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Abstract

 

Cross-linking of fibrinogen at its COOH-terminal 

 

g

 

 chain

cross-linking site occurs in the presence of factor XIIIa due

to self-association at a constitutive D domain site (“

 

g

 

XL”).

We investigated the contribution of COOH-terminal regions

of fibrinogen A

 

a

 

 chains to the 

 

g

 

XL site by comparing the 

 

g

 

chain cross-linking rate of intact fibrinogen (fraction I-2)

with that of plasma fraction I-9, plasmic fraction I-9D, and

plasmic fragment D

 

1

 

, which lack COOH-terminal A

 

a

 

 chain

 

regions comprising 

 

z

 

 100 , 

 

z

 

 390, and 413 residues, respec-

tively. The cross-linking rates were I-2 

 

.

 

 I-9 

 

.

 

 I-9D 

 

5

 

 D

 

1

 

,

and indicated that the terminal 100 or more A

 

a

 

 chain resi-

dues enhance 

 

g

 

XL site association. Fibrinogen Dusart,

whose structural abnormality is in the COOH-terminal

“

 

a

 

C” region of its A

 

a

 

 chain (A

 

a

 

 R554C-albumin), is associ-

ated with thrombophilia (“Dusart Syndrome”), and is char-

acterized functionally by defective fibrin polymerization

and clot structure, and reduced plasminogen binding and

tPA-induced fibrinolysis. In the presence of XIIIa, the

Dusart fibrinogen 

 

g

 

 chain cross-linking rate was about

twice that of normal, but was normalized in proteolytic fi-

brinogen derivatives lacking the A

 

a

 

 chain abnormality, as was

reduced plasminogen binding. Electron microscopy showed

that albumin-bound Dusart fibrinogen “

 

a

 

C” regions were lo-

cated in the vicinity of D domains, rather than at their ex-

pected tethered location near the fibrinogen E domain. In

addition, there was considerable fibrinogen aggregation that

was attributable to increased intermolecular COOH-termi-

nal A

 

a

 

 chain associations promoted by untethered Dusart

fibrinogen aC domains. We conclude that enhanced Dusart

fibrinogen self-assembly is mediated through its abnormal

 

a

 

C domains, leads to increased 

 

g

 

XL self-association and 

 

g

 

chain cross-linking potential, and contributes to the throm-

bophilia that characterizes the “Dusart Syndrome.” (

 

J.

Clin. Invest. 

 

1996. 97:2342–2350.

 

) 
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Introduction

 

Congenital abnormal fibrinogens provide useful tools for cor-
relating abnormal structure with functional aspects of the fi-
brinogen molecule, and they present an important opportunity
to gain insight into the relationship between the molecular ab-
normality and associated clinical problems, such as thrombo-
philia. More than 260 familial cases of dysfibrinogenemia had
been catalogued as of 1994 (1) and of these, 51 were associated
with thrombophilia (2). Fibrinogen Dusart (A

 

a

 

 R554C-albu-
min) is one of them (3), and the thrombophilia with which it is
associated has been termed the “Dusart Syndrome” (4). A sec-
ond A

 

a

 

 R554C family with the Dusart Syndrome, fibrinogen
Chapel Hill III (5), has been described.

Dusart fibrinogen molecules contain disulfide-linked albu-
min molecules, most of which are bound in the carboxy-terminal
region of the A

 

a

 

 chain at A

 

a

 

554 (6). Functional defects include
reduced plasminogen binding (4), impaired fibrin-dependent
plasminogen activation by tPA (7), and abnormal fibrin poly-
merization (4, 6) and clot structure (3, 6, 8). The abnormal po-
lymerization and fibrin clot structure have been correlated di-
rectly with the A

 

a

 

 chain defect, in that proteolytic removal of
the abnormal region of the A

 

a

 

 chain normalizes both defects
(6). The observation that Dusart thin fiber clot structure and
tPA-induced fibrinolysis is normalized in the presence of dex-
tran, led to the suggestion that thrombophilia is attributable to
hypofibrinolysis caused by the abnormal clot structure itself (8).

During the course of recent studies on factor XIIIa-medi-
ated fibrinogen and fibrin 

 

g

 

 chain cross-linking (9), we identi-
fied two constitutive self-association sites in fibrinogen D do-
mains, termed “D:D” and “

 

g

 

XL”, respectively. These sites
participate in the process of fibrin(ogen) polymerization (9,
10), and are independent of the well-known constitutive D do-
main “a” polymerization site (“Da”) that participates in fibrin
“D:E” assembly by reacting with a thrombin-exposed E do-

 

main “A” site (“E

 

A

 

”) (11–13) (see Fig. 1). The D:D site pro-
motes end-to-end molecular alignment in assembling fibrils,
whereas the 

 

g

 

XL:

 

g

 

XL interaction results in intermolecular
carboxy-terminal 

 

g

 

 chain association that facilitates XIIIa-medi-
ated cross-linking.

