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Introduction

Once in a great while, scientists have the opportunity to witness
adramatic convergence of fields. Such has been the recent expe-
rience of researchers in the areas of cell adhesion and carbohy-
drate biochemistry. In March of 1989, published articles re-
vealed the primary sequences of three independently studied
cell surface glycoproteins found on endothelium, platelets, and
leukocytes (1-4). At that time, these molecules were com-
monly known as the murine lymph node homing receptor or
MEL-14 antigen, granule membrane protein 140 or platelet
activation-dependent granule external membrane protein, and
endothelial-leukocyte adhesion molecule 1 (Table I; see [5] for
nomenclature summary). Each molecule was found to contain
an NH, terminal lectin-like domain, an epidermal growth fac-
tor (EGF)! repeat, and a discrete number of modules (~ 60
amino acids each) similar to those found in certain comple-
ment binding proteins (Fig. 1). This collection of domains
became the hallmark of a new family of molecules now known
as the selectins (5). The presence of an amino terminal region
related to the carbohydrate recognition domains of previously
described calcium-dependent (C-type) animal lectins (6)
sparked an intensive search for carbohydrate ligands. Impor-
tant successes came quickly, due in large part to a solid founda-
tion laid by biochemists who had previously defined the molec-
ular structures of a wide variety of cell surface carbohydrates
(for examples, see [7-11]). By early 1991, six publications
identified fucosylated lactosamine structures, including Lewis
x (Le*; GalB1-4(Fucal-3)GIcNAc) (12) and sialyl-Lewis x
(sLe*; Neu5Aca2-3GalB1-4(Fucal-3)GlcNAc) (13-17) as li-
gands of two of the selectins. Since that time, fruitful research
has been published at a remarkable pace.

The term selectin was originally proposed ( 18) to highlight
the presence of the lectin domain, as well as to emphasize the
selective nature of the expression and function of these mole-
cules. A standard nomenclature has been agreed upon (5)
which designates each family member according to the cell
type on which it was originally identified: E-selectin (endothe-
lium), P-selectin (platelets), and L-selectin (lymphocytes) (Ta-
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ble I). In this Perspectives article, we discuss the selectins and
their carbohydrate ligands: what they are, where they are
found, and why they are important. We attempt to present the
major discoveries and developments in sufficient detail for clar-
ity, and to provide insights that may be of help in managing the
abundant information in this area. We apologize for any over-
sights that we have made. Other recent reviews may also be of
interest (19-24).

Discovery

Before 1989, L-, P-, and E-selectin were on different experimen-
tal pathways, although certain similarities can be seen in retro-
spect. All three selectins were identified using antibodies. L-se-
lectin, the first of the selectins to be studied, was recognized as
an adhesion molecule by using a monoclonal antibody (MEL-
14) raised against a murine lymphoma (25). This antibody
blocked lymphocyte adhesion to high endothelial venules of
lymph nodes in vitro and blocked lymphocyte homing to
lymph nodes in vivo. Subsequent studies demonstrated the
presence of the MEL-14 antigen on murine neutrophils and
monocytes and suggested its role in leukocyte adhesion to endo-
thelium at sites of inflammation (26). Independently, L-selec-
tin was identified as a leukocyte cell surface marker (Leu-8,
TQ-1), found on most circulating human lymphocytes, neutro-
phils, and monocytes (27-30). The connection was made rela-
tively recently (31, 32).

P-selectin (CD62) was discovered by investigators inter-
ested in the biochemical events associated with platelet activa-
tion. Antibodies were generated that bound to the surface of
activated platelets but not resting platelets (33, 34). Immuno-
chemical characterization of the antigen revealed a transmem-
brane glycoprotein of ~ 140 kD that is associated with a-gran-
ules in resting platelets and is rapidly redistributed to the cell
surface upon activation. Later, P-selectin was also shown to be
present in storage granules of endothelial cells, known as Wei-
bel-Palade bodies (35, 36). As in the case of platelets, endothe-
lial P-selectin is rapidly moved to the surface following stimula-
tion by thrombin and other mediators (35, 36). The function
of P-selectin as an adhesion molecule (37, 38) was appreciated
after its structure was known and its investigative pathway had
intersected with those of L- and E-selectin.

