Abstract

MHC-linked genes strongly influence susceptibility to autoimmune diseases and also regulate responses to exogenous antigens. To begin to understand the mechanism of this MHC effect on disease, we have investigated MHC-congenic mouse strains that develop spontaneous autoimmunity because of the lpr gene. C57BL6/lpr (B6/lpr) mice (H-2b) are known to have substantial levels of autoantibodies to chromatin, single stranded DNA (ssDNA3), and IgG of different murine subclasses (rheumatoid factor). We have crossed the H-2d and the H-2bm12 (la mutant) haplotypes onto the B6/lpr background. Surprisingly, levels of all the autoantibodies were markedly lower in B6/lpr.H-2d, but levels in B6/lpr.H-2bm12 were no different from those in B6/lpr mice. The downregulating influence of the H-2d allele was dominant, and there was no effect on autoantibody fine specificities. The genetics of the H-2d effect and its diffuse influence on multiple autoantibody specificities, in addition to the lack of effect of the bm12 mutation, which modifies the peptide-binding groove of I-A, together raise the question of whether MHC-linked genes other than classical (IR) genes may be responsible for MHC disease associations in this model.

Authors

P L Cohen, E Creech, D Nakul-Aquaronne, R McDaniel, S Ackler, R G Rapoport, E S Sobel, R A Eisenberg

×

Other pages: