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Abstract

The cellular basis of insulin resistance is still unknown, how-
ever, relationships have been demonstrated between insulin
action in muscle and the fatty acid profile of the major
membrane structural lipid (phospholipid). The present
study aimed to further investigate the hypothesis that insulin
action and adiposity are associated with changes in the
structural lipid composition of the cell. In 52 adult male
Pima Indians, insulin action (euglycemic clamp), percent-
age body fat (pFAT; underwater weighing), and muscle
phospholipid fatty acid composition (percutaneous biopsy
of vastus lateralis) were determined. Insulin action (high-
dose clamp; MZ) correlated with composite measures of
membrane unsaturation (% C20-22 polyunsaturated fatty
acids [r = 0.463, P < 0.001], unsaturation index [r = -0.369,
P < 0.01]), a number of individual fatty acids and with A5
desaturase activity (r = 0.451, P < 0.001). pFAT (range
14-53% ) correlated with a number of individual fatty acids
and A5 desaturase activity (r = -0.610, P < 0.0001). Indi-
ces of elongase activity (r = -0.467, P < 0.001), and A9
desaturase activity (r = 0.332, P < 0.05) were also related
to pFAT but not insulin action. The results demonstrate
that A5 desaturase activity is independently related to both
insulin resistance and obesity. While determining the mech-
anisms underlying this relationship is important for future
investigations, strategies aimed at restoring "normal" en-

zyme activities, and membrane unsaturation, may have
therapeutic importance in the "syndromes of insulin resis-
tance." (J. Clin. Invest. 1995. 96:2802-2808.) Key words:
dietary fats * euglycemic clamp * body composition * elon-
gase activity * desaturase activity

Introduction

Impaired insulin action (insulin resistance) is central to a cluster
of prevalent diseases including non-insulin-dependent diabetes
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mellitus (NIDDM),' obesity, hypertension, dyslipidemias and
cardiovascular disease ( 1-3 ). However, the basic mechanisms
underlying insulin resistance are not known.

Skeletal muscle is the primary site of insulin stimulated
glucose disposal at euglycemia (4, 5). Recently, a relationship
between the fatty acid composition of skeletal muscle mem-
brane structural lipid (phospholipid) and measures of insulin
resistance have been demonstrated in both experimental animals
and humans (6-8). This has demonstrated that the greater the
percentage of polyunsaturated fatty acids (PUFA) in muscle
membranes, the better the insulin action. With the exception of
some marine oils, dietary fats must be desaturated and elongated
to become the long-chain PUFA of muscle membranes. The
enzymes involved in these transformations, that we have fo-
cussed on in this paper, include: L.9 desaturase, which inserts
a double bond at the ninth carbon from the carboxyl terminal;
/\5 desaturase, which inserts a double bond at the fifth carbon
from the carboxyl terminal; and the ubiquitous elongase en-
zyme, which inserts two carbon units at the carboxy terminal
of the fatty acid (9). How these factors relate to insulin action
or to body composition, which itself is related to insulin resis-
tance, has not been fully explored.

There is an emerging body of evidence to suggest that di-
etary fat profile is a determining factor in weight gain and
adiposity (10-13). Dietary fat content has been shown to act
at the molecular level, having a direct effect on gene expression
including both hepatic lipogenesis (14) and desaturase activ-
ity (15).

The present study was aimed at investigating the relation-
ship between insulin action and adiposity and the structural lipid
composition of the cell membrane. The results demonstrate that
both impaired insulin action and obesity are independently asso-
ciated with reduced z\5 desaturase activity. In contrast, in-
creased adiposity was additionally found to be associated with
reduced elongase activity and higher A9 desaturase activity.

Methods

Subjects. Individuals in this study were 52 male volunteer Pima Indians
of the Gila River Indian Community who were participating in a longitu-
dinal study of the development of NIDDM(16). The metabolic studies
were performed in the clinical research unit of the National Institutes
of Health (NIH) in Phoenix, Arizona. Subjects were 44 years of age

1. Abbreviations used in this paper: C20-22 PUFA, the total percentage
of long chain PUFAwith 2 20 carbon units; UI, the unsaturation index;
LFPIns, log 10 fasting plasma insulin; M, low-dose in vivo insulin
mediated glucose disposal rate; MZ, high-dose in vivo insulin mediated
glucose disposal rate; NIDDM, non-insulin-dependent diabetes melli-
tus; PUFA, polyunsaturated fatty acids.
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or younger and in good health as assessed by medical history and
physical examination. The current analysis was limited to individuals
with a mean fasting plasma glucose concentration of less than 7.8 mM.
Subject characteristics are listed in Table I. All subjects gave informed
consent, and the studies were approved by the ethics committees of the
NIH, the Indian Health Service and the Gila River Indian Community.