The discovery of E-selectin involved a monoclonal anti-
body-based strategy that combined identification of a cellular
activation antigen and adhesion blocking. In search of endothe-
lial molecules that supported the increased leukocyte adhesion
observed on cytokine-activated endothelial cells (39), a mono-
clonal antibody was raised that recognized a cytokine-induc-
ible glycoprotein in vitro (40) and endothelial cells at sites of
inflammation in vivo (41). A second monoclonal antibody
recognized the same endothelial molecule and blocked neutro-
phil adhesion, allowing the proposal of a new adhesion mole-

cule (42).
Since their discovery, each of the three selectins has become
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Table 1. Selectins: Nomenclature and Expression

Old names Cell type Surface expression
L-selectin
mLHR, Leu8 Lymphocytes Constitutive surface expression
TQ-1, gp9OMEL Monocytes Conformational change(?)
Lam-1, Lecam-1, Neutrophils  Shed after cellular activation
Leccam-1
P-selectin
PADGEM Platelets Thrombin, histamine, others
GMP-140 Endothelium From storage granules
(minutes)
Cytokine inducible (hours)
RNA, protein synthesis
E-selectin
ELAM-1 Endothelium  Cytokine inducible (hours)

RNA, protein synthesis

ELAM-1, endothelial-leukocyte adhesion molecule 1; GMP-140,
granule membrane protein 140; PADGEM, platelet activation-
dependent granule external membrane protein.

the subject of substantial investigative efforts. The intensity of
these efforts increased dramatically after cloning and sequenc-
ing of selectin cDNAs demonstrated their relatedness. Al-
though it remains possible that many new family members will
be found, as in the integrin and immunoglobulin superfami-
lies, no other selectin has yet been reported.

Structure, function, and expression

Structural identity of a selectin resides in its unique domain
composition (Fig. 1). E-, P-, and L-selectin are > 60% identical
in their NH, terminal 120 amino acid residues, the lectin do-
main (1-4, 31, 43). The EGF repeats have comparable se-
quence similarity. Each complement regulatory-like module is
~ 60 amino acids in length and contains six cysteinyl residues
capable of disulfide bond formation. This feature distinguishes
the selectin modules from those found in complement binding
proteins, such as complement receptors 1 and 2, which contain
four cysteines (44, 45).

Cloning and structural analysis of genes for the selectins

L-selectin

[ [ DO Fooon

P-selectin

R H000000 000, W

E-selectin

R H 000000, Mt

Figure 1. Domain composition of the three known human selectins.
The extracellular portion of each selectin contains an amino terminal
domain homologous to C-type lectins and an adjacent epidermal
growth factor-like domain. These are followed by a variable number
of complement regulatory-like modules (numbered circles) and a
transmembrane sequence (black diamond). A short cytoplasmic se-
quence (open rectangle) is at the carboxyl terminus of each selectin.
The number of amino acids present in the mature proteins as deduced
from the cDNA sequences are: L, 385; P, 789; and E, 589.
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revealed that each extracellular domain is encoded by a single
exon (46-48). The genes encoding all three selectins have been
localized to a cluster on the long arm of human and murine
chromosome 1, closely linked to the gene for coagulation Fac-
tor V, and in proximity to genes for complement binding pro-
teins (43, 47, 49, 50). The cloning of human L-selectin re-
vealed a close structural similarity to its murine counterpart
(31, 43, 51, 52). Recent analysis of cDNAs encoding murine
E- and P-selectins, rabbit E-selectin, and canine P-selectin fur-
ther revealed interspecies conservation of structure and func-
tion (53-56). Human E-, P-, and L-selectin contain 11, 12,
and 7 potential sites of N-linked glycosylation, respectively;
migration on polyacrylamide gels and quantitative analysis in-
dicate that glycosylation of the selectins accounts for = 30% of
their mass (3, 4, 31, 43, 57). The precise composition and
function of carbohydrates on the selectins are not yet known.
The three selectins act in concert with other cell adhesion
molecules (e.g., intracellular adhesion molecule [ICAM-1],
vascular cell adhesion molecule- 1, and leukocyte integrins;
reviewed in [58-63]) to effect adhesive interactions of leuko-
cytes, platelets, and endothelial cells. E-selectin was first shown
to support the adhesion of neutrophils to cytokine-activated
endothelium (4, 42). Subsequent studies in vitro have sug-
gested that E-selectin also supports the binding of monocytes, a
subpopulation of memory T lymphocytes, eosinophils, and ba-
sophils (64-74). Similarly, P-selectin expressed on activated
platelets mediates binding to multiple leukocyte types (37, 75—
78). Endothelial P-selectin also supports leukocyte adhesion
(38, 79, 80). In addition to its role in lymphocyte homing
(reviewed in [81, 82]), L-selectin appears to participate in the
adhesion of neutrophils, monocytes, and lymphocytes to acti-
vated endothelium (83-86). This function is best observed
when the binding interaction occurs under the influence of
fluid shear stress. Experiments in vitro and in vivo have sug-
gested that selectins may be especially important in leukocyte
rolling on the vessel wall, a process that can precede firm at-
tachment and extravasation during inflammation (87-89).
Elucidation of structure-function relationships of selectins
has established the importance of the lectin and EGF domains.
Most adhesion-blocking monoclonal antibodies recognize epi-
topes located within these regions (15, 49, 90-92). Results of
adhesion experiments using recombinant fusion proteins lack-
ing one or more domains, and with chimeras having mixed
selectin domains, further support the importance of the two
amino terminal domains in mediating cell adhesion (91-93).
Short peptides based on amino acid sequences from three sepa-
rate regions of the lectin domain have been shown to block
leukocyte adhesion to P-selectin (94, 95). When conjugated to
albumin, these peptides support leukocyte adhesion. Peptides
from two of these regions appear to bind calcium, and are also
effective in blocking adhesion to E-selectin. It has been sug-
gested the calcium binding peptides correspond to regions in
the native molecule that coordinate calcium and possibly bind
ligands (95). Studies using site-specific mutagenesis have sug-
gested a functional contribution of several specific amino acids
within the lectin domain of E-selectin (96) and P-selectin
(Hollenbaugh, D., and A. Aruffo, personal communication).
Interestingly, these amino acids fall outside the regions corre-
sponding to the adhesion blocking peptides described above.
Ultimate identification of the amino acids directly involved in
ligand binding will require additional methods of structural
analysis (e.g., x-ray crystallography). The function of the com-