In the studies presented here, we explored the structures in
normal fibrinogen that contribute to 

 

g

 

XL site association and
cross-linking, and report that carboxy-terminal regions of A

 

a

 

chains enhance formation of that site. We also investigated the
contribution of the Dusart A

 

a

 

 chains to 

 

g

 

XL site function, and
found that the abnormality promotes “pre-assembly” of fibri-
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nogen molecules and consequent increased cross-linking po-
tential, a phenomenon that probably plays a causal role in the
thrombophilia that is associated with the abnormality.

 

Methods

 

All chemicals and reagents were the highest purity available from
commercial sources. Glycerol was from Fisher Chemical (Fair Lawn,
NJ). PMSF, Coomassie Brilliant Blue R250 and Dextran (average
mol wt, 35,600) were purchased from Sigma Chemical Co. (St. Louis,
MO). Trasylol (aprotinin) was obtained from Miles Inc. (Kankakee,
IL). Human 

 

a

 

-thrombin (specific activity, 3.4 U/

 

m

 

g), glu-plasmino-
gen, and lys-plasminogen were obtained from Enzyme Research Lab-
oratories, Inc. (South Bend, IN). The plasminogens were labeled with

 

125

 

I by the iodine monochloride method (14). Plasmin (12.3 U/mg)
was prepared by the method of Robbins and Summaria (15). Factor
XIII (2460 Loewy U/mg; reference 16) was prepared from human
plasma (17). Human serum albumin was obtained from Armour
Pharmaceutical Co., Kankakee, IL.

Normal and Dusart fibrinogen fractions I-2 and I-9 were isolated
from citrated plasma by glycine precipitation (18) and then further
purified (19). Fibrinogen concentrations were determined spectro-
photometrically at 280 nm using an absorbance coefficient  of
15.1 (20). Normal or Dusart fraction I-9D fibrinogen was prepared
from fraction I-2 by incubating fibrinogen (5 mg/ml) with 0.1 U/ml
plasmin in 50 mM Tris, 100 mM NaCl, pH 7.5, for 1.5 min at 37

 

8

 

C.
The brief digestion was terminated by adding aprotinin (10 U/ml) fol-
lowed by gel sieving over Sepharose 4B to separate cleaved fragments
from core material. The subunit structure of the core fragments was
determined by SDS-PAGE (21) on 1.5 mm polyacrylamide slab gels
(5% gels, nonreduced samples; 9% gels, reduced samples) (see Fig.
2). As assessed by immunoblot assay, normal and Dusart fraction I-9D
fibrinogen each contained only 0.06 mole of intact A

 

a

 

 chains per
mole fibrinogen (6).

Fragment D

 

1

 

 was prepared by digestion of normal fibrinogen (10
mg/ml) for 6 h at 37

 

8

 

C with plasmin, 0.1 U/ml, in 0.10 M NaCl, 0.05 M
Tris, pH 8.6 buffer containing 10 mM CaCl

 

2

 

 and 5 mM 

 

N

 

-ethylmale-
imide (NEM). Fragments D

 

1

 

 and E were separated by anion ex-
change chromatography on DE-52 (Whatman) (22). Fragment D

 

1

 

concentrations were determined spectrophotometrically at 280 nm
using an absorbance coefficient  of 20.8 (23).

Fibrin polymerization was initiated by the addition of thrombin
(0.1 U/ml) and was monitored at room temperature at 350 nm in a
Gilford Response recording spectrophotometer. Reaction mixtures
contained fibrinogen (normal or Dusart fraction I-2 or I-9D) at 0.5
mg/ml in 50 mM Tris-HCl, 100 mM NaCl, pH 7.4 buffer.

Plasminogen binding experiments were carried out on normal or
Dusart fractions I-2, I-9, and I-9D using 

 

125

 

I-labeled glu- or lys-plas-
minogen as follows: duplicate solutions containing 25 

 

m

 

g (0.074 nMol)
to 200 

 

m

 

g (0.58 nMol) fibrinogen in 50 mM Tris, 50 mM NaCl, pH 7.4
buffer containing aprotinin (5 KIU/ml) (final volume, 100 

 

m

 

l), were
clotted by adding thrombin (0.5 U/ml, final), incubated for 1 h at
room temperature, and then overnight at 4

 

8

 

C. 

