 
subcellular fraction. For that reason, it is quite common to 
extrapolate specific respiratory defects in those organelles to an 
overall bioenergetic defect in the cell or tissue from which the 
mitochondrial fraction was derived. However, as noted above, 

Moreover, mitochondria reside at the center of a complex 
network of metabolic pathways that can be modulated to counter-
balance reductions in OxPhos to maintain cellular homeostasis. 
Thus, the correlation between an OxPhos defect and pathology 
is far from straightforward. Moreover, in any given cell, impaired 
mitochondria coexist with healthy mitochondria, which, above a 
certain threshold, will compensate for mitochondrial defects and 
permit a normal phenotype (99–101). This threshold, which is  
tissue-specific, depends on a number of factors (60). First, mito-
chondria, via changes in membrane lipid composition, can mod-
ulate the association of individual respiratory complexes into 
supercomplexes (102), thereby increasing the efficiency of ATP 
production, presumably by physically channeling redox substrates 
(e.g., coenzyme Q10 and cytochrome c), thereby mitigating the 
consequences of an OxPhos defect (103, 104).

Second, in most cell types mitochondria run at basal respi-
ratory levels without using their total bioenergetic capacity  
(60). Only when a cell needs an additional surge of energy (e.g., 
because of increased activity or stress) do its mitochondria use 
their “reserve respiratory capacity” to increase substrate oxidation 
and/or ATP output (105). Thus, even in the presence of significant 
OxPhos defects, many cell types can avoid the consequences of 
reduced ATP by summoning this spare respiratory capacity. This 
plasticity may be the result of excess mt-mRNAs, mt-tRNAs, and/or 
a pool of respiratory complexes in “standby” (59) that act as a back-
up mechanism to compensate for OxPhos defects (60, 106).

Third, this reserve respiratory capacity can also be modu-
lated by the different fuels feeding the Krebs cycle and OxPhos 
(60), in a tissue-dependent manner. For example, when faced 
with a general OxPhos defect, the brain can compensate so long 
as the diet is high in glucose (think grapes), because of its higher 
threshold for pyruvate utilization. However, a change to a diet 
high in fats and amino acids (think well-marbled steak) will not 
allow for such compensation, because of the brain’s low thresh-
old for nonpyruvate substrates such as succinate (58).

If reserve capacity can compensate for a defect in mitochon-
drial respiration to maintain a steady level of ATP, to what extent 
can OxPhos activity be reduced before the ATP content is low 

Figure 2. Mitochondrial metabolic network. Many 
metabolic pathways converge to maintain energy 
output. While most cells use glucose/pyruvate for 
ATP synthesis, oxidation of fatty acids and amino 
acids can also be used in response to changes in the 
cellular environment and availability of substrates. 
These mechanisms ultimately converge onto the 
Krebs cycle to produce NADH and FADH2, which in 
turn feed the mitochondrial ETC. Possible mecha-
nisms of OxPhos deficiency in neurodegenerative 
diseases involving the AKT/PKB pathway and 
pyruvate metabolism are shown. G6P, glucose 
6-phosphate.
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mitochondria reside at the center of a complex metabolic net-
work where multiple bidirectional mechanisms of adaptation 
are coregulated to maintain energy output (122). For example, 
the overall content of cellular ATP is the result of substrate- 
level phosphorylation of ADP via glycolysis in the cytoplasm 
and/or oxidative phosphorylation of ADP in the mitochondria. 
The latter is fueled mainly by the pyruvate produced during 
glycolysis, or to a lesser extent by fatty acid and/or amino acid 
oxidation (Figure 2). The rate and coupling of these pathways 
depend on cell type and are extremely adaptable to changes in 
energy demand and substrate availability (123). Under patho-
logical conditions in which mitochondrial ATPase activity is 
reduced, most cells upregulate glycolysis and can completely 
bypass mitochondria to maintain sufficient levels of ATP (124). 
In fact, genetic or chemical inhibition of mitochondrial ATPase 
not only did not result in neurodegeneration, but actually  
prevented neuronal death by shifting ATP production from 
OxPhos to increased glycolysis (125, 126). In a second example, 
in ρ0 cells (cells lacking mtDNA and hence OxPhos activity), 
glycolytically derived ATP generated in the cytosol can travel 
back into the mitochondria (112) to maintain other functions, 
such as calcium buffering capacity and lipid synthesis.

Overall, we can conclude that, clinically speaking, neuro-
degenerative disorders have little resemblance to primary 
mitochondrial disorders. Moreover, of all known mtDNA 
alterations in authentic mitochondrial disease, few have been 
proven to result in dementia, even in long-lived patients, and 
none have been unambiguously linked to the development  
of neurodegeneration.

