2',3'-Dideoxycytidine-induced Thymic Lymphoma Correlates with Species-specific Suppression of a Subpopulation of Primitive Hematopoietic Progenitor Cells in Mouse but Not Rat or Human Bone Marrow

Richard D. Irons,*§ Anh T. Le,Ⅱ David B. Som,* and Wayne S. Stillman*
* Molecular Toxicology and Environmental Health Sciences, School of Pharmacy; ⅡDepartment of Pathology, School of Medicine; and §Cancer Center, University of Colorado Health Sciences Center, Denver, Colorado 80262; and ⅠDivision of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, Missouri 63110

Abstract

The nucleoside analogue, 2',3'-dideoxycytidine (ddC), is a potent inhibitor of HIV replication, and AIDS patients receiving ddC experience clinical improvement without significant hematologic toxicity. Repeated ddC administration (1,000 mg/kg per day) for 13 wk produces an increased incidence of thymic lymphoma in B6C3F1 mice. Previous studies reveal a common link between chemically induced and genetically associated models of mouse thymic lymphoma that involves a defect in a subpopulation of primitive hematopoietic progenitor cells. This defect is characterized by suppression of a subpopulation of IL-3-responsive cells and ablation of stem cell factor synergy with GM-CSF. The present study was undertaken to ascertain whether ddC produces the same pattern of bone marrow toxicity in mice, and whether this effect is observed in rat and human bone marrow. ddC exposure in vivo and in vitro produced a select suppression of murine CFU identical to that previously described for other models of mouse thymic lymphoma. In contrast, this selective CFU suppression was not observed in rat and human bone marrow or in CD34+ cells. These studies suggest that the mouse may not be a good predictive model for ddC hematotoxicity in humans and that susceptibility to the development of thymic lymphoma may be unique to the mouse. (J. Clin. Invest. 1995; 95:2777-2782.) Key words: antiviral agents • stem cells, hematopoietic • cytokines • thymoma • colony-forming units assay

Introduction

The nucleoside analogue, 2',3'-dideoxycytidine (ddC), is approved for treatment of HIV positive patients. ddC interferes with HIV replication by inhibiting reverse transcriptase (1, 2), and AIDS patients receiving ddC experience clinical improvement with less hematologic toxicity than associated with the use of zidovudine (3'-azido-2',3'-dideoxythymidine) (AZT) (3, 4). A treatment-related increase in lymphoma has not been reported. However, in two separate studies, high dose administration of ddC, 1,000 mg/kg per day, for three months to mice by gavage resulted in a significant incidence of thymic lymphoma/leukemia (TL), anemia, and thymic atrophy (National Toxicology Program. 1993. Subchronic toxicity study of 2',3'-dideoxycytidine (ddC) in female B6C3F1 mice. Southern Research Institute Study A19-SCM-3) (5).

The pathogenesis of TL is virtually identical in radiation, chemical and genetic mouse models, invoking a paradigm that includes the requirement for a “preleukemic event” in bone marrow (BM), accompanied by a macrocytic anemia, thymic hypoplasia and the development of lymphoma in the thymus (5-12).

We have previously identified a distinct subpopulation of stem cell factor (SCF)-dependent/IL-3-responsive hematopoietic progenitor cells (HPC) in the mouse that is uniquely susceptible to functional suppression by murine leukemogens, such as 1,3-butadiene (13) and γ-irradiation (Irons, R. D., S. C. Lee, and W. S. Stillman, manuscript in preparation). This subpopulation of HPC is identical to that constitutively missing in mice bearing W or Sl mutations that spontaneously develop TL (13). Mice with mutations at the SI and W locus demonstrate complementary defects for SCF, SI mice are deficient in SCF (14), and W mice lack a functional analogous receptor, C-kit (15, 16). Taken together, these results suggest that the genetic or functional suppression of this subpopulation of primitive hematopoietic cells represents the early bone marrow lesion common to chemical, radiation, and genetic models of murine TL leukemogenesis.