 

125

 

I-labeled glu- or lys-
plasminogen in the Tris-NaCl buffer (final volume, 100 

 

m

 

l) was added
at a final molar ratio to fibrinogen of 10:1, and incubated overnight at
4

 

8

 

C. The resulting clots were synerized, washed four times with
buffer, and radioactivity in the clot and clot liquor was determined.
The coagulability of normal and Dusart fibrinogen fractions under
these conditions was 

 

.

 

 90%.
Plasma factor XIII at a concentration of 500 Loewy U/ml in 0.1 M

NaCl, 20 mM Hepes, pH 7 buffer containing 0.1–0.5 mM DTT, was
activated to XIIIa by adding human 

 

a

 

-thrombin (5 U/ml, final con-
centration), and incubating at 37

 

8

 

C for 30 min. (In comparison exper-
iments in which the DTT concentration in the XIII activation mixture
was varied between 0.1 and 0.5 mM, there were no significant differ-
ences in subsequent fibrinogen or fibrin cross-linking behavior attrib-
utable to the concentration of DTT.) For preparing XIIIa–cross-

A 1%
1 cm
----------- 

 

A
1%

1 cm
----------- 

 

 

linked fibrinogen, thrombin in the activation mixture was inactivated
by adding a 10-fold excess of hirudin (Sigma Chemical Co.) (50 U/ml,
final concentration). Hirudin-treated XIIIa had no measureable
thrombin activity as assessed by its failure to release detectable FPA
from fibrinogen (24) at a final XIIIa concentration of 100 U/ml over a
24-h incubation period, or to cleave the fibrinogen A

 

a

 

 chain as as-
sessed by SDS-PAGE of reduced fibrinogen specimens (9).

For SDS-PAGE analyses of fibrinogen or fibrin cross-linking, XI-
IIa (10 to 100 U/ml, final concentration) containing hirudin-inacti-
vated thrombin or active thrombin (not hirudin treated), was added
to a fragment D

 

1

 

 or fibrinogen solution (1.5 mg/ml, final) in 0.1 M
NaCl, 20 mM Hepes, pH 7 buffer containing 10 mM CaCl

 

2

 

 and incu-
bated at room temperature for up to 24 h. In some experiments hu-
man serum albumin was included in the cross-linking mixture at a fi-
nal concentration of 0.5 mg/ml. At selected intervals, the cross-linking
reaction was terminated by adding an equal volume of 5% SDS, 10
mM Tris, 1 mM EDTA, 10% 

 

b

 

-mercaptoethanol, pH 8 solution, and
the samples subjected to electrophoresis on 8–25% gradient gels in a Phast
gel apparatus (Pharmacia/LKB). Densitometric scanning of Coomassie
blue–stained gels was carried out at 540 nm in a Gilford Response
UV-VIS spectrophotometer. The initial rate of 

 

g

 

 chain cross-linking
of fibrinogen or fibrin was determined from the ratio of 

 

g

 

 dimers to
the total 

 

g

 

 chain population  at the earliest sampling time. In
the case of fragment D

 

1

 

, the /

 

b

 

 and /

 

g

 

 subunit bands were not re-
solved from one another. Therefore, in calculating the /

 

g

 

 chain cross-
linking rate, the scanned density of the /

 

b1

 

/

 

g

 

 position was corrected
for the /

 

b

 

 band contribution by assuming that the specific absorptivity
for each component was the same.

Samples of fibrin for transmission electron microscopy (TEM)
were prepared from fibrinogen (normal or Dusart; fraction I-2 or I-9D)
as 50-

 

m

 

l drops (50 

 

m

 

g/ml in 50 mM Tris-HCl, 100 mM NaCl, pH 7.4
buffer). After thrombin addition (0.1 U/ml) and incubation overnight
at room temperature, a fibrin clot specimen was picked up on a car-
bon-coated 200-mesh grid, fixed with glutaraldehyde/tannic acid,
stained with uranyl acetate, dehydrated, and critical point dried (24).
Samples of fibrin for negative staining were clotted and picked up on
grids as described above and negatively contrasted with 2% (wt/vol)
uranyl acetate. Electron microscopy was carried out in a Philips 400-T
electron microscope at 80 or 120 kV.