Upon admission to the clinical research unit, all subjects received
a weight maintenance diet consisting of 50% carbohydrate, 30% fat,
and 20% protein. A 75 gram oral glucose-tolerance test was performed
after .2 d on the diet and diabetes mellitus was diagnosed according to
World Health Organization criteria (17). At this base-line test, glucose
tolerance was normal in all but one subject who was marginally glucose
intolerant. Body composition (pFAT) was estimated by hydrodensitom-
etry with simultaneous determination of lung residual volume (18, 19).

Euglycemic clamp. In vivo insulin-mediated glucose disposal rate
was measured by a two-step euglycemic-hyperinsulinemic clamp ac-
cording to a modification of the method of DeFronzo et al. (20) which
has been described previously (21). The clamp was performed by a
primed continuous low- and high-dose insulin infusion (290 and 2900
pmol/min.m2 respectively) each of which were continued for 100 min
while the plasma glucose was maintained at - 5.5 mmol/liter. It is
unlikely that a true "steady state" is obtained during this length of
insulin infusion, although the glucose uptake approaches "steady state"
after 60 min. Nevertheless, the data does allow for relative comparisons
between individuals to be made. The physiology for its own sake is not
addressed and a pure "steady state" is not required for this analysis.
The in vivo insulin action was determined during the period from 60
to 100 min. Both the low-dose or physiological insulin stimulation level
(M) and high-dose or maximal insulin stimulation level (MZ) use the
units of mg/min.kg fat-free mass + 17.7 (22). Plasma glucose was
measured by the glucose oxidase method using a glucose analyzer
(Beckman Instruments, Inc., Fullerton, CA) and insulin concentrations
by radioimmunoassay using a radioassay analyzer (Concept 4; ICN,
Horsham, PA).

Indirect calorimetry. 40 min before the initial insulin infusion and
for the last 40 min of each insulin infusion, oxygen consumption and
carbon dioxide production were determined by open circuit indirect
calorimetry (23).

Muscle biopsy. 2 d after the euglycemic hyperinsulinemic clamp, a
percutaneous biopsy of the vastus lateralis muscle was obtained using
a Bergstrom needle (Depuy, Phoenix, AZ). The specimen was immedi-
ately frozen and stored in liquid nitrogen for later analysis.

Phospholipid fatty acid analysis. Extraction and derivatization of
the fatty acid components of muscle phospholipids has been described
elsewhere (12). In brief, muscle tissue was homogenized in 2:1(vol/
vol) chloroform:methanol and total lipid extracts prepared according to
Folch et al. (24). Phospholipids were isolated from less polar lipids by
solid-phase extraction on Sep-Pak silica cartridges (Waters, Milford,
MA). The phospholipids were transmethylated and the methyl fatty
acids separated, identified and quantitated by gas chromatography.

Fatty acid data analysis. The content of individual fatty acids in
the skeletal muscle phospholipids was expressed as a percentage of the
total fatty acids identified. (For a review on the nomenclature and func-
tion of the principal PUFA and their metabolic interconversions see
references 25 and 26). Two fatty acid indices were derived from the
primary data: the average degree of fatty acid unsaturation (the unsatura-
tion index; UI), which was calculated as the average number of double
bonds per fatty acid residue multiplied by 100; and the total percentage
of long chain PUFA with 2 20 carbon units (C20-22 PUFA). The
activity of a number of the enzymes of fatty acid biosynthesis was
estimated according to the product precursor ratios of the percentage
of individual fatty acids. The estimated enzyme activities include: the
ubiquitous elongase, calculated from the ratio of the percentage of 18:0
(stearic acid) to 16:0 (palmitic acid); and the A5 desaturase, calculated
from the ratio of 20:4n-6 (arachidonic acid) to 20:3n-6; and L\9 desatur-
ase, calculated from the ratio of 18:ln-9 (oleic acid) to 18:0.