Herein, we examined whether ddC exposure in vivo and in vitro produces the same lesion as described above. Moreover, in order to determine if there are species-specific differences in susceptibility to ddC, we compared the effects of ddC on un purified rat and unpurified and CD34-enriched human bone marrow cells. The results of these studies demonstrate that ddC targets the same population of primitive murine HPC as other murine leukemogens. In contrast, no selective suppression of clonogenic response is observed in rat or human bone marrow cells.

Methods

Reagents. ddC was obtained from Hoffmann-La Roche Inc. (Nutley, NJ). Epoxybutene (3,4-epoxybutene) was purchased from Aldrich Chemical Co. (Milwaukee, WI). Murine recombinant (r)GM-CSF (5 × 10³ U/mg), rSCF (10³ U/mg), and rIL-3 (5 × 10⁷ U/mg) and human rGM-CSF (1.25 × 10³ U/mg), rSCF (10³ U/mg), and rIL-3 (2 × 10³ U/mg) were generous gifts from Immunex (Seattle, WA).

Address correspondence to Dr. Richard Irons, University of Colorado Health Sciences Center, MTEHS Program, Campus Box C-235, 4200 E. 9th Ave., Denver, CO 80262. Phone: 303-270-7170; FAX: 303-270-7223.

Received for publication 21 December 1994.

1. Abbreviations used in this paper: BM, bone marrow; ddC, 2',3'-dideoxycytidine; HPC, hematopoietic progenitor cells; r, recombinant; SCF, stem cell factor; TL, thymic lymphoma/leukemia.
Figure 1. Effects of ddC on (A) rIL-3 and (B) rGM-CSF-stimulated colony formation of BM from B6C3F1 mice with or without rSCF. (A) (●) IL-3 (1 ng/ml); (B) (●) rGM-CSF (2 ng/ml); (●) rGM-CSF (2 ng/ml) + rSCF (10 ng/ml). Error bars indicate 1 SEM for five cultures and are omitted when they are smaller than the symbol. * Significant decrease compared with controls not cultured with ddC (P ≤ 0.05).

Figure 2. Recombinant IL-3 (1 ng/ml) stimulated colony formation of C57BL/6 BM pretreated with (●) epoxynutene or (●) vehicle (PBS) and cultured with ddC. Error bars indicate 1 SEM for five cultures and are omitted when they are smaller than the symbol. * Significant decrease compared with controls not cultured with ddC (P ≤ 0.05).

Figure 3. Effects of ddC on rIL-3 (1 ng/ml) stimulated CFU of BM from (●) W/W + and (●) SI/SI + mice. Error bars indicate 1 SEM for five cultures and are omitted when they are smaller than the symbol. * Significant decrease compared with controls not cultured with ddC (P ≤ 0.05).

Modified Iscove’s medium, 1-glutamine, penicillin/streptomycin solution and PBS were purchased from Gibco BRL (Gaithersburg, MD). FBS was supplied by Gemini Bioproducts (Calabasas, CA). Lympholyte-M was obtained from Accurate Scientific (Westbury, NY). Histopaque-1077, methyl cellulose, BSA, and 2-mercaptoethanol were purchased from Sigma Chemical Company (St. Louis, MO). The Miltenyi separation system and CD34 cell isolation kit were supplied by Miltenyi Biotech Inc. (Sunnyvale, CA). FITC-conjugated anti-CD34 (HPCA-2) was purchased from Becton Dickinson (San Jose, CA).

Animals. 4-wk-old male C57BL/6J, B6C3F1, WBB6F1/J-W/W + and WCB6F1/J-SI/SI + mice were obtained from The Jackson Laboratory (Bar Harbor, ME). CD rats and CD-1 mice were obtained from Charles River Laboratories (Wilmington, MA). Animals were acclimated for 2 wk before use and were housed 10 to a cage in sterile chambers with filter tops. Mice were allowed autoclaved food (3000, Agway, Syracuse, NY) and sterilized water, ad libitum. All procedures performed on mice were approved by the University of Colorado Health Sciences Center's Animal Care and Use Committee.