Possible mechanism of OxPhos deficiency  
in neurodegenerative disease
Despite the controversies, we cannot exclude the fact that alter-
ations in OxPhos occur in neurodegeneration. In the course of 
neurodegeneration, deficits in bioenergetics do often arise and 
could reduce the capacity of compromised neurons to withstand 
the actual disease process. However, we have espoused here 
the view that the OxPhos abnormalities documented in neuro-
degenerative disorders could be nonspecific features of dying 
cells. But even if this is the case, the question remains of how 
these mitochondrial alterations arise in the first place. Although 
several potential mechanisms may be proposed, including defects 
in mitochondrial autophagy, especially in the context of PD muta-
tions in PINK1 and PARKIN, or in mitochondrial dynamics that 
have been reviewed elsewhere (127, 128), herein we would like to 
offer two other possible scenarios.

Alterations in pyruvate metabolism: the case of PD. Neuro-
nal resilience to defects in glycolysis or OxPhos within a certain 
range is the consequence of the balanced cooperation between 
mitochondrial OxPhos and glycolysis (and to a lesser extent the 
pentose phosphate pathway) to maintain ATP levels. In the brain, 
metabolic flexibility depends not only on the interplay between 
glycolytic and OxPhos pathways and the nature of the fuel, but 
also on the communication between astrocytes and neurons (129). 
Briefly, astrocytic metabolism relies mostly on glycolysis to pro-
duce lactate to send to the neuron (129). In the neuron, lactate is 
converted into pyruvate (129), which then enters the mitochondria 

via the mitochondrial pyruvate carriers (130) to be converted into 
acetyl-CoA by pyruvate dehydrogenase (PDH) (131), feeding the 
Krebs cycle to power OxPhos.

Maintaining proper cell bioenergetics in these pathways 
requires coordination between glycolysis, lactate uptake, pyru-
vate entry into mitochondria, and OxPhos (131). One of the main 
orchestrators behind this coordinated effort is AKT, which, when 
activated, translocates to mitochondria, increasing the binding of 
the glycolytic enzyme hexokinase II (HKII) to the mitochondrial 
surface (132). The localization of HKII on mitochondrial mem-
branes promotes both glycolysis and OxPhos (133), while acti-
vated AKT induces the expression of hexokinase and the glucose 
transporters (134, 135). Disruption of these pathways can alter  
glucose metabolism and pyruvate entry into mitochondria, reduc-
ing OxPhos (131, 136). Consequently, it is possible that during 
neurodegeneration, mitochondrial OxPhos deficit can be reinter-
preted as a consequence of prior and sustained reductions in the 
production and transport of pyruvate to the mitochondria (137).

Interestingly, aberrant glucose and pyruvate metabolism 
has been described in AD and PD (138), and both disorders have 
been linked to type 2 diabetes (T2D) (139). Specifically, 60% of 
PD patients suffer various degrees of insulin resistance (140).  
Conversely, T2D patients have a 35% increased risk of developing 
PD (140–142) and a 65% increased risk of developing AD (143).

Early studies comparing metabolism in PD patients versus  
controls showed significantly lower preclinical glucose utilization 
(144) and reduced pyruvate oxidation in PD patient fibroblasts 
(145). In addition, significant elevations in pyruvate and decreases  
in succinate, malate, citrate, and acetate in PD patient blood sug-
gest the presence of defects in PDH complex activity and in genes 
encoding PDH-interacting proteins (146). Similar reductions in 
glucose metabolism were also detected in animal models of PD 
(147–150) and in cells incubated with the neurotoxins MPTP or 
6-hydroxydopamine (6-OHDA) (151). While the connections 
between glucose and PD had often been discussed as expected  
consequences of reduced CI activity, a hypothetical and early alter-
ation in glucose metabolism would result in similar reductions in 
mitochondrial respiration (136).

Relevant to this possibility, dopaminergic neurons have been 
shown to be quite sensitive to hypoglycemic conditions, resulting in 
reduced tonic firing and membrane hyperpolarization (152). More-
over, in vitro glucose deprivation in neuronal cultures reduces dopa-
minergic uptake and promotes cytosolic aggregation of α-synuclein 
and dopaminergic neuron death (153). These data are also in sup-
port of reports showing that α-synuclein aggregation occurs prior to 
significant reductions in mitochondrial activity (154).