plement regulatory-like modules is less well defined. It is note-
worthy, however, that one monoclonal antibody that binds to
these modules in L-selectin also recognizes E-selectin, and in-
hibits adhesive function of both molecules (97). In addition,
L-selectin-immunoglobulin fusion proteins that lack the com-
plement regulatory-like modules exhibit diminished activity
(93). To date, no published studies have demonstrated the
binding of complement proteins to selectins.

Although the selectins are closely related in structure and
function, their patterns of expression are quite different. The
expression of E-selectin appears to be largely restricted to acti-
vated endothelial cells. In vitro, cultured endothelium will ex-
press E-selectin following stimulation by endotoxin or the in-
flammatory cytokines IL-1 or tumor necrosis factor (TNF) (4,
42). This expression peaks in ~ 4-6 h, declines to basal levels
by 24-48 h, and requires de novo RNA and protein synthesis.
Interferon gamma does not itself induce E-selectin expression
but appears to prolong its expression in response to IL-1 and
TNF (98, 99). Examination of 5’ regulatory regions of the
human E-selectin gene have revealed the presence of sequences
consistent with NF-xB and AP-1 binding sites (47, 53, 100,
101). The former appears to be necessary but not sufficient for
cytokine-inducible expression of the human gene (100, 101),
and two additional upstream elements have also been impli-
cated (101). The murine E-selectin promoter region also sup-
ports cytokine-inducible gene expression, but does not contain
a sequence corresponding to the consensus NF-«B site (53). It
is anticipated that reagents capable of blocking E-selectin ex-
pression will diminish inflammatory responsesin vivo. Interest-
ingly, a recent study suggests that the antiinflammatory effects
of corticosteroids may, at least in part, involve such a mecha-
nism: dexamethasone can inhibit endothelial cell expression of
E-selectin stimulated by LPS and IL-1 (102).