Human bone marrow. Human BM was obtained with informed consent from normal adult volunteers by aspiration from the posterior iliac crest. These studies were conducted under a protocol approved by the University of Colorado Health Sciences Center’s Internal Review Board.

Mouse/rat bone marrow cell preparation. Mononuclear nonadherent bone marrow cells were harvested from femora as previously described (13). Briefly, animals were killed by cervical dislocation and bone marrow was flushed from femora with PBS containing 1% BSA using a 5-ml syringe with a 22-gauge needle. A single cell suspension was obtained using a pasteur pipette, which was then purified over Lympholyte-M. The recovered buffy layer was removed and washed twice in PBS/BSA. Nonadherent cells were obtained by incubating the cells at 2 × 10^6/ml in culture flasks for 1 h at 37°C in PBS/BSA.

Human bone marrow cell preparation. Mononuclear cells were iso-
Results

ddc cultured with B6C3F1, C57BL/6, or CD-1 murine bone marrow cells in vitro produces an identical suppression of clonogenic response as described for other mouse leukemogens. B6C3F1 mouse bone marrow cells cultured with ddc in vitro results in a suppression of clonogenic response in a subpopulation of IL-3 responsive cells (Fig. 1 A), and abrogation of SCF synergy with GM-CSF (Fig. 1 B). The identical suppression of CFU is observed when murine HPC are pretreated with epoxybutene, a metabolite of the prototype murine leukemogen, 1,3-butadiene (13). Murine BM pretreated with epoxybutene is completely unresponsive to the effects of ddc, confirming that ddc targets the same subpopulation of clonogenic cells (Fig. 2). Moreover, ddc pretreatment of bone marrow from W/Wv and SI/Si4 mice does not suppress IL-3 (Fig. 3) or alter GM-CSF response (data not shown), indicating that the subpopulation of cells targeted by ddc is the same subpopulation of primitive hematopoietic cells previously demonstrated to be absent in these genetic models (13).

We also compared the relative susceptibility of HPC to the
Figure 6. Comparison of (A) rIL-3 and (B) rGM-CSF with rSCF stimulated colony formation of BM from (●) B6C3F1, (●) C57BL/6, and (▲) CD-1 mice killed 2 h after single administration of ddC by gavage. The data, normalized as fractional suppression (δ/δ Max), of clonogenic response, is derived from individual experiments conducted for each strain of mouse. Three animals (n = 5 cultures per animal) were examined for each dose.

Figure 7. Effects of ddC on rGM-CSF stimulated colony formation of BM from CD-1 rats with or without rSCF. (●) Murine rGM-CSF (5 ng/ml); (●) Murine rGM-CSF (5 ng/ml) + murine rSCF (10 ng/ml). Error bars indicate 1 SEM for five cultures and are omitted when they are smaller than the symbol. * Significant decrease compared with controls not cultured with ddC (P < 0.05).

It is likely that they are related to the pharmacodynamics of ddC and not intrinsic differences in target cell-specific metabolism or susceptibility.

ddC cultured with CD rat bone marrow cells in vitro does not affect CFU response. In contrast to mice, rats are resistant to the development of lymphoma/leukemia, and do not develop the disease following chronic exposure to butadiene (17, 18) or radiation (19). We were precluded from a direct examination of IL-3 response in rats due to the unavailability of a functional cytokine for that species. However, identical to results previously obtained with 1,3-butadiene (Irons, R. D., D. B. Colagiavanni, and W. S. Stillman, manuscript in preparation), ddC pretreatment does not suppress SCF synergism with GM-CSF in rat bone marrow cells (Fig. 7).

