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Abstract

Protein-tyrosine phosphatases (PTPases) have an essential
role in the regulation of the steady-state phosphorylation of
the insulin receptor and other proteins in the insulin signal-
ling pathway. To examine whether increased PTPase activ-
ity is associated with adipose tissue insulin resistance in
human obesity we measured PTPase enzyme activity to-
wards the insulin receptor in homogenates of subcutaneous
adipose tissue from a series of six lean and six nondiabetic,
obese (body mass index > 30) subjects. The obese subjects
had a mean 1.74-fold increase in PTPase activity (P
< 0.0001) with a striking positive correlation by linear re-
gression analysis between PTPase activity and body mass
index among all of the samples (R = 0.918; P < 0.0001).
The abundance of three candidate insulin receptor PTPases
in adipose tissue was also estimated by immunoblot analysis.
The most prominent increase was a 2.03-fold rise in the
transmembrane PTPase LAR (P < 0.001). Of the three
PTPases examined, only immunodepletion of LAR protein
from the homogenates with neutralizing antibodies resulted
in normalization of the PTPase activity towards the insulin
receptor, demonstrating that the increase in LAR was re-
sponsible for the enhanced PTPase activity in the adipose
tissue from obese subjects. These studies suggest that in-
creased PTPase activity towards the insulin receptor is a
pathogenetic factor in the insulin resistance of adipose tissue
in human obesity and provide evidence for a potential role
of the LAR PTPase in the regulation of insulin signalling in
disease states. (J. Clin. Invest. 1995. 95:2806-2812.) Key
words: insulin resistance + tyrosine phosphorylation « tyro-
sine kinase « hormone signalling

Introduction

Defective insulin signalling in its target tissues is a major feature
of the pathophysiology of human obesity and non—insulin-de-
pendent diabetes mellitus (1-3). While major advances have
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recently been made in our understanding of the central role for
reversible tyrosine phosphorylation of the insulin receptor and
its cellular substrate proteins in the mechanism of insulin action
(4), we still do not have a clear picture of how these events
are regulated, or of molecular defects that may lead to the
insulin resistance observed in disease states.

Several recent studies have provided evidence that protein-
tyrosine phosphatases (PTPases)' have an integral role in the
regulation of insulin signal transduction (5). PTPases can de-
phosphorylate and attenuate the active (autophosphorylated)
form of the insulin receptor tyrosine kinase. In addition,
PTPases may modulate post-receptor signalling by dephosphor-
ylating the phosphotyrosyl form of cellular substrate proteins
for the insulin receptor such as IRS-1 and Shc, which signal
to downstream enzymes as ‘‘docking’’ proteins that bind and
activate a number of src-homology 2 (SH2) domain-containing
signalling proteins (4). Thus, the opposing effects of phosphor-
ylation by the insulin receptor kinase and dephosphorylation by
cellular PTPases will regulate the state of tyrosine phosphoryla-
tion of signalling proteins in the insulin action pathway.

From the expanding superfamily of protein-tyrosine phos-
phatases (6), work in our laboratory and others has implicated
the tandem-domain transmembrane enzyme LAR (7) and the
intracellular, single domain PTPases 1B (8, 9) and SH-PTP2/
syp (also termed PTP1D or PTP2C) (10, 11), as candidate
PTPases for the regulation of the insulin action pathway. In
addition to being relatively prominent PTPases in adipose tissue
and other insulin-sensitive tissues, these enzymes have catalytic
activity towards the insulin receptor or its substrate proteins in
studies done both in vitro and in vivo (5, 12). Of these PTPases,
we have been particularly interested in the transmembrane
PTPase LAR (7) since it is expressed in insulin-sensitive liver,
muscle, and adipose tissue (5), it is localized to the membrane
fraction of the cell where the insulin receptor is rapidly dephos-
phorylated (13, 14), and it has a catalytic preference for the
regulatory phosphotyrosines in the insulin receptor kinase do-
main (15). Furthermore, reduction of LAR enzyme mass by
expression of antisense mRNA in hepatoma cells markedly en-
hances insulin receptor autophosphorylation and insulin-stimu-
lated phosphatidylinositol 3 '-kinase activity (44). These studies
have provided compelling evidence that LAR may be a physio-
logical modulator of insulin signalling.