Statistics. All data are expressed as the mean±SEM. All statistical
analyses were performed using Statview 512+ statistical package (Aba-

Table I. Subject Characteristics

Variable Mean* Minimum Maximum

n 52
Age (years) 27.5±0.7 18.1 43.8
Height (cm) 171.4±0.8 150.5 182.5
Weight (kg) 96.8±4.0 56.1 257.3
Body Mass Index (wt/ht2) 32.9±1.3 19.0 81.2
Percent body fat 28±1 14 53
Waist/thigh (cm) 1.7±0.1 1.3 2.3
Fasting plasma glucose (mM) 5.0±0.1 4.1 6.6
Fasting plasma insulin (pM) 215±15 83 677
Total M(mg/min.kgFFM + 17.7) 3.3±0.2 1.6 11.4
Total MZ(mg/min.kgFFM + 17.7) 9.0±0.3 3.9 16.3

* Values are mean±SEM.

cus Concepts Inc., Berkeley, CA). The relations between variables were
analyzed by both simple and multiple regression with significance deter-
mined by F value.

Results

Mean values and ranges obtained for body size and insulin
action are shown in Table I. The group is an overweight popula-
tion as indicated by the mean BMI and pFAT of 32.9±1.3 and
28±1% respectively. The fatty acid profile of muscle phospho-
lipids and correlations with fasting plasma insulin, clamp-de-
rived Mand MZvalues, pFAT BMI and waist thigh ratio are
listed in Table II. The relationships between the metabolic deter-
minants and derived fatty acid indices are presented in Table
III and the salient points are highlighted below.

Insulin action was significantly related to membrane phos-
pholipid fatty acid proportions. This was true of measures of
insulin action reflected by fasting insulin (LFPIns), glucose
uptake at physiological insulin (M) or glucose uptake at supra
physiological (MZ; maximally stimulating) insulin concentra-
tions (Table III). Measures of insulin action were well corre-
lated with each other and with measures of obesity (Table III).
Similarly, measures of obesity were significantly correlated with
each other and to membrane phospholipid fatty acid proportions.
In contrast to these relationships, no significant relationships
were observed between values for either basal lipid (0.58
±0.03 mg/min.kg FFM; range 0.14-0.97) or carbohydrate
(1.65±0.07mg/min.kg FFM; range 0.70-3.10) oxidation and
any measure of insulin action or obesity.

Insulin action and fatty acid variables. As shown in Table
Ill, significant correlations were found between MZand: (a)
the percentage of C20-22 PUFA; (b) A5 desaturase activity;
and (c) the composite measure of unsaturation, UI. Similarly,
insulin action at the low dose insulin infusion (M) was also
positively correlated with the percentage of C20-22 PUFAand
A5 desaturase activity (Fig. 1 a) but not UI.

Obesity and fatty acid variables. A number of individual
fatty acids and derived indices were significantly correlated with
measures of adiposity (Tables II and III). The A5 desaturase
activity, related strongly to measures of adiposity (Fig. 1 b) as
did the ratio 18:0/16:0, an index of elongase activity (Fig. 2).
Furthermore, a significant (P < 0.05) relationship was observed
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Table II. The Profile of Fatty Acids in the Phospholipid Fraction of Skeletal Muscle and Simple Correlations with Fasting Plasma
Insulin, Insulin Action Indices, Percentage Body Fat, Body Mass Index and Waist to Thigh Ratio

Variable Mean* LFPInst Log MI Log MZ11 pFATI BMI** Waist/thigh

16:0 15.3±0.2 0.156 -0.009 -0.094 0.334a 0.320a 0.153
18:0 13.1±0.2 -0.092 0.273 0.117 -0.286a -0.288a -0.168
16:1 1.2±0.1 0.304a -0.263 -0.207 0.145 0.201 0.115
18: 1n9 7.9±0.2 0.062 -0.147 0.065 0.251 0.189 0.156
18:2n-6 36.2±0.3 0.199 -0.201 -0.297a 0.069 0.121 0.149
20:3n-6 2.0±0.0 0.444c -0.479c -0.266 0.587d 0.528d 0.400b
20:4n-6 16.8±0.2 -0.416" 0.292a 0.391b -0.322a -0.348" -0.132
22:5n-6 1.0±0.1 -0.299a 0.254 0.314a -0.024 -0.081 -0.401b
22:6:n-3 1.3±0.1 -0.101 0.112 0.119 -0.254 -0.306a -0.298a