Fresh, partially cross-linked fibrinogen for scanning transmission
electron microscopy (STEM) was prepared as described (9). Briefly,
fibrinogen (1 mg/ml)-XIIIa (25 U/ml or 100 U/ml) mixtures were de-
posited as 50 

 

m

 

l drops on a parafilm surface and incubated at room
temperature for 5–20 min. At a selected time interval, the specimen
was diluted to a concentration of 5 to 10 

 

m

 

g/ml in 0.1 M NaCl, 20 mM
Hepes, pH 7 buffer, 3 

 

m

 

l injected into a 3 

 

m

 

l droplet of buffer on a mi-
croscope grid, and the specimen allowed to attach to the grid surface
for one minute. Fluid on the grid surface was then exchanged 8–10
times with 150 mM ammonium acetate solution, the specimen frozen
in liquid nitrogen, freeze-dried, transferred under vacuum to the mi-
croscope stage, and imaged at the Brookhaven STEM facility using a
40-kv probe focused at 0.25 nm. Fibrinogen specimens for STEM
were prepared from room temperature stock solutions that had been
diluted with the Hepes buffer to a final concentration of 2 

 

m

 

g/ml, ap-
plied directly to grids, and processed as described above. Background
filtering of digitized STEM images was optimized for contrast and
brightness offset by an image processing program (Adobe Photo-
shop), and the adjusted images downloaded to a GCC Technologies
ColorFast film recorder.

 

Results

 

Characterizing the fibrinogen constituents that contribute to

 

g

 

XL self-association.

 

In recent studies concerned with the lo-
cation of carboxy-terminal 

 

g

 

 chain cross-linking sites in assem-
bled fibrin polymers (9), we identified two constitutive D do-
main self-association sites, 

 

g

 

XL and D:D, respectively, that

gg
g1gg
---------------- 
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participate in the assembly of cross-linked fibrinogen and fi-
brin (Fig. 1). The sites are distinguishable from one another
and from the Da site that participates in fibrin fibril assembly
through the fibrin D:E interaction. 

 

g

 

XL contains the 

 

g

 

 chain
cross-linking site (

 

g

 

398-406), and is recognized from the obser-
vation that in XIIIa-mediated fibrinogen cross-linking, 

 

g

 

 chains
become cross-linked first to form 

 

g

 

 dimers, just as they do in fi-
brin, albeit at a slower rate. The D:D interaction promotes
end-to-end alignment of fibrin(ogen) molecules within a fibril
strand, and is distinct from 

 

g

 

XL on several grounds (9), but
most notably from the observation that fibrinogen Tokyo II
(

 

g

 

 R275C) undergoes XIIIa-mediated fibrinogen and fibrin

 

g

 

 chain cross-linking at the same respective rates as normal
(i.e., normal D:E and 

 

g

 

XL:

 

g

 

XL), yet displays abnormal end-
to-end molecular associations (i.e., abnormal D:D site) (10).

To investigate the constituents of the fibrinogen molecule
that comprise the 

 

g

 

XL site, we evaluated the 

 

g

 

 chain cross-
linking rate of fibrinogen and fibrinogen derivatives and frag-
ments that contain the g chain cross-linking site (Fig. 2).
Plasma fraction I-9 fibrinogen, whose Aa chains lack carboxy-
terminal segments comprising z 100 or more residues (25–27),
underwent g chain cross-linking at 68% of the rate of fraction
I-2 (0.046/min vs 0.068/min), which contains a very high pro-
portion of intact Aa chains (z 67 kD). Fragment D1, lacking
the 413 residues beyond Aa 197 (28, 29), yet retaining the car-
boxy-terminal g chain sequence and thus the capability of g chain
cross-linking (30) and of binding to the platelet fibrinogen re-
ceptor (31), showed an initial rate of cross-linking (0.018/min)
amounting to 26% of that for I-2. Plasmic fraction I-9D, which
contains a smaller residual Aa chain population than I-9 (26),
mainly lacking segments of z 390 residues (28, 32), showed the
same initial cross-linking rate as fragment D1. Overall, these
experiments show a progressive reduction of the g chain cross-
linking rate as a function of the Aa chain composition, indicat-
ing that the carboxy-terminal 1001 residues of Aa chains en-
hance association at the gXL site.

Normalizing the clotting and plasminogen binding functions

of fibrinogen Dusart by removing carboxy-terminal Aa chain

segments. We previously reported on the polymerization and
ultrastructure of Dusart fractions I-2 and I-9D fibrin (6), and
we briefly summarize these results here to provide a descrip-
tion of the structure of Dusart fibrin from which carboxy-ter-
minal segments of its Aa chains had been removed. As assessed
by turbidity measurements, Dusart I-2 fibrin polymerized with
a longer lag time and at a much reduced turbidity rate com-
pared to normal I-2 fibrin, confirming an earlier report (4).
Electron microscopy of a critical point dried Dusart I-2 fibrin
clot showed a branched network of fibers that were thinner
than those in normal fibrin. These network structures were

similar to those reported by Collet et al. (8), except they did
not branch as extensively. By contrast, Dusart I-9D fibrin poly-
merized faster than the original I-2 fibrin, but at nearly the
same rate as normal I-9D fibrin, which itself polymerized more
slowly than the I-2 fibrin from which it had been derived. Clot
matrices formed from normal and Dusart fraction I-9D fibri-
nogen formed networks that were virtually indistinguishable
from one another, and were composed of thick fibers showing
typical 22.5 nm periodicity.