The present work was undertaken to test the hypothesis that
increased PTPase enzyme activity is associated with the insulin
resistance of human obesity and whether the abundance of spe-
cific PTPase homologs might be associated with the increased

1. Abbreviations used in this paper: BMI, body mass index; LAR,
Leukocyte Common Antigen-Related PTPase; PTPase, Protein-tyrosine
phosphatase.



PTPase activity in adipose tissue. We found a strong correlation
between body mass index and the PTPase activity towards the
insulin receptor in adipose tissue from normal weight and obese
subjects. Immunoblot analysis showed that the mass of LAR
enzyme protein was markedly increased in the tissue homoge-
nates. Finally, immunodepletion studies demonstrated that the
augmented tissue PTPase activity in the obese individuals was
largely due to the increased LAR protein. These studies provide
further evidence that PTPases, and LAR in particular, play an
essential role in the pathogenesis of insulin resistance in adipose
tissue in human obesity.

Methods

Human subjects. Subcutaneous adipose tissue was obtained surgically
from human subjects during elective operations. Informed consent was
obtained prior to surgery by procedures approved by the Thomas Jeffer-
son University Institutional Review Board.

Preparation of adipose tissue homogenates. Adipose tissue samples
were rapidly frozen in liquid nitrogen and stored at —85°C before use.
Approximately 10—12 grams of adipose tissue from each patient was
homogenized in 50 ml of ice-cold 10 mM Tris-HCl buffer (pH 7.0)
containing 0.25 M sucrose, 2 mM EDTA, 1 mM PMSF, 25 mM benzam-
idine, 10 uM leupeptin, and 50 U/ml aprotinin., with a 4 up/down
strokes at setting No. 3 of a Polytron (Brinkmann Instrument, Westbury,
NY). The crude homogenate was centrifuged at 3,000 g, and the in-
franate below the fat cake was removed. To solubilize PTPase enzymes
from the particulate compartment into the tissue homogenate, the in-
franate was made up to 1% (vol/vol) Triton X-100 and 0.6 M KCl,
stirred for 45 min at 4°C, and centrifuged at 15,000 g for 20
min. The resulting supernatant was dialyzed overnight at 4°C against
the homogenization buffer. Protein was assayed by the method of Brad-
ford (16).

Insulin receptor dephosphorylation. Partially purified insulin holore-
ceptors were obtained by wheat germ agglutinin-agarose chromatogra-
phy (17) of solubilized plasma membranes from transfected Chinese
hamster ovary cells overexpressing the recombinant human insulin re-
ceptor (15). Aliquots of 4 mg protein were autophosphorylated in a
0.45 ml reaction containing 1 mM insulin, 5 mM MnCl,, 0.1 mM ATP,
180 uCi of y-[**P]ATP (3,000 Ci/mmol), and 0.1% (vol/vol) Triton
X-100 in 50 mM Hepes buffer at pH 7.6, at 4°C for 120 min. Unincorpo-
rated [**P]-ATP was removed by a Bio-Gel P6 spin column, and 25 ul
aliquots of the labeled receptors were incubated with 40 ul of the solubi-
lized adipose tissue homogenate in a 125 ul reaction containing 1 mM
DTT and 2 mM EDTA in 50 mM Hepes, pH 7.6, at 30°C. The reactions
were terminated by the addition of 0.5 ml of a chilled stop solution
containing 10 mM ATP, 10 mM sodium pyrophosphate, 4 mM EDTA,
100 mM NaF, 2 mM sodium vanadate, 0.1 mg/ml aprotinin, and 2 mM
PMSF in 50 mM Hepes buffer, pH 7.6. After boiling in gel sample buffer
containing 100 mM DTT, samples were subjected to electrophoresis in
gels containing sodium dodecyl sulfate and 7.5% polyacrylamide (18).
Dephosphorylation of the 95-kD S-subunit of the insulin receptor was
analyzed by direct phosphorimager analysis of the dried gel (Molecular
Dynamics, Sunnyvale, CA).