Unlike E-selectin, P-selectin is synthesized constitutively
and stored intracellularly in both platelets and endothelial
cells. After synthesis, it appears to be targeted to storage/secre-
tory granules by virtue of a sorting signal present in its cytoplas-
mic domain (103, 104). From these intracellular pools, P-se-
lectin can be rapidly mobilized to the cell surface, where it
binds leukocytes. A variety of mediators, including thrombin,
histamine, terminal complement components, and H,0, have
been shown to induce rapid surface expression of P-selectin
(35, 36, 105-107). Sphingosine derivatives and certain inhibi-
tors of protein kinase C appear to block the mobilization of
P-selectin (108 ). The expression of P-selectin at the cell surface
is short lived, declining substantially within minutes. Recent
studies suggest that new P-selectin synthesis may be induced by
cytokines such as IL-1 and TNF in a manner similar to that of
E-selectin (54, 56, 109). In a separate field, it has been sug-
gested that viral infection of endothelial monolayers can result
in the expression of E- and P-selectin, apparently through cyto-
kine release and thrombin generation, respectively (79, 110).
Of the three selectins, only L-selectin is constitutively ex-
pressed at the cell surface. Interestingly, leukocytes rapidly
shed this selectin following activation (111-113). Thus, the
activity of the selectins appears to be controlled in large part by
regulation of their appearance and disappearance from the cell
surface. Conformational changes may also help regulate selec-
tin function. It has been reported that activation of neutrophils
and lymphocytes by lineage-specific stimuli results in a rapid
and transient increase in L-selectin activity before its being
shed (114).

Carbohydrate ligands

The realization that selectins contain domains homologous to
C-type lectins has led to an intensive search for carbohydrate
ligands. Individual selectins have been shown to bind to a vari-
ety of natural and synthetic carbohydrate structures. The struc-
tures identified to date fall into three general categories: (a)
oligosaccharides related to sialyl-Lewis x (sLe*) and sialyl-
Lewis a (sLe?) (Fig. 2); (b) phosphorylated mono- and polysac-
charides; and (¢) sulfated polysaccharides. As described below,
certain data point to an important contribution of specific cell-
surface proteins in the presentation of selectin ligands. It
should be noted that the molecular details of selectin-ligand
interactions (e.g., binding sites and bond formation) have not
yet been determined. A corollary to this statement is that the
binding of individual selectins to different carbohydrate types
may or may not be by the same mechanism.

Many recent studies on selectin—carbohydrate interactions
have focused on oligosaccharides. An early success was the ob-
servation that P-selectin-dependent rosetting of activated plate-
lets to leukocytes is blocked by LNF-III, a pentasaccharide con-
taining the Lewis x determinant (Le*; GalB1-4(Fucal-
3)GIcNAc) (12). Other studies identified the sialylated form
of this oligosaccharide, sLe* (Neu5Aca2-3Galg1-4(Fucal-3)-
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Figure 2. Oligosaccharide ligands of the selectins: structural represen-
tations of the isomers sLe* and sLe®. They contain a terminal sialic
acid (Neu5Ac) linked a2-3 to galactose (Gal), in turn linked to an
N-acetylglucosamine (GIcNAc). Both structures contain a fucose
coupled to the GIcNAc. sLe* and sLe* differ in the linkages of galac-
tose and fucose to the GlcNAc. The indicated structures are typically
found as terminal residues of larger oligosaccharides on glycoproteins
and glycolipids.
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GlcNAc) and/or closely related structures as ligands of E-se-
lectin (13-17). sLe* and other fucosylated lactosamines are
found in abundance on circulating neutrophils and monocytes
(115-120) and on a small percentage of blood lymphocytes
(120-122). Separate studies have demonstrated that sialic acid
is a component of some P-selectin ligands (123, 124), and that
oligosaccharides containing sLe* are recognized by this mole-
cule (125, 126). Most recently, murine L-selectin was also
shown to interact with sLe*-containing structures (127, 128).
In addition, human E- and P-selectin and murine L-selectin
have been shown to interact with molecules containing sLe?
(Neu5Aca2-3GalB1-3(Fucal-4)GIcNAc), a structural isomer
of sLe* (121, 128-130). sLe® is not typically expressed by
blood leukocytes but is expressed by certain cancer cells, sug-
gesting a possible role in metastasis (see below).

Lectin—carbohydrate interactions are characteristically less
restricted and of lower affinity than most well described pro-
tein—protein binding interactions (e.g., antibody-antigen, hor-
mone-receptor). Therefore, it is essential to characterize lec-
tins according to their binding specificities and to establish
their ligand binding affinities. This effort is now under way for
the selectins, facilitated by the use of purified and synthetic
oligosaccharides. Several reports have suggested that E-selectin
recognition of sLe* and sLe® requires both sialic acid and fu-
cose in specific position and linkage (121, 129, 131). However,
one recent study describes adhesion of cells expressing recombi-
nant E-selectin at high density to fucose-containing oligosac-
charides that lack sialic acid (132). In addition, structures re-
lated to sLe* and sLe® in which the sialic acid is replaced by a
sulfate group support adhesion of E-selectin—transfected cells
(133). Although P-selectin also binds to sLe* and sLe?, it ap-
pears to recognize a wider array of oligosaccharides than E-se-
lectin. For example, P-selectin binds the nonsialylated trisac-
charides Le* and Le® (37, 125, 131, 134) and may bind tetra-
saccharides related to sLe* and sLe® having sialic acid linked
a2-6 instead of a2-3 (134, 135), although this point is contro-
versial (127).