* Values are means±SEMexpressed as a percentage of total fatty acids. Log 10 of the fasting plasma insulin (pM). § LoglO of the low-dose
insulin-(290 pmol/min.m2) mediated glucose disposal rate (mg/min/kgFFM + 17.7). 11 LoglO of the high-dose insulin-(2900 pmol/min.m2) mediated
glucose disposal rate (mg/min/kgFFM + 17.7). 1 Percentage body fat determined by densitometry. ** Body mass index (wtAht2). a p < 0.05; b p
< 0.01; cP < 0.001; dp < 0.0001.

between percentage body fat and A9 desaturase activity ( 18: in-
9/18:0).

Insulin action and obesity. Measures of insulin action were
related to each other as well as to measures of obesity (Table
III). A5 desaturase activity was the only lipid variable that
correlated with all the measures of insulin action and all the
obesity measures (Table III).

Table IV shows possible permutations of the independent
relationships between A5, insulin action and adiposity. A5 re-
lated to LFPIns, M and MZ independent of pFAT, BMI and
waist/thigh. In turn, A5 related to pFAT and BMI but not waist
thigh ratio, independently of all three measures of insulin action.

The C20-22 PUFA and UI were related to insulin action
but not to any direct measure of adiposity or central adiposity
(Table HI). On the other hand elongase and A9 were signifi-
cantly related to BMI and pFAT but not at all to insulin action
(Table III).

Discussion

The present study has demonstrated significant relationships
between skeletal muscle membrane phospholipid fatty acid

composition and both insulin action and adiposity in a popula-
tion with the highest reported incidence of NIDDMin the world.
Diabetes mellitus in this discrete population has been exten-
sively characterized and roles for obesity, insulin receptor and
post receptor function, insulin resistance, family history and
genetic make-up in NIDDM have been determined (16, 27-
33). The initial lesion that leads to diabetes in this population
appears to be insulin resistance in skeletal muscle and possibly
liver. The current studies relating obesity, insulin action and
membrane phospholipid were performed in a search for possible
underlying mechanisms for these previous clinical observations.
These studies extend earlier findings in Caucasians showing
relationships between insulin action and skeletal muscle mem-
brane lipid composition (7, 8). The present data are unable to
define the cause for this insulin resistance or the effect of obesity
on insulin resistance. However, since membrane function is
central to most physiological processes, the current findings
have far reaching implications for possible causes of diabetes
and obesity.

Cell membranes are dynamic lipid bilayers which separate
the cell from the extracellular milieu and surround intracellular
organelles. The major component is phospholipid which consti-

Table 111. Correlation Table of Metabolic Determinants and Derived Fatty Acid Indices

Variable Mean* LFPInst Log MI Log MZ11 pFATI BMI** Waist/thigh UI C20-22 Elongase A9 A5

LFPIns 2.3±1.1 1
Log M 0.45±0.02 -0.788d 1
Log MZ 0.92±0.01 -0.854d 0.789d 1
pFAT 28±1 0.649d -0.558d -0.458c 1

BMI 32.9±1.3 0.557d -0.447" -0.408" 0.879d 1
Waist/thigh 1.7±0.2 0.555d -0.471c -0.490c 0.572d 0.579d 1
Unsaturation index 176.6±0.9 -0.371b 0.214 0.369b -0.187 -0.306a -0.193 1
C20-22 polyunsaturated 22.7±0.3 -0.396b 0.296a 0.463c -0.169 -0.284a -0.245 0.839d 1
Elongase activity (18:0/16:0) 0.85±0.0 -0.170 0.190 0.137 -0.467c -0.422b -0.240 0.129 0.069 1
A9 activity (18:ln-9/18:0) 0.63±0.0 -0.108 -0.219 -0.008 0.332a 0.275a 0.223 -0.032 -0.079 -0.592 d

A5 activity (20:4n-6/20:3n-6) 8.02±0.2 -0.589d 0.563d 0.451 -0.610d -0.576d -0.348" 0.421" 0.351l 0.365b -0.341a 1