Immunoblot analysis of PTPase abundance. The adipose tissue ho-
mogenates (40 ug protein) were fractionated on gels containing sodium
dodecyl sulfate and 7.5% (for LAR and SH-PTP2) or 10% (for PTPase
1B) polyacrylamide in a minigel apparatus (18). Proteins were trans-
ferred to nitrocellulose filters (0.45 m pore size) at 100 V for 3 h in
buffer containing 20% (vol/vol) methanol, 25 mM Tris base and 192
mM glycine at pH 8.3 (19). Nitrocellulose membranes were then incu-
bated in blocking buffer containing 150 mM NaCl, 0.05% (vol/vol)
NP-40, 5% (vol/vol) bovine serum albumin, 1% (wt/vol) ovalbumin,
0.01% (wt/vol) sodium azide and 10 mM Tris, pH 7.4, for 1 h at room
temperature with rocking. The blocking solution was replaced with 150
mM NaCl, 0.05% (vol/vol) Tween 20, 5% (wt/vol) bovine serum

albumin, 1% (wt/vol) ovalbumin, 0.01% (wt/vol) sodium azide, and
10 mM Tris, pH 7.4, containing individual PTPase antibodies (1.0 ug/
ml for PTPaselB, 0.5 pg/ml for LAR, or 1.25 pug/ml SH-PTP2), and
rocking was continued for 2 h. Membranes were washed three times
for 10 min with blotting buffer alone followed by incubation with 2
uCi of "ZI-protein A (30 mCi/mg) (ICN Biomedicals Inc., Irvine, CA)
for 1 h at room temperature followed by three additional 10-min washes
with TBST. Immunoreactive proteins were visualized by direct phos-
phorimager analysis of the immunoblot (Molecular Dynamics). Protein
migration was calibrated with prestained molecular size standards from
Bio Rad (Melville, NY).

Polyclonal antiserum to the cytoplasmic domain of recombinant rat
LAR was obtained by immunization of rabbits with LAR protein purified
from a bacterial expression system (20). In both cases, the antibodies
were affinity-purified using Affi-Gel (Bio-Rad) columns containing im-
mobilized purified LAR cytoplasmic domain (21). Polyclonal antiserum
to PTPase1B and a monoclonal antibody to SH-PTP2 were obtained
from Transduction Laboratories (Lexington, KY). After blotting with
the monoclonal antibody, blots were incubated with 150 xl rabbit anti—
mouse IgG (Sigma Chemical Co., St. Louis, MO) in 10 ml of blotting
buffer, and then washed again before reaction of the immunoblot with
labeled protein A.

Immunodepletion studies with PTPase antibodies. In some experi-
ments, homogenates from the obese and control subjects were incubated
with excess antibody to each of the three PTPases tested and immuno-
complexes were precipitated with trisacryl—protein A beads to deplete
the supernatant of individual PTPase enzymes. Normal rabbit IgG was
used in place of PTPase antibody in control studies. Four separate
experiments were performed for each antibody depletion using the sam-
ples from the control and obese subjects. Preliminary experiments with
recombinant LAR protein determined that 3 ug of affinity-purified LAR
antibody would provide approximately a 30-fold excess of antibody for
the depletion of LAR from 40 pg of homogenate protein from the obese
subjects. Immunoblot analysis of the cleared supernatant demonstrated
that this treatment was effective in removing 90-95% of the LAR
enzyme protein from the tissue homogenate samples. Similarly, 80—
90% of the SH-PTP2 protein was immunoprecipitated from human
adipose tissue homogenates by 5 ug of monoclonal antibody, and 75—
80% of the PTPaselB protein was immunoprecipitated by 7 ug of
polyclonal antibody (data not shown).