The relative binding affinities of selectin-carbohydrate in-
teractions are now being defined. Cell adhesion assays have
yielded contradictory results on the relative binding activity of
E-selectin for sLe* and sLe® (121, 129), whereas quantitative
inhibition assays using solution-phase oligosaccharides indi-
cate that sLe? binds E-selectin with a higher affinity than does
sLe* (131). In addition, two modifications of sLe* and sLe?
that result in substantial increases in apparent binding affinities
for E-selectin have been identified (131). These are the addi-
tion of an 8-methoxycarbonyloctyl aglycone (—(CH,);CO,CH;)
attached in a S-glycosidic linkage to the reducing sugar, and the
substitution of an amino or azido moiety for the N-acetyl
group at carbon 2 of GIcNAc. Together these modifications on
sLe® increased inhibitory activity more than 35-fold compared
to the reducing tetrasaccharide sLe* in a competitive E-selec-
tin-binding assay (131). As noted above, human E- and P-se-
lectin and murine L-selectin have all been shown to bind sLe*
and sLe®. Precise binding parameters (rate constants and equi-
librium dissociation constants) of the selectins for these carbo-
hydrates are not yet known, but certain lines of evidence sug-
gest that they may differ. For example, solution phase sLe* or
sLe® block E-selectin binding interactions better than P- and
L-selectin interactions (131, 134, 136). In addition, several cell
lines that express sLe* or sLe? adhere to E-selectin but not to
P-selectin or L-selectin. As a prelude to points made below, it is
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interesting to note that protease treatment of neutrophils and
HL-60 cells abolishes their adhesion to P-selectin without sub-
stantially altering adhesion to E-selectin (135).

Coincident with the studies on oligosaccharide ligands of
the selectins were demonstrations that certain proteins may
contribute in an important way to cellular ligands of L- and
P-selectin (124, 137-139). For example, L-selectin has been
used to affinity purify two sulfated, fucosylated, and sialylated
glycoproteins of 50 and 90 kD from murine lymph nodes
(137). The 50-kD glycoprotein was cloned and found to be a
mucin containing two serine/threonine rich domains, consis-
tent with substantial O-linked glycosylation (138). The term
vascular addressin has been used to refer to tissue-specific ad-
hesion molecules involved in leukocyte homing (82). The pe-
ripheral lymph node addressin is defined by monoclonal anti-
body MECA-79, an IgM that binds to lymph node high endo-
thelial venules and blocks lymphocyte adhesion (140). This
antibody was used to precipitate multiple glycoprotein species,
perhaps through recognition of a carbohydrate epitope, includ-
ing the 50- and 90-kD glycoproteins described above (137). It
has also been appreciated that L-selectin functions in the adhe-
sion of neutrophils, monocytes, and lymphocytes to cytokine-
activated endothelial monolayers, apparently through an induc-
ible ligand (85). The nature of the carbohydrate and/or pro-
tein components of this L-selectin ligand on cytokine-activated
endothelial cells is not yet established.

P-selectin has been shown to bind specifically to protease-
sensitive sites on neutrophils and HL60 cells (124, 135, 139,
141). Further, it has been used to affinity purify from leuko-
cyte extracts a glycoprotein displaying an apparent molecular
weight on polyacrylamide gels of ~ 120,000 under reducing
conditions (139). Thus, both P- and L-selectin appear to bind
with high affinity to a relatively small number of cell surface
glycoproteins. The nature of the participation of protein and
carbohydrate in these selectin ligands remains to be deter-
mined. Moreover, the relative contributions of high and low
affinity binding sites to cell adhesion in vitro and in vivo are
not yet known. In conjunction with these observations, it is
notable that antibodies that bind to the EGF repeat of L-selec-
tin have been shown to block cellular adhesion without hinder-
ing the binding of certain phosphorylated carbohydrate ligands
(49, 91, 136). A separate line of investigation has suggested
that L-selectin may present carbohydrate ligands to E- and P-
selectin (142). It is important to note, however, that cell types
with little or no surface L-selectin, such as phorbol ester-stimu-
lated neutrophils, the promyelocytic cell line HL60, and cer-
tain human colon cancers, can adhere to E- and P-selectin (15,
124, 143).