Previous experiments demonstrated that fibrinogen Dusart
bound less plasminogen than normal fibrinogen (4), and possi-
bly as a consequence, showed reduced fibrin-dependent tPA-
mediated plasminogen activation (7). In these present experi-
ments, we evaluated plasminogen binding to Dusart plasma
fractions I-2 and I-9, and plasmic fraction I-9D (Table I), and
confirmed that there was reduced binding of both glu- and
lys-plasminogen to intact fibrin. Plasminogen binding was nor-
malized in Dusart I-9 or I-9D fibrin, both of which lack that
portion of the Aa chain containing the Dusart structural ab-
normality.

Cross-linking of Dusart fibrinogen and fibrin. Fibrinogen
Dusart g chains became cross-linked in the presence of XIIIa
about twofold more rapidly than did normal fibrinogen g chains
(Figs. 3 and 4). Including albumin (0.5 mg/ml) in the normal fi-
brinogen cross-linking mixture did not significantly change its

Figure 1. Schematic diagram of the fibrinogen mole-
cule illustrating the location of the D domain associa-
tion sites Da, D:D, and gXL, and the Aa chain car-
boxy-terminal aC domain. One aC domain is depicted 
as associating with the E domain. The aC domain in 
the other Aa chain is not associated with the E domain, 
and has an albumin molecule bound in a position corre-
sponding to Dusart Aa R554C. The approximate cleav-
age site on the Aa chain resulting in the a/ chain rem-
nant found in fractions I-9, I-9D, or fragment D, 
respectively, is shown by a dashed arrow.

Figure 2. The cross-linking of normal fibrinogen fractions and frag-
ment D1 by factor XIIIa (100 U/ml). The data shown for I-2, I-9, and 
fragment D1 are the mean values of triplicate determinations, and du-
plicate determinations for I-9D. The g chain cross-linking rate (ordi-
nate) is plotted as the ratio of g dimer or /g dimer (fragment D1) over 
the total g or /g chain population  versus time (min). s, I-2; d, 
I-2 1 albumin; n, I-9; X, I-9D; u, fragment D1.
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cross-linking rate (Fig. 2), suggesting that the presence of albu-
min, per se, does not cause a change in the g chain cross-linking
rate. As is the case for normal fibrinogen, the Aa chain cross-
linking rate of Dusart fibrinogen was considerably slower than
that of the g chains (9, 33) and showed little, if any, tendency
to form Aa polymers more rapidly than its normal counter-
parts. Thus, accelerated XIIIa-mediated cross-linking of Dusart
fibrinogen is evidently confined to its g chain population. In
contrast to the accelerated cross-linking rate observed for in-
tact Dusart fibrinogen, Dusart I-9D became cross-linked at
about half the rate of normal fibrinogen, but at virtually the
same rate as I-9D from normal fibrinogen (Fig. 4).

Fibrin g chains become cross-linked much more rapidly
than those of fibrinogen (9, 10, 33), a rate enhancement that
directly reflects D:E driven fibrin fibril assembly. At this level
of XIIIa (100 U/ml) and thrombin (1 U/ml), both Dusart and
normal fibrin g chains were completely cross-linked at the ear-
liest sampling time (Fig. 4, lower panel; 1 min), suggesting that
the Dusart fibrin D:E interaction is normal. Further support
for this conclusion was obtained from a fibrin cross-linking ex-
periment that was carried out at a lower XIIIa (10 U/ml) and
thrombin (0.1 U/ml) concentration. Under these conditions of
slower fibrin assembly, g chain cross-linking of intact Dusart
and normal fibrin was nearly the same at the 1-min sampling
time (80 vs 74%, respectively). The Dusart I-9D fibrin g chain
cross-linking rate was greater than that of Dusart I-9D fibrino-
gen, no doubt reflecting the effect of the D:E interaction, but
the cross-linking rate of Dusart I-9D fibrin did not differ signif-
icantly from that of normal I-9D fibrin. Thus, as had been the
case for fibrin clot assembly, normalization of the fibrinogen
Dusart cross-linking rate can be achieved by removing the re-
gions of its Aa chains containing the structural abnormality.

STEM of Dusart fibrinogen and cross-linked fibrinogen.