Statistical methods. Data is presented as mean+SEM with the indi-
cated number of samples in each group. Correlations were analyzed by
simple linear regression analysis, and where applicable, two groups were
compared by Student’s ¢ test. The immunodepletion study was analyzed
by one-way ANOVA with Bonferroni’s correction to evaluate the sig-
nificance of changes among the four groups. Calculations were per-
formed with the SigmaStat PC computing software (Jandel Scientific,
San Rafael, CA).

Results

Subcutaneous adipose tissue samples were obtained during elec-
tive surgery from 6 normal weight and 6 obese (BMI > 30)
individuals. None of the subjects had overt diabetes mellitus
as manifested by hyperglycemia during pre- or post-operative
testing, and none were taking oral hypoglycemic medications
or insulin. The two groups were not significantly different in
age or in their composition by gender or race (Table I).
Homogenates were prepared from the adipose tissue speci-
mens and samples were tested for PTPase activity towards the
insulin receptor. Since the PTPase assay was performed with
matching amounts of protein from each homogenate sample,
the results reflect the specific activity of the PTPase towards
the autophosphorylated insulin receptor as substrate. A repre-
sentative experiment shows that receptor dephosphorylation
was markedly increased when incubated with adipose tissue
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Table I. Characteristics of the Study Patients

Lean Obese
Age BMI Sex Race Age BMI Sex Race
kg/m? kg/m*
26 23.1 F A 27 35.8 F H
30 245 F A 32 384 F A
44 26.2 F C 37 40.0 M C
47 23.7 F H 41 41.5 F C
52 25.7 M C 45 31.1 M A
73 274 M C 46 47.6 F C
Mean 45.3+6.9 25.1+0.7 38+3.1 39.1+2.3*

The age difference is not statistically significant between the lean and obese groups. The abbreviations for race designation is as follows: A, African-

American; C, Caucasian; H, Hispanic. * P = 0.0001 vs. lean.

homogenates from the obese individuals (Fig. 1). As a group,
the obese individuals had a 1.74-fold increase in the insulin
receptor PTPase activity compared to the normal weight sub-
jects (7975+351 [n = 6] vs. 13907+760 [n = 6], respectively
[p = 0.00003]). Furthermore, when tested by linear regression
analysis, there was a striking correlation between BMI and the
insulin receptor dephosphorylating activity among the adipose
tissue homogenates of all of the individuals studied that was
highly statistically significant (Fig. 2). These results demon-
strated that the extent of obesity is linearly related to the in-
creased insulin receptor dephosphorylating activity in adipose
tissue, and may be an important factor in the tissue resistance
to insulin action that has been well-characterized in this tissue.

These findings were further extended to determine which
of several major candidate PTPases expressed in adipose tissue
might account for the increased PTPase activity in the obese
subjects. Samples of the adipose tissue homogenates were elec-
trophoresed on polyacrylamide gels and transferred to nitrocel-
lulose filters for immunoblotting. Separate blots using antibod-
ies to PTPasel1B, SH-PTP2, and LAR were performed in order
to quantitate the abundance of the individual PTPases (Table
II). PTPaselB protein levels were only slightly increased on
average by 1.22-fold, albeit with statistical significance. SH-
PTP2, which has in recent studies been shown to be a positive
mediator of insulin signalling and might have been postulated
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Figure 1. Insulin receptor dephosphorylation by adipose tissue homoge-
nates from normal weight and obese individuals. Homogenates were
prepared from intraoperative specimens of subcutaneous adipose tissue
from each subject and PTPase activity was assayed by incubation with
autophosphorylated, recombinant human insulin receptors as described
in Methods. A representative phosphorimage of the dephosphorylated
insulin receptors is shown. Lane C, control incubation with no homoge-
nate added; lanes /-6, lean individuals; lanes 7—12, obese individuals;
IRKD, insulin receptor kinase domain (95 kD 8 subunit).
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to be reduced in insulin-resistant states (22, 23), was actually
moderately increased by 1.45-fold in the adipose tissue homoge-
nates from the obese individuals.

Analysis of LAR protein mass by immunoblotting showed
a dramatic increase in the obese subjects compared to the normal
weight individuals (Fig. 3). Quantitation of the phosphorimage
density from all of the patients in the two groups revealed a
highly significant mean increase of 2.03-fold in the adipose
tissue of the obese subjects (Table IT). In addition, linear regres-
sion analysis of the individual data points also showed a strong
relationship between the BMI and the amount of LAR enzyme
per mg of protein in the tissue homogenates (Fig. 4) that was
highly statistically significant (R = 0.843; P = 0.0006).

Although the increase in LAR protein mass was highly cor-
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Figure 2. Insulin receptor dephosphorylating activity in adipose tissue
from six normal weight and six obese (BMI > 30) individuals. Receptor
dephosphorylation was assayed as described in the legend to Fig. 1.
PTPase activity was quantitated as the loss of receptor phosphorylation
by phosphorimager analysis after incubation with the adipose tissue
homogenates. By linear regression analysis of these data, R = 0.918
and P < 0.0001.



Table II. Immunoblot Analysis of PTPase Abundance

PTPase Lean Obese P-value
SH-PTP2 5635+683 8157+287 0.007
PTPaselB 4122+77 5028+127 0.0001
LAR 6000766 12177+691 0.0001

PTPase abundance was estimated from immunoblots of adipose tissue
homogenates using antibodies to SH-PTP2, PTPaselB, and LAR. The
level of PTPase mass is given as arbitrary phosphorimager units that
are consistent between the lean and obese samples for each PTPase, but
are not comparable between the different PTPases examined.

related with the PTPase activity in the tissue homogenates, these
data did not establish that LAR was, in fact, responsible for the
bulk of the enhanced insulin receptor dephosphorylating activity
that was observed. To evaluate this possibility, we depleted the
LAR enzyme from the adipose tissue homogenates by incuba-
tion with excess amounts of a specific anti-LAR antibody that
immunoprecipitates and inactivates the enzyme, and measured
the PTPase activity towards the insulin receptor remaining in
the immunoprecipitation supernatant. Under the conditions em-
ployed, the excess LAR antibody essentially removed 90-95%
of the enzyme from the tissue homogenate as assessed by immu-
noblot analysis. Depletion of LAR protein significantly reduced
the insulin receptor dephosphorylating activity in the samples
from the lean individuals by 40% (P < 0.05), indicating that
in normal adipose tissue, LAR represents a significant compo-
nent of the PTPase activity towards the receptor (Fig. 5). When
LAR protein was depleted from the adipose tissue samples from
the obese subjects, the increased PTPase activity in the tissue
supernatants was essentially normalized with no statistically
significant difference between immunodepleted samples from
the obese subjects compared with the immunodepleted lean
control samples (Fig. 5).

For comparison, adipose tissue homogenates were depleted
of SH-PTP2 or PTPaselB by immunoprecipitation and the su-
pernatants were tested for their ability to dephosphorylate the
autophosphorylated insulin receptor as substrate. In contrast to
the results obtained with LAR immunodepletion, after immuno-
depletion of 80-90% of SH-PTP2, the samples from obese
subjects maintained a mean 1.45—fold increase in PTPase activ-
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Figure 3. Immunoblot analysis of LAR enzyme protein abundance in
adipose tissue from lean and obese subjects. Duplicate samples of tissue
homogenates from lean (L23, L42, L50, designated by patient identi-
fying numbers) and obese (052, 039, 038) subjects were separated on
polyacrylamide gels, transferred to nitrocellulose filters and blotted with
affinity-purified antibody to the recombinant cytoplasmic domain of
LAR as described in Methods. A representative phosphorimage of the
immunoblot is shown. The processed, transmembrane domain of LAR
migrates at ~ 80 kD (55, 56).