Mean values are means±SEM. Other values as described in Table H1 ap < 0.05; b p < 0.01; c p < 0.001; d p < 0.0001.
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Figure 1. Insulin-action (M; a)
and percentage body fat (b) in re-
lation to AS desaturase activity.
The index of insulin-action at
physiological insulin level (M;
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, from the hyperinsulinemic eu-

40 8 glycemic clamp technique and is
expressed in terms of the number

t o of milligrams of glucose infused
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X per minute per kg of fat free mass
02 . + 17.7. Percentage body fat was

.20 `~mI determined by hydrodensitometry.
0

O A5 desaturase activity was esti-
10 mated according to the fatty acid

product precursor ratio 20:4n-6/
20:3 n-6.

tutes 60% of the plasma membrane and > 90% of some

organelle membranes such as mitochondria (34). Membranes
permit the maintenance of ionic gradients, potential differences
and modulate the passage of hormones, substrates, nutrients and
intracellular signals. As such, the fatty acid composition of
membrane phospholipids themselves are instrumental determi-
nants of cellular metabolism. The current studies used total
muscle membranes. Isolation of subcellular membrane fraction
would doubtless provide even greater insight into the role of
membranes in insulin action and obesity.

NIDDM is a genetic disease that becomes manifest under
particular environmental conditions (27-30, 35, 36). The envi-
ronmental component of NIDDMis demonstrated by the secular
trends in diabetes prevalence this century, particularly in devel-
oping societies (37, 38). Obesity has long been associated with
the development of NIDDM and along with diet composition,
may constitute one of the major "environmental" determinants
of the development of the disease. The incidence of NIDDM
in the Pima Indians is proportional to the degree of obesity as

well as the family history of the disease (27) consistent with
environmental and genetic causes. Obesity also correlates with
the degree of insulin resistance and it seems possible that the
impact of obesity on NIDDM may be mediated via insulin
resistance (22, 33). Membrane lipid composition has the poten-
tial to be influenced by both genetic and lifestyle factors and
therefore may be the focal point at which these factors act in
concert to determine insulin action. This could also be true for
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Figure 2. Percentage body fat in relation to elongase activity. Elongase
activity was estimated from the product precursor ratio of the percent-
ages of individual fatty acids 18:0/16:0.

example if the activities of the enzymes controlling the forma-
tion of long-chain PUFA or their insertion into the structural
lipids of cell membranes, were under strong genetic influence.
In addition, dietary lipid profile (12, 39-41) and alcohol (42)
are environmental factors capable of modifying membrane lipid
composition.

With the exception of certain marine oils, the major dietary
fatty acids must all be substantially elongated and desaturated
to be transformed into the long chain PUFAthat we have shown
to be associated with leanness and insulin sensitivity. In this
study, enzyme activities were determined indirectly by product
precursor ratios. A strong relationship was observed between
reduced A5 desaturase activity (20:4n-6/20:3n-6) and both re-

duced insulin action and increased adiposity. Both insulin action
and obesity are independently related to A5 and both obesity
and A5 independently correlate with Mvalues. This means that
the strong relationship of the A5 to insulin resistance is not
merely an epiphenomenon of the effects of obesity and therefore
deserves consideration as part of the genetic predisposition to
insulin resistance (28). On the other hand, the C20-22 PUFA
and UI independently correlate with measures of insulin action
but not obesity. This could be due to effects of either genotype
or diet directly on insulin action.

The elongase activity ( 18:0/16:0), which inserts two carbon
units onto the fatty acid backbone, showed a relationship to
obesity but not to insulin action. The elongase enzyme is
thought to be ubiquitous throughout all fatty acid biosynthetic
pathways and it must work in concert with the desaturase en-

zymes as requisite steps between the major dietary n-6 and n-

3 fatty acids (linoleic and a-linolenic) and the formation of the
important long chain PUFA.