ddC cultured with nonadherent human bone marrow or CD34+ cells in vitro produces no selective suppression of clonogenic response. The CD34+ cell population contains all clonogenic cells identified in human BM, including both long term and short term repopulating cells (20), and is markedly enriched for primitive HPC that are responsive to SCF synergism with GM-CSF. This corresponds to the cell population targeted by ddC in mouse bone marrow. A total of 11 experiments were conducted using human bone marrow cells; 4 used mononuclear nonadherent BM cells and 7 used CD34+ BM cells. The BM donor pool was comprised of 6 females and 5 males with a mean age of 31 (±5.95 SD). A representative experiment with CD34+ BM cells is shown in Fig. 8, with all the data from these experiments presented in Fig. 9. ddC pretreatment does not result in selective suppression of SCF-dependent/IL-3 responsive HPC in either nonadherent or CD34+ enriched human BM cells. Nonspecific cytotoxicity is consistently observed in nonadherent cells from mice, rats and humans incubated with mM concentrations of ddC. However, CD34+ cells exhibit nonspecific suppression of clonogenic response at micromolar concentrations of ddC. Increased susceptibility to nonspecific cytotoxicity for CD34+ cells relative to nonadherent BM cells sug-
Figure 8. Effects of ddC on (A) rIL-3 and (B) rGM-CSF stimulated colony formation of CD34 purified (98% positive) human BM with or without rSCF. (A) ■ IL-3 (10 ng/ml); (B) ■ rGM-CSF (5 ng/ml); (●) rGM-CSF (5 ng/ml) + rSCF (25 ng/ml). Error bars indicate 1 SEM for five cultures and are omitted when they are smaller than the symbol. * Significant decrease compared to controls not cultured with ddC (P ≤ 0.05).

suggests competition for uptake of the drug by BM cells not participating in clonogenic responses, and is consistent with an increased rate of conversion of ddC to 5'-triphosphate in human relative to murine cells (21).

Discussion

Many strains of laboratory mouse are particularly susceptible to the development of T cell lymphoma/leukemia, either spontaneously or as a result of chemical or radiation exposure (22, 23). In contrast, T cell leukemias or lymphomas are relatively rare in human populations and have not been reported secondary to chemotherapy or chemical exposure (24, 25). A distinct subpopulation of SCF-dependent/IL-3 responsive HPC has been identified in the mouse that is uniquely susceptible to functional suppression by murine leukemogens, such as 1,3-butadiene (13), γ-irradiation (Irons, R. D., S. C. Lee, and W. S. Stillman, manuscript in preparation) and now, ddC. This subpopulation has been demonstrated to be identical to that constitutively missing in mice bearing W or SI mutations that spontaneously develop TL (13). The unique susceptibility of this subpopulation of cells to ddC (10⁻¹⁸ M) and epoxybutene (10⁻¹³ M) (13) suggests that a specific signaling mechanism
is involved in the targeting of these cells. Taken together, these results suggest that suppression of this subpopulation of primitive HPC represents the “preleukemic bone marrow lesion” common to chemical, radiation, and spontaneous models of murine leukemogenesis and provide evidence that targeting of this cell population is an early obligatory event in the development of murine TL.

There is growing evidence to suggest that species differences exist in the organization of the hematopoietic stem cell compartment, particularly with respect to the stage at which primitive HPC become restricted to a particular differentiation paradigm. In contrast to primitive murine HPC that require IL-3 or SCF for survival, comparable human HPC appear to be supported in G0 by IL-3 or GM-CSF but not SCF (26–28). It is apparent that these differences coincide with the observed susceptibility of an early SCF-responsive subpopulation of murine HPC, and that species differences in differentiation of early HPC play a major role in conferring susceptibility to TL development in the mouse. Moreover, because susceptibility of primitive HPC to drug suppression is observed only in the mouse, murine TL does not appear to be an appropriate biologic model for hazard identification in humans.

Acknowledgments

We thank Immunix Corp. for their generous gifts of human and murine rGM-CSF, rIL-3, and rSCF.

This work was supported by a grant from Hoffmann-La Roche Inc.

References

2782 Irons et al.