14000 3
2 ]
8 5 12000
38 3
c @ 10000 -
S E ]
<5 ;
o ‘§_ 8000
32 ]
T 6000

h [

4000] o°

| L DRI DL B LB DAL |

20 25 30 35 40 45 650
BMI

Figure 4. Abundance of LAR enzyme mass in the lean and obese
subjects. LAR abundance was measured by immunoblot analysis for
adipose tissue homogenates from each of the 12 subjects as described
in the legend to Fig. 3. By linear regression analysis of these data, R
= 0.843 and P = 0.0006.

ity compared to the control subjects (95% confidence interval
1.38-1.53), and after depletion of 75-80% of PTPaselB, the
obese samples exhibited a mean 1.61-fold increase over the
control samples (95% confidence interval 1.44—1.78). Of the
three major candidate insulin receptor PTPase enzymes exam-
ined, these results provide evidence for a specific role of LAR
in the increased PTPase activity observed in the adipose tissue
from obese individuals.

Discussion

The relationship between increasing body adiposity and defects
in insulin action in its target tissues is well-characterized but
poorly understood at the cellular level (24). In normal volun-
teers, increasing body mass over a threshold value is highly
correlated with decreasing sensitivity to insulin (25, 26). In
individuals with a genetic predisposition, the insulin resistance
associated with obesity can lead to impaired glucose tolerance
or frank diabetes. The impact of obesity and insulin resistance
on several interrelated risk factors, including the circulating
insulin level, hypertension, and dyslipidemias has heightened
awareness of this common and important constellation of find-
ings for cardiovascular disease (27).

The site of cellular insulin resistance in adipose tissue in
human obesity has not been clearly identified, although defects
in both insulin binding capacity and in post-binding signalling
have been reported (2, 24, 28, 29). In one report, partially
purified receptors from adipocytes of obese subjects had normal
insulin receptor kinase activity compared with lean control sub-
jects (30). However, other studies have demonstrated a correla-
tion between decreased insulin receptor autophosphorylation
and the loss of insulin signalling to glucose transport and lipo-
lytic pathways in isolated adipocytes from obese patients over
a wide range of insulin resistance (31). In obese subjects with
Type 2 diabetes mellitus, defects in adipocyte insulin receptor
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Figure 5. Effect of immunodepletion of LAR from adipose tissue ho-
mogenates on the remaining PTPase activity towards the insulin recep-
tor. LAR enzyme protein was depleted by 90-95% from the adipose
tissue homogenates by incubation with excess anti-LAR antibody that
immunoprecipitates and inactivates the enzyme. The resulting superna-
tants were used to assay the PTPase activity towards the insulin receptor
as described in Methods. Results are shown for normal rabbit IgG as a
control antibody and for anti-LAR antibody for the lean (shaded bars)
and obese subjects (solid bars). Statistical calculations, performed
among each of the four groups by one-way analysis of variance with
Bonferroni’s correction, revealed significant differences (P < 0.05)
between lean control and lean-LAR-depleted samples, between lean
control and obese control samples, and between obese control and obese-
LAR-depleted samples. The difference between the obese-LAR de-
pleted and the lean-LAR-depleted samples was not statistically signifi-
cant.

autophosphorylation and in receptor kinase activity towards ex-
ogenous substrates have been observed, firmly establishing that
the steady-state balance of reversible insulin receptor tyrosine
phosphorylation and receptor activation are disrupted in adipose
tissue of severly insulin resistant, obese patients (30, 32).
Several lines of evidence have recently implicated PTPase
enzymes in the pathogenesis of cellular insulin resistance. Since
the heterotetrameric insulin receptor does not self-dephosphory-
late, the steady-state tyrosine phosphorylation state of receptor
sites is determined by a balance between the action of insulin
to stimulate receptor autophosphorylation and kinase activation
and cellular PTPases which dephosphorylate and inactivate the
receptor kinase as well as signalling by tyrosine phosphorylated
post-receptor mediators of insulin action (5). Thus, as the phys-
iological regulation of insulin action in normal cells appears to
involve cellular PTPases, aberrant regulation or increased activ-
ity of PTPases that impact on the insulin action pathway have
been implicated in the pathogenesis of insulin-resistant disease
states. Furthermore, PTPase inhibitors such as vanadate and
related compounds, as potent PTPase inhibitors, have been
shown to enhance insulin signalling in vitro and can effectively
reduce hyperglycemia in diabetic animal models (33-35). In-
creases in cytosol or particulate fraction PTPase activity have
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also been demonstrated in several studies in diabetic rodents
(36-39) and in aging (40).