The earliest studies on interactions of selectins with carbo-
hydrates predated the elucidation of selectin structure. It was
demonstrated that lymphocyte adhesion to high endothelial
venules of lymph nodes could be blocked by relatively high
concentrations (5-10 mM) of certain phosphorylated mono-
saccharides, such as mannose-6-phosphate, and by yeast-de-
rived phosphomannan (PPME), a high molecular weight core
polysaccharide containing mannose-6-phosphate ( 144). More-
over, PPME-coated beads were shown to bind to lymphocytes,
a process that could be blocked by the MEL-14 anti-L-selectin
antibody (145). Recent studies using recombinant proteins
have confirmed that L-selectin binds to PPME (91, 93, 136).
In contrast, P- and E-selectin do not appear to bind to this
polysaccharide ([91, 124], and unpublished observation). In



separate investigations, L- and P-selectin, but not E-selectin,
have been shown to interact with sulfated polysaccharides such
asfucoidan and heparin (131, 145-149). Although the determi-
nants of binding have not been defined, these polysaccharides
are perhaps most similar in being sulfated polyanions. Whether
or not interaction of these molecules with P- and L-selectin
involves binding in the lectin domain is unclear, and it must be
pointed out that many proteins (e.g., growth factors, fibronec-
tin) can bind to these same polyanionic macromolecules. P-
and L-selectin also bind to 3-O-sulfate-galactosyl ceramide
(sulfatides) coated on surfaces or incorporated in micelles
(147, 148). In these physical forms, sulfatides may also present
a sulfated polyanionic binding surface. In summary, E-selectin
binds to the tetrasaccharides sLe*, sLe?, and related structures,
while P-selectin binds to some of these molecules as well as to
certain sulfated polyanionic polysaccharides, such as fucoidan.
L-selectin appears to bind sLe* and sLe® (although less well
than E-selectin), sulfated polysaccharides, and the mannose-
6-phosphate—containing polysaccharide PPME. A fuller un-
derstanding of these interactions will require analysis of selec-
tin-ligand complexes by x-ray crystallography and nuclear mag-
netic resonance spectroscopy. Definitive determination of
binding affinities and rate constants will provide important ad-
ditional information.

Selectins and disease

From the perspective of an invading microorganism, the hu-
man host presents a formidable array of defenses. If successful
in penetrating the perimeter shields (e.g., skin and mucous
membranes), it must face the onslaught of attacking leuko-
cytes. Central to this process is the host’s ability to recruit leu-
kocytes to specific sites in the body where they are most
needed. Leukocyte recruitment involves an orchestration of
soluble mediators (e.g., cytokines) and cell-surface molecules
that results in focal leukocyte attachment to the vessel wall and
extravasation. The importance of the selectins in this process is
now widely accepted. The function of selectins in vitro, as well
as their patterns of expression in vivo, points to their involve-
ment in a wide variety of human diseases, from acute appendi-
citis to asthma to myocardial infarction.

Selectin expression in situ has been described using animal
and human tissues. The earliest study on E-selectin expression
(41) predated its demonstration as an adhesion molecule. This
work revealed the presence of an endothelial activation antigen
at a site of a delayed-type hypersensitivity reaction in human
skin. The expression of this antigen was temporally and spa-
tially associated with inflammatory infiltrates. Activated endo-
thelium expressing this marker was also found in inflamed
lymph nodes, tonsil, thyroid, and appendix. Subsequent re-
ports from numerous laboratories have confirmed and ex-
tended these observations (reviewed in 58, 150-153). A unify-
ing theme that has emerged is the expression of E-selectin on
endothelial cells at sites of active inflammation. Typically, it is
most easily detected on endothelium of postcapillary venules,
the site of prominent vascular leak and leukocyte extravasation
during inflammation. In certain animal disease models, such as
septic shock, E-selectin is also found on capillary endothelium
(154). Although frequently associated with neutrophil infil-
trates (150, 155, 156), E-selectin can be found at inflammatory
sites where the cellular infiltrate is predominantly mononu-