A possible explanation for the acceleratory effect of Dusart fi-
brinogen on gXL:gXL association and cross-linking could lie
with the fact that Dusart molecules have an increased self-asso-
ciation tendency due to the Aa chain defect. We examined
that possibility directly by assessing the structure and distribu-
tion of normal or Dusart fibrinogen molecules that had been
deposited at a concentration of 2 mg/ml on carbon films and
then imaged by STEM. At this concentration, the particle den-
sity of Dusart fibrinogen molecules deposited on the grid sur-
face was robust (Fig. 5 A), and exhibited a clear tendency for
molecular clustering. In contrast, normal fibrinogen molecules
were relatively sparse and more evenly distributed (Fig. 5 B),
and showed only a modest tendency for intermolecular aggre-

Table I. Plasminogen Binding to Fibrin (mol/mol)

Fibrin n glu-plasminogen/fibrin lys-plasminogen/fibrin

Fraction I-2

Normal 8 1.660.6 3.360.7

Dusart 8 0.8760.2 1.460.5

(P , 0.001) (P , 0.0001)

Fraction I-9

Normal 2 1.5 (1.51,1.52) 3.4 (3.3, 3.5)

Dusart 2 1.6 (1.61, 1.62) 3.1 (3.06, 3.14)

Fraction I-9D

Normal 2 1.6 (1.55, 1.62) 3.2 (3.18, 3.21)

Dusart 2 2.1 (2.05, 2.07) 3.1 (3.01, 3.23)

Figure 3. SDS-PAGE gels of the cross-linking of Dusart versus nor-
mal I-2 fibrinogen in the presence of XIIIa (100 U/ml). The positions 
of the various reduced fibrinogen subunit chains are indicated; albu-
min from Dusart fibrinogen molecules migrates in the Aa position. 
Time of cross-linking in minutes.

Figure 4. The g chain cross-linking rate of Dusart and normal frac-
tions I-2 and I-9D plotted as  versus time (min). (Upper panel) 
Fibrinogen, (lower panel) Fibrin. s, Dusart I-2; h, normal I -2; d, 
Dusart I-9D; j, normal I-9D ( XIIIa, 100 U/ml). n, Dusart I-2; ., 
normal I-2 (XIIIa, 10 U/ml).
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Figure 5. STEM images of Dusart (A) and 
normal fibrinogen (B) deposited at a con-
centration of 2 mg/ml. The particle density 
of normal fibrinogen molecules in these 
fields was 42.7626.3 per mm2 (n 5 18 
fields), whereas the density of Dusart fi-
brinogen molecules was 93.5624.8 per mm2 
(n 5 17 fields; P, , 0.0001). Selected exam-
ples of heterodimeric or homodimeric 
Dusart fibrinogen molecules are shown in 
the insets to A. Albumin molecules bound 
to fibrinogen are indicated by arrows. Bar, 
50 nm.
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gation (e.g., occasional end-to-end dimers), as previously de-
scribed (9). Albumin molecules bound to Dusart fibrinogen
were usually easy to identify (arrows, Fig. 5 A) and were most
often found in the vicinity of D domains rather than in close
proximity to E domains, a finding that extends previous obser-
vations on the position of fibrinogen-bound albumin mole-
cules that had been deposited from glycerol-containing solu-
tions (6).

In view of the accelerated g chain cross-linking of Dusart
fibrinogen, we carried out cross-linking of Dusart fibrinogen at
lower than usual XIIIa concentrations (25 U/ml versus 100 U/
ml). This lower enzyme concentration allowed us to obtain
cross-linked samples of sufficiently low viscosity to permit
sample dilution and deposition on the microscope grid (Fig. 6).
Like normal fibrinogen (C and D), cross-linked Dusart fibri-
nogen formed elongated double-stranded fibrils (A) and did
not show a tendency to branch. (Cross-linked normal fibrino-

gen fibrils were rarely found in cross-linking mixtures at XIIIa
concentrations of 25 U/ml-not shown.) Formation of double-
stranded linear fibril structures indicates that D:D interactions
in Dusart fibrinogen molecules are normal, as would be ex-
pected. In addition, Dusart cross-linked fibrinogen fibrils
showed a tendency to associate laterally to form multi-
stranded fibers (Fig. 6 B) to a much greater extent than is seen
in normal fibrinogen cross-linking mixtures. However, Dusart
fibrinogen fibrils differed in subtle ways from their normal
counterparts, in that Aa chain-bound albumin molecules could
sometimes be identified (arrows) protruding from the fibril
strands.

The effect of dextran and glycerol on Dusart fibrinogen

cross-linking. Collet et al. (8) reported that dextran normal-
ized the structure of the Dusart fibrin clot from a thin fiber ma-
trix to a more coarse and permeable structure containing
thicker fibers, concomitant with normalization of the impaired
tPA-induced fibrinolysis, an effect that is consistent with the
known property of dextran to produce a more coarse fibrin
network structure (34–36). To determine whether dextran had
a normalizing effect on the cross-linking of Dusart fibrinogen,
we evaluated XIIIa-mediated cross-linking in the presence of
30% dextran (Fig. 7). At this level, at which normalization of
the abnormal Dusart clot structure was reported to have oc-
curred (8), dextran not only did not reduce the accelerated g
chain cross-linking rate of Dusart fibrinogen, but very likely
caused a modest increase in the cross-linking rate (z 10%).
Dextran had no significant negative effect on the fibrin cross-
linking rate (Fig. 7, inset) inasmuch as g chain cross-linking was
complete at the first sampling time (1 min) in each case. Thus,
whatever action dextran has on Dusart fibrin, it does not ap-
pear to be mediated through modification of gXL:gXL associ-
ations.

Unlike dextran, which promotes coarse matrix formation,
polyhydroxyl compounds like glycerol impair fibrin polymer-
ization and promote formation of thin fiber networks (37, 38).
To contrast these opposite effects, we evaluated the effect of
20% glycerol on fibrinogen and fibrin cross-linking (Fig. 8),

Figure 6. STEM images of cross-linked Dusart fibrils (A and B) and 
normal fibrinogen fibrils (C and D). Dusart fibrinogen and normal fi-
brinogen were cross-linked at XIIIa concentrations of 25 U/ml and 
100 U/ml, respectively. Albumin bound to fibrinogen Dusart mole-
cules are indicated by arrows. Bar, 50 nm.

Figure 7. The cross-linking rate  of Dusart versus normal frac-
tion I-2 fibrinogen 630% dextran in the presence of XIIIa (100 U/ml). 
(Inset), Fibrin; s, Dusart I-2; u, normal I-2; d, Dusart I-2 1 dextran; 
j, normal I-2 1 dextran.
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and found a marked effect in reducing the g chain cross-link-
ing rate of both Dusart and normal fibrinogen, and a similar
effect in reducing their fibrin g chain cross-linking rates. These
observations indicate that glycerol reduces the gXL:gXL asso-
ciation rate, as well as D:E assembly.

Discussion

Fibrin molecules lacking carboxy terminal regions of Aa

chains form less turbid clots and contain thinner fibers than
those formed from intact fibrin (19, 39, 40). Recent studies
(32, 41) indicated that a carboxy-terminal Aa chain segment
(termed “aC”) that is associated with the fibrinogen E domain
in the native molecule, became untethered as a result of FPB
cleavage, thereby becoming available for association with
other aC domains in promoting lateral fibrin fiber associa-
tions. To explore the Aa chain aC self-association phenomenon
in relation to the D domain self-association sites, particularly
gXL, we investigated the structural constituents in fibrinogen
that contribute to forming the gXL association site. Normal
fibrinogen having intact Aa chains showed the fastest rate of g
chain cross-linking, whereas fraction I-9 which lacks carboxy-
terminal Aa chain segments of z 100 residues, showed a re-
duced g chain cross-linking rate. Fragment D1, lacking 413
carboxy-terminal Aa chain residues, showed a lower rate of
cross-linking than I-9, but the same rate as that for I-9D.
These findings indicate that the carboxy-terminal z 100 resi-
dues of the fibrinogen Aa chains contribute to association and
cross-linking at gXL sites, and that the contributory effect ex-
tends over an even longer stretch of the Aa chains. The effect
may be even greater when the “aC” domain is not associated
with the E domain, as discussed below with respect to fibrino-
gen Dusart.

In view of the finding that carboxy-terminal segments of
normal Aa chains participate in gXL site function, we evalu-
ated fibrinogen Dusart from this standpoint since its structural
abnormality resides in this region. Dusart g chains were more
rapidly cross-linked in the presence of XIIIa than was normal

fibrinogen, but the enhanced activity was normalized in Dusart
fractions lacking the carboxy-terminal Aa chain abnormality.
This indicates that the Dusart Aa chain has a significant effect
in promoting an increased intermolecular association and po-
tential cross-linking rate at the gXL site. Furthermore, the
Dusart fibrin g chain cross-linking rate, although more rapid
than that of fibrinogen, was the same as that of normal fibrin,
thus indicating that the fibrin D:E interaction was not im-
paired.