The present study provides the first evidence for increased
PTPase activity towards the insulin receptor in adipose tissue
from obese human subjects, lending further support to the hy-
pothesis that aberrant expression of PTPases may be an integral
part of the pathogenesis of insulin resistance with increasing
body mass in this tissue. Previous studies in human subjects,
performed with skeletal muscle biopsy material from insulin-
resistant but nondiabetic Pima Native American subjects
showed that basal PTPase activity towards derivatized lysozyme
in the particulate fraction of muscle was 33% higher than in
insulin-sensitive controls (41). In further studies, insulin infu-
sion in vivo produced a rapid 25% suppression of soluble
PTPase activity in muscle of insulin-sensitive subjects, but this
response was severely impaired in the insulin-resistant subjects.
In contrast, a related study by Kusari et al. (42), performed
with a different patient population, showed that the skeletal
muscle particulate fraction PTPase activity against phosphopep-
tide substrates was reduced by 21-22% in obese nondiabetic
and non—insulin-dependent diabetic subjects. Furthermore, the
basal particulate fraction PTPase activity was positively corre-
lated with the insulin-stimulated glucose disposal rate and
weight loss resulted in a significant increase in both the skeletal
muscle particulate fraction PTPase activity and in the insulin-
stimulated glucose disposal rate (42). In relation to the present
study, it is not clear how the tissue dephosphorylating activity
towards a synthetic phosphopeptide substrate might compare to
the dephosphorylation of a native substrate from the insulin
signalling pathway, such as IRS-1 or the insulin receptor itself.
The main difference between the studies in skeletal muscle and
the present work is in the tissue examined, and the contrasting
results suggest the possibility that different mechanisms might
underlie the observed defects in insulin signalling in muscle
versus adipose tissue. Additional studies in human skeletal mus-
cle with the intact insulin receptor as substrate are warranted
to explore whether there might be substrate-specific alterations
in PTPase activity in insulin-resistant subjects.

In related work, we recently assessed PTPase enzyme activi-
ties in subcellular fractions of skeletal muscle in lean (+/?),
obese (fa/fa) Zucker and diabetic (ZDF/Drt- fa/fa) Zucker
rats, a well-characterized rodent model of genetically deter-
mined insulin-resistant obesity and diabetes (43). In both the
obese and diabetic animals, the muscle particulate fraction
PTPase activity was significantly increased by 100—-110% to-
wards the autophosphorylated insulin receptor kinase domain.
This enhanced PTPase activity was associated with increases
ranging from 40—-70% in the specific immunoreactivity of LAR,
PTPaselB, and SH-PTP2 in the particulate fraction of the af-
fected animals (43), suggesting that in this genetic model,
which closely resembles human Type II diabetes, alterations in
the amount and distribution of specific PTPase enzymes may
be involved in the pathogenesis of insulin resistance.

The present results demonstrate that the abundance of LAR
is significantly correlated with increasing obesity, and most im-
portantly, that immunodepletion of LAR with neutralizing, im-
munoprecipitating antibodies normalizes the increased receptor
PTPase activity, indicating that LAR has a predominant role in
the augmented PTPase activity in the obese state. This enzyme
has been a major candidate for regulating the insulin action
pathway since it is expressed in insulin sensitive liver, muscle
and adipose tissue (5), it is localized to the membrane fraction



of the cell where the rapid dephosphorylation of the insulin
receptor has been demonstrated (13, 14), and we have demon-
strated in biochemical studies in vitro that its cytoplasmic do-
main has a catalytic preference for the regulatory phosphotyro-
sines in the insulin receptor kinase domain (15). In further
studies, expression of LAR antisense mRNA in hepatoma cells
to reduce LAR mass, insulin receptor autophosphorylation was
increased to 150% of control and insulin-stimulated phosphati-
dylinositol 3’-kinase activity was further amplified to 300%
over the level observed in cells transfected with the null expres-
sion vector (44). Taken together, these studies provide strong
evidence that LAR is a physiological modulator of insulin sig-
nalling.