While the mechanism behind these alterations in glucose 
metabolism is unknown, the literature discusses several possibili-
ties (155). For instance, AKT activation, a key regulator of glucose 
metabolism (134), has been shown to be significantly reduced in the 
substantia nigra of PD patients (156) and in cultured cells exposed 
to 6-OHDA (157). Furthermore, mutations in genes related  
to familial PD such as DJ-1 or PINK1 have also been linked to dimin-
ished AKT signaling (158). Remarkably, even some AKT (159) and 
GSK3B polymorphisms (160) are associated with a higher PD risk. 
Finally, another familial PD gene, PARKIN, is implicated in the 
regulation of the glycolysis-OxPhos connection (161) by binding 
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and ubiquitylating pyruvate kinase M2 (PKM2) (162), decreasing 
its activity and glucose metabolic rate (131).

Alterations in ER-mitochondria contact sites: the case of AD. In the 
last decade, much evidence has been marshalled demonstrating 
that mitochondria are indeed “social organelles” by means of their  
membrane-to-membrane interaction with other organelles. Among 
these, ER domains that contact mitochondria, or mitochondria- 
associated ER membranes (MAMs; Figure 3), have been defined as 
functional platforms that contain a subset of enzymatic activities 
involved in regulating calcium, lipid homeostasis, mitochondrial 
dynamics, and a number of other functions previously ascribed to 
isolated mitochondria (163, 164). MAM domains form lipid raft–
like structures that are regulated by their lipid milieu and by the 
proteins embedded within them. Thus, alterations in the confor-
mation or subcellular localization of MAM-resident proteins or in 
MAM-associated lipid pathways can induce alterations in MAM- 
regulated functions and the crosstalk between ER and mitochondria. 
Of special relevance to our discussion is that many proteins related 
to neurodegeneration, especially in AD and PD, have been shown to 
translocate to MAM and participate in regulating these ER domains 
and their communication with mitochondria.

For example, we and others have shown that α-synuclein can 
translocate to MAM regions (165, 166), supporting the reported  
affinity of α-synuclein for lipid raft–like domains and its previously  
reported association with mitochondrial membranes. In addi-
tion, mutations in α-synuclein alter the activities localized in these 
domains, such as lipid metabolism (165) and calcium regulation (167).

In AD (Figure 3), presenilins, amyloid precursor protein, and 
γ-secretase activity were found to be enriched at MAM domains 
(168–170), which could explain previous reports suggesting a 
mitochondrial localization of these AD-related proteins (171, 172). 
Notably, as in PD, activities localized in MAM (including lipid 
homeostasis and calcium regulation) are altered in both familial 

and sporadic AD (173–175). These MAM-associated disturbances 
can impact mitochondrial biology by several mechanisms.

First, ER-mitochondria connections regulate calcium homeo-
stasis, which is well known to be altered in AD (167, 176, 177). 
Among its many functions, mitochondrial calcium buffering 
capacity regulates the intracellular concentration of calcium, not 
only by buffering local changes in the cytosol, but also via highly 
regulated contacts with the plasma membrane and/or the ER (178, 
179). Therefore, alterations in the communication between mito-
chondria and these organelles can significantly impact the entry of 
calcium into mitochondria, affecting overall calcium signaling in 
the cell (180, 181). Notably, calcium concentration is a regulator of 
rate-limiting enzymes in the Krebs cycle, and increases in calcium 
in the mitochondrial matrix activate the Krebs cycle and OxPhos 
(182). Thus, mitochondrial calcium buffering capacity not only 
balances intracellular calcium concentration, but also enables 
the coregulation of mitochondrial bioenergetics and ATP require-
ments in the cell. However, over a certain threshold, calcium 
increases in mitochondria can collapse membrane potential and 
induce the opening of the mitochondrial transition pore, trigger-
ing mitochondrial dysfunction and cell death (183). Taken togeth-
er, these data imply that alterations in ER-mitochondria contact 
sites could initiate OxPhos defects through changes in calcium 
regulation, and likely play a significant role in AD pathogenesis.

Second, as mentioned above, MAMs are involved in the 
regulation of lipid homeostasis, including sphingolipid metab-
olism. Recent data indicate that brain tissues from AD models 
and AD patient–derived cells display significant increases in  
sphingomyelinase-mediated sphingomyelin hydrolysis within 
MAM domains (175). This increased sphingomyelinase activity 
reduced sphingomyelin content and elevated ceramide (the prod-
uct of sphingomyelin hydrolysis) at ER-mitochondria contact sites 
and on mitochondrial membranes (175). Pharmacological reduc-

Figure 3. Mitochondria-associated membrane 
and AD. MAM is a specialized, lipid raft–like sub-
domain of the ER that communicates with mito-
chondria. APP is processed first by β-secretase in 
endosomes to produce C99. C99 then translocates 
to the ER (by an unknown mechanism), where it is 
cleaved rapidly by MAM-localized γ-secretase. In 
AD, however, this process is impaired, leading to 
the abnormal accumulation of C99 in the MAM, 
which correlates with increased conversion of 
sphingomyelin to ceramide via an upregulation  
of sphingomyelinase activity. In turn, the ele-
vated ceramide compromises ETC assembly and 
ATP production.
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prompted investigators to embark on studies based on the fol-
lowing: if mitochondrial mutations (using OxPhos deficiency as 
a proxy) can give rise to different neurological syndromes that 
had no known etiology, then other neurological disorders could 
actually be unsuspected mitochondrial diseases. Almost seren-
dipitously, PD and AD emerged as perfect candidates for the 
concept of a mitochondrial etiology, followed by other neurode-
generative disorders. In many instances, while studies found no 
consistent genetic basis, they documented alterations of OxPhos 
activity in patients as well as in animals and cellular models of 
human neurodegenerations.