A9 desaturase, which inserts a double bond at carbon nine
of the fatty acid chain, was also associated with obesity but not
insulin action. This is a novel finding in humans but entirely
consistent with results in animal models of obesity (13).
Though the etiological significance of increased A9 desaturase
activity in obesity is unclear it may relate to an attempt to
compensate for major decreases in other desaturase enzymes in
order to maintain cell membrane fluidity within some regulated
range. Certainly there is clear evidence for major (and uncharac-
teristic) increases in the n-9 class of fatty acids during essential
(n-6 and/or n-3) fatty acid deficiencies (43, 44). Studies aimed
at measuring enzyme activity before and after intervention (re-
sulting in both weight loss or weight gain) would be instructive
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in elucidating whether altered A9 or desaturase activities are

the likely cause or effect in adiposity.
The results indicate that some aspects of fatty acid metabo-

lism are of considerable importance in the well recognized obe-
sity-insulin action relationship while others are not. This is
consistent with the observations that insulin action has determi-
nants that are independent of obesity (28) and that obesity bears
a complex relationship with insulin resistance (45).

Given the relationships between adiposity and phospholipid
biosynthetic enzyme activities what are the possible mecha-
nisms which might subtend such relationships? Increases in ion
"leakage" and Na+/K+ ATPase activity, (i.e., increased
whole-body metabolic rate) have been directly associated with
increased PUFAcontent in comparative studies between endo-
therms and ectotherms (46, 47). In animals and humans, in-
creasing the dietary polyunsaturated to saturated ratio resulted
in increased membrane unsaturation (12, 41) and increased
basal metabolic rate ( 10, 26). The effect of leaking membranes
may not be limited to energy expenditure. Leaking membranes
are the basis of spontaneous membrane depolarization which
may affect neuronal firing rates and in turn muscle gene expres-

sion affecting muscle fibre type (48, 49). Altered ion flux may

also influence central nervous system activity and hence the
regulation of numerous processes including appetite.

The overall control of the partitioning of dietary fats be-
tween storage and oxidation is not clear. However, work in
rodents has shown very clear differences between the oxidation
rates of different fatty acids (50). Longer-chain PUFA are oxi-
dized at much faster rates than are saturated fats. Alteration in
enzyme activities, as are here associated with obesity, would
favor an increased proportion of the less readily oxidized fatty
acids, and thus may cause, or at least exacerbate, the tendency
towards decreased fat oxidation in the obese. This study found
no relationship between lipid oxidation rate and phospholipid
fatty acid composition. This may reflect the fact that most of
the lipid for oxidation is coming from storage triglyceride and
the relationship of its fatty acid profile to that of muscle mem-

brane phospholipid is unknown.
Docosahexaenoic acid (22:6n-3) is the most highly unsatu-

rated and longest chain of any fatty acid found in skeletal mus-

cle. It comprises the bulk proportion of total n-3 fatty acids.
Unless provided in the diet (primarily as marine oils), its pre-

cursors must be substantially elongated and desaturated to form
this fatty acid. One striking difference between the muscle phos-
pholipid fatty acid composition in the Pima Indians and an

Australian, largely Caucasian, population (7) is the low percent-
age of long chain n-3 PUFA (22:6n-3: 1.2±0.1% versus

2.5±0.7% in the Australian population). This finding may re-

flect a very low dietary intake of n-3 in the Pima Indians.
However, among the Australian population even individuals
with little or no discernible n-3 intake (unpublished observa-
tions) had muscle membrane n-3 levels much higher than the
Pima study group. The low levels of n-3 in the Pimas may then
reflect a genetic reluctance to incorporate this important class
of fatty acids into membranes, thus predisposing this population
to the "syndromes of insulin resistance." Further to this point,
an intestinal fatty acid binding protein loci on chromosome 4q
has been significantly linked with insulin resistance in Pima
Indians (32). It is tempting to speculate that the "thrifty
gene(s) " (51, 52) may therefore include, those which control
the binding and uptake of certain fatty acids, the incorporation
of specific PUFA into membrane lipids, and/or regulation of
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the production and activity of the enzymes that elongate and
desaturate fatty acids.

This study is unable to determine which are the cause and
effects in any of the relationships described. The possibility that
A5 desaturase activity could be part of the genetic regulation
of insulin resistance needs to be explored. Whether any effect
of diet on insulin resistance could be mediated through this
enzyme or the fatty acid levels it regulates deserves study. Fi-
nally, it is possible that obesity directly affects elongase and
A9 desaturase activity, but it should also be considered that
such alterations of activity might lead to obesity.
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