A small increase in the abundance of PTPaselB was also
noted in the adipose tissue from obese individuals. PTPase1B
is a widely expressed enzyme that was first identified as a
prominent PTPase in placenta (45). Recently, cell transfection
studies have suggested that this PTPase has a potential role in
the regulation of tyrosine phosphorylation catalyzed by insulin
and insulin like growth factor-I receptors as well as receptors
for platelet derived growth factor and epidermal growth factor
(46). In the human studies by Kusari et al. (42), the reduced
PTPase activity towards phosphopeptide substrates was associ-
ated with a mean decrease of 38% in PTPaselB protein abun-
dance in the diabetic subjects, although substantial variation
was observed in both control and diabetic groups. Clearly, fur-
ther work is needed to assess tissue differences that might exist
in the regulation of the abundance of various candidate insulin
receptor PTPase enzymes. In addition, the relationship between
the abundance of PTPaselB (and other candidate PTPases) and
the overall tissue PTPase activity that is measured in subcellular
fractions needs to be addressed for skeletal muscle, as we have
done for adipose tissue in the case of LAR.

The potential role of SH-PTP2 in insulin signalling is also
an important question that is under intensive study in several
laboratories. SH-PTP2 associates with tyrosine-phosphorylated
IRS-1 by its SH2 domains (47-49). In recombinant in vitro
systems, SH-PTP2 has also been shown to associate with the
insulin receptor and can be phosphorylated by the insulin recep-
tor kinase (23, 50—-52). However, several studies in vivo have
failed to demonstrate either a direct interaction between SH-
PTP2 and insulin receptors or any effects of over-expression of
the native, catalytically active SH-PTP2 enzyme on the phos-
phorylation state of the insulin receptor or on insulin signalling
in intact cells (22, 53, 54). Recent evidence suggests that SH-
PTP2 may have a positive role in growth factor signalling in
mammalian cells. Single-cell microinjection of SH-PTP2 anti-
body, a glutathione-S-transferase fusion construct with the SH2
domains of SH-PTP2, or IRS-1-derived phosphopeptides that
bind to the SH2 domains of SH-PTP2 blocks insulin-stimulated
mitogenic signalling (23), and inducible expression of a catalyt-
ically inactive (Cys459 — Ser) SH-PTP2 mutant in NIH 3T3
fibroblasts over-expressing the insulin receptor blocks insulin-
stimulated mitogenesis as well as the phosphorylation and acti-
vation of MAP kinase by insulin (22). Thus, although there is
an increase in SH-PTP2 abundance in adipose tissue from the
obese subjects, it is uncertain how this may impact on insulin
signalling in this tissue, whether enhancing insulin action or
acting in concert with LAR in the insulin resistance that is
evident in the obese state.

In summary, these studies provide evidence that supports
the hypothesis that increased PTPase activity towards the native

insulin receptor is associated with insulin resistance in adipose
tissue from obese subjects. Furthermore, a specific candidate
PTPase for the insulin action pathway, LAR, has been shown
to be increased in obesity and accounts for the observed increase
in insulin receptor dephosphorylating activity in the tissue ho-
mogenates. Further studies will help characterize the reversibil-
ity of this effect in adipose tissue and whether a more general-
ized increase in LAR enzyme abundance occurs in other insulin
sensitive tissues, including liver and skeletal muscle. Finally,
these studies raise the possibility that LAR may be involved
not only in the insulin resistance of obesity but also more gener-
ally in tissue insulin resistance associated with genetically deter-
mined diabetes or in more common forms of insulin resistance
with increased cardiovascular risk factors.
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