STEM images of cross-linked Dusart fibrinogen fibrils con-
firmed the increased gXL:gXL self-association tendency, in
that XIIIa-cross-linked Dusart fibrinogen formed longer and
more numerous double-stranded fibrils than did normal fibri-
nogen at a XIIIa level only 25% of that used for normal. The
normal structure of Dusart fibrinogen fibrils indicated that the
D:D interaction, per se, was normal. Increased self-association
was also supported by STEM images of Dusart fibrinogen
molecules, which showed a considerable tendency to aggregate
compared with normal. Of collateral interest was the finding
that albumin bound to Dusart fibrinogen molecules were situ-
ated in the vicinity of its D domains, indicating that the car-
boxy-terminal Aa chain was located in this region rather than
with the E domain. In contrast to this observation, there is ul-
trastructural evidence derived from observations of fibrinogen
compared with fibrin (32, 41), and data from STEM mass mea-
surements on fibrinogen molecules (42), that the carboxy-ter-
minal aC domain of normal fibrinogen tends to be situated at
or near the E domain. Of note in this regard is that release of
the aC region from the E domain after thrombin cleavage of
FPB, is associated with increased lateral fibrin fibril associa-
tion (41). Conversely, the absence of this domain (19, 32, 39-
41) or competitive inhibition of its binding function (32), re-
sults in decreased lateral fibrin fibril association. Dissociation
of aC domains in Dusart fibrinogen evidently involves at least
the abnormal aC domains in affected heterozygotic individuals
(z 50%), an amount that far exceeds the level of aC dissocia-
tion (, 10%) observed in normal fibrinogen molecules (32).
We interpret these findings as suggesting that increased aC do-
main dissociation in Dusart fibrinogen molecules leads to in-
creased intermolecular association, and concomitantly or con-
sequently, to enhanced gXL:gXL association. The tendency
for molecular “pre-assembly” due to demodulation of the E
domain binding activity of aC may be a most important factor
contributing to the thrombophilia that accompanies the
“Dusart Syndrome” (4, 5). Although there is no evidence that
premature dissociation of aC domains occurs in any other ab-
normal fibrinogen, it is very likely that investigation of existing
“thrombophilic” dysfibrinogens along the lines developed in
this study will reveal other examples of this phenomenon.

In fibrinogen Dusart, the Aa 554 Arg to Cys substitution,
the concomitantly disulfide-bound albumin, or a combination
of the two has an effect on fibril assembly that results in low
turbidity clots containing thinner than normal fibers (3, 6, 8). It
is not clear on experimental grounds how these abnormalities
contribute to thin fibrin fiber formation. It appears to us that
this may be directly related to the tendency for increased
Dusart fibrinogen self-association before its conversion to fi-
brin, an event that may lead to enhanced linear fibrinogen
fibril formation and concomitant reduction in “trimolecular”
fibrin network branch junctions (43, 44). Dextran, which is
known to induce a thick fiber network structure (34–36), nor-
malized the abnormal Dusart thin fiber structure (8), but ac-

Figure 8. The cross-linking rate  of Dusart versus normal frac-
tion I-2 fibrinogen 620% glycerol in the presence of XIIIa (100 U/
ml). (Inset), Fibrin; s, Dusart I-2; h, normal I-2; d, Dusart I-2 1 
glycerol; j, normal I-2 1 glycerol.
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celerated Dusart fibrinogen g chain cross-linking was not nor-
malized (Fig. 7), and dextran had no measureable effect on
fibrin g chain cross-linking. Thus, whatever action dextran has
on Dusart fibrin fiber formation, it does not appear to be me-
diated through modification of the gXL:gXL or D:E associa-
tion. Glycerol on the other hand, which impairs fibrin poly-
merization and promotes formation of thin fiber networks (37,
38), had a marked effect in reducing the g chain cross-linking
rate of both Dusart and normal fibrinogen and fibrin, suggest-
ing that unlike dextran, glycerol impairs both gXL:gXL and D:E
interactions.

Hypofibrinolysis has been proposed as the main causal fac-
tor for thrombophilia in the Dusart Syndrome (8), an effect
that may be related to its thin ‘fiber’ clot structure, a type of
network structure that reportedly lyses at a slower rate than
‘coarse’ clots containing thick fibers (45, 46). Enhanced thin fi-
ber formation resulting directly from increased self-association
of Dusart fibrinogen molecules and enhanced linear fibril for-
mation, could account for this effect. Another factor, however,
contributing to reduced fibrinolysis may be that Dusart fibri-
nogen binds less plasminogen than normal (reference 4, Table
I) and consequently displays reduced fibrin-enhanced plasmi-
nogen activation (7). Since the abnormal functions of fibrino-
gen Dusart are normalized when the abnormal Aa chain re-
gion is removed, it would seem that therapy directed at
enhancing fibrinolysis, by promoting proteolytic release of car-
boxy-terminal regions of Aa chains, might ameliorate the
thrombophilia that accompanies the abnormality.
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