clear (41, 157, 158).
Several recent studies in animal models have demonstrated

the participation of the selectins in inflammatory processes in
vivo. A role for E-selectin in acute lung injury has been indi-
cated by antibody blocking of neutrophil extravasation and
vascular permeability in rat IgG immune complex—induced
damage (159). Interestingly, IgA immune complex-induced
damage, which appears to involve primarily mononuclear leu-
kocyte infiltrates (rather than neutrophil infiltrates as in IgG
induced damage ), was not blocked by anti-E-selectin antibod-
ies (160). In a separate report, anti-P-selectin antibodies were
found to protect against neutrophil-dependent acute lung in-
jury that occurs after intravenous activation of complement by
cobra venom factor (161). In a primate model of extrinsic
asthma, antibody-blocking data have suggested that E-selectin
plays a major role in neutrophil influx associated with late
phase airway obstruction (162). As noted above, recent animal
studies have suggested that P-selectin synthesis and expression
can also be induced by cytokines like IL-1 and TNF. This ob-
servation emphasizes the need to assess carefully the expression
and function of all selectins in a variety of disease processes.
New data suggest that both E- and P-selectin may participate in
the neutrophil-mediated damage associated with ischemic re-
perfusion injury in the heart (56, 163). Antibodies to L-selec-
tin and soluble recombinant forms of L-selectin have been used
to demonstrate the participation of this molecule in a variety of
animal models of homing and inflammation (25, 26, 164,
165). Other recent observations may also lead to increased
understanding of selectin function in human disease processes.
As noted above, activated leukocytes shed L-selectin. In addi-
tion to shed L-selectin, soluble forms of P-selectin, perhaps
synthesized from alternatively spliced mRNA, have been pro-
posed (3, 46, 166). Recent reports describe the measurement
of soluble forms of P-selectin and L-selectin in normal human
plasma, finding ~ 0.1-0.3 ug/ml (167) and ~ 1.5 ug/ml
(168), respectively. It is possible that soluble forms of selectins
modulate inflammatory responses.

Selectin-carbohydrate interactions are also being studied in
the relationship to hematogenous spread of cancer cells. This
effort began with the demonstration that E-selectin can support
the adhesion of human colon cancers (143, 169). The mecha-
nism of this interaction became clearer after the demonstration
that E-selectin binds to sLe* and sLe?, both of which are ex-
pressed in abundance on most human colon cancers (15, 170-
173). Since platelet interactions with tumor cells can influence
metastasis, it is likely that P-selectin also participates in this
disease process.

Selectins and other adhesion molecules work in conjunc-
tion with a variety of cell-associated and soluble mediators
(e.g., platelet activating factor, IL-8 ) to orchestrate the develop-
ment of inflammatory reactions (58-60, 62). The extent of
cooperation between selectins and other molecules in deter-
mining the composition and kinetics of inflammatory infil-
trates is a topic of intense research. In this regard, it is notewor-
thy that two studies have suggested that E-selectin binding to
neutrophils activates their CD11/CD18 adhesion molecules,
which can in turn bind to endothelial cell adhesion molecules
ICAM-1 and ICAM-2 (174, 175). P-selectin has been reported
to facilitate the activation of neutrophils by platelet activating
factor, a lipid mediator produced by endothelial cells (176),
but has been reported to inhibit TNF-induced neutrophil acti-
vation (166, 177). P-selectin also appears to modify lympho-
cyte production of proinflammatory cytokines in response to
anti-T cell receptor monoclonal antibodies (178).
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Recent evidence supporting the importance of selectin—car-
bohydrate interactions in inflammation comes from a newly
described human disease called leukocyte adhesion deficiency
type 2 (179). This rare disorder is characterized by inadequate
inflammatory responses to infection, which may result from an
inability to add fucose to carbohydrate structures, including
the selectin ligands sLe®* and sLe*. Research efforts now in
progress will more precisely define the roles of the selectins in
inflammatory and immunological disease processes as well as
in cancer. Many laboratories are attempting to identify novel
antiinflammatory compounds based on an understanding of
selectin-carbohydrate interactions. These efforts involve anti-
body-, peptide- and carbohydrate-based approaches to block
selectin-dependent adhesion directly. Selectin antagonists may
prove to be effective therapeutic agents alone or may comple-
ment drugs designed to block the expression and function of
other adhesion molecules. It is hoped that selectin research will
lead to new therapies before the turn of the century.
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