We have argued in this Review that many of these findings, 
while appealing, are generally correlative and fail to demon-
strate causality. We have also contended that the interpreta-
tion of OxPhos defects in neurodegeneration too often stems 
from studies of isolated mitochondria. These facts did not 
deter many investigators from regarding neurodegenerative 
disorders as atypical forms of mitochondrial diseases. Admit-
tedly, even if such a view may not be accurate, and it turns 
out that OxPhos alterations are mere consequences of initial 
insults that trigger the disease, a deficit in bioenergetics can 
still contribute to the pathogenesis and be a valuable thera-
peutic target. Thus, it will be important to pursue investiga-
tions aimed at elucidating how bioenergetics can be improved. 
Investigations should also be encouraged to elucidate the 
origin of an OxPhos defect in neurodegeneration, even if it is 
a secondary alteration, because the most effective therapy  
for neurodegenerations such as AD or PD is likely going to be 
mechanism-specific. As such, we have proposed herein two 
“out-of-the-box” mechanisms in an attempt to broaden the con-
versation about how OxPhos arises in, and contributes to, neuro-
degeneration. Indeed, the lack of answers after more than 30 years 
and dozens of published papers should make us wonder whether 
the clues mentioned in the introduction are misleading us and  
whether it is time to rethink the search.
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tion of ceramide levels in AD models and in AD patient cells res-
cued mitochondrial respiratory deficits (175), underscoring the 
detrimental effect of ceramides on OxPhos regulation (184, 185). 
These results illustrate how bioenergetic defects are plausible  
consequences of alterations in the regulation of sphingolipid turn-
over at MAM domains (185).

Several possibilities have been suggested to explain the 
mechanism behind sphingolipid-mediated disturbances in AD. 
Elevations in ceramide could alter mitochondrial membrane 
properties, hampering the conformation or assembly of respi-
ratory complexes in the IMM (173) and negatively impacting 
respiratory rate (186). In addition, upon exceeding a threshold, 
ceramide can form channels in the outer mitochondrial mem-
brane large enough to allow soluble proteins to translocate into 
the cytosol (187). These ceramide channels bind to, and are  
regulated by, pro- and antiapoptotic proteins, making this lipid 
an important player in the induction of apoptosis (187). We also 
note that increases in the local concentration of ceramide at the 
MAM “glue” mitochondria to tubulin via the outer membrane 
protein porin (also called the voltage-dependent anion channel 
[VDAC]) (155), which regulates mitochondrial transport, sub-
cellular distribution, and division (188).

Third, one of the best-known activities localized to MAM 
regions is phospholipid synthesis and regulation (163). Alterations 
in MAM can affect the phospholipid milieu of mitochondrial 
membranes, including the signature mitochondrial lipid, cardio-
lipin (189, 190). Cardiolipin interacts with and regulates a number 
of mitochondrial proteins, including OxPhos complexes (191). In 
fact, this lipid is required for the proper assembly and functioning 
of all membrane-bound respiratory complexes and ATP synthase 
(192). Cardiolipin is also involved in the formation and stabiliza-
tion of mitochondrial supercomplexes (193). Unsurprisingly, alter-
ations in the concentration and/or transacylation of cardiolipin 
are associated with mitochondrial OxPhos defects (194) and with 
specific mitochondrial disorders, such as Barth syndrome (195, 
196). Cardiolipin could also influence bioenergetics indirectly, 
including regulation of the orientation of the ADP/ATP carrier in 
the IMM (197) via modulation of mitochondrial creatine kinase 
activity (198), or even via regulation of BAX oligomeric pores on 
mitochondrial outer membrane (199).

Concluding remarks
In the past three decades, tremendous progress has been achieved 
in our understanding of mitochondrial biology in health and dis-
ease. Deciphering the mitochondrial genome provided insights 
into the catalog of genetic mutations linked to primary mito-
chondrial diseases and to the observation that the same genetic 
mutation may produce a similar defect, i.e., OxPhos deficiency, 
and yet the clinical presentation may be varied. This realization 
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