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Abstract

Inhibition of pancreatic glucagon secretion during hyperglyce-
mia could be mediated by (a) glucose, (b) insulin, (c) somato-
statin, or (d) glucose in conjunction with insulin. To determine
the role of these factors in the mediation of glucagon suppres-
sion, we injected alloxan while clamping the arterial supply of
the pancreatic splenic lobe of dogs, thus inducing insulin defi-
ciency localized to the ventral lobe and avoiding hyperglycemia.
Ventral lobe insulin, glucagon, and somatostatin outputs were
then measured in response to a stepped IV glucose infusion. In
control dogs glucagon suppression occurred at a glucose level of
150 mg/dl and somatostatin output increased at glucose > 250
mg/dl. In alloxan-treated dogs glucagon output was not sup-
pressed nor did somatostatin output increase. Weconcluded
that insulin was required in the mediation of glucagon suppres-
sion and somatostatin stimulation. Subsequently, we infused
insulin at high rates directly into the artery that supplied the
beta cell-deficient lobe in six alloxan-treated dogs. Insulin infu-
sion alone did not cause suppression of glucagon or stimulation
of somatostatin; however, insulin repletion during glucose infu-
sions did restore the ability of hyperglycemia to suppress glu-
cagon and stimulate somatostatin. Weconclude that intra-islet
insulin permits glucose to suppress glucagon secretion and stim-
ulate somatostatin during hyperglycemia. (J. Clin. Invest.
1991. 88:767-773.) Key words: insulin - glucagon - hyperglyce-
mia)

Introduction

It has long been known that in healthy subjects glucagon secre-
tion is suppressed by hyperglycemia; whereas, Type I diabetic
patients have relatively elevated glucagon levels despite hyper-
glycemia. Hyperglucagonemia in turn perpetuates diabetic hy-
perglycemia because glucagon potently stimulates hepatic glu-
cose output. This old observation of increased glucagon secre-
tion in Type I diabetes has recently been bolstered by reports of
increased levels of glucagon mRNAin the pancreas of diabetic
rats suggesting increased glucagon synthesis as well as secre-
tion (1).

The abnormal regulation of the A cell in Type I diabetes is
presumably related to the insulin deficiency and resultant ab-
normal internal milieu of the diabetic islet. However, the exact
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mechanism responsible for this defect continues to be debated
because of conflicting studies and inadequate understanding of
the mechanisms of glucagon suppression by hyperglycemia in
the nondiabetic islet. Previous experiments in manand experi-
mental animals have suggested at least four possible mecha-
nisms of A cell suppression during hyperglycemia. Thus, A cell
suppression could be caused by: (a) glucose per se (2-5), (b)
insulin (6-1 1), (c) pancreatic somatostatin (12), or (d) an ac-
tion of glucose to directly suppress glucagon secretion which is
dependent on adequate islet insulin levels (13). Such a permis-
sive effect of insulin has recently been demonstrated in adipose
tissue in which insulin exposure is required to maintain the
biosynthesis of a glucose transporter ( 14).

Advances in our understanding of both the microcircula-
tion of the islet and the effects of chronic hyperglycemia on
glucose recognition by islet cells emphasize some of the then
unrecognized problems with the experimental design of earlier
experiments. For example, although in vitro studies of isolated
islets have had the advantage of strict control of the ambient
glucose level, the question of whether these results are applica-
ble to the in vivo situation has been raised by evidence of direc-
tional islet blood flow (see below) (15). Previous in vivo meth-
ods, which are usually more physiologic, also had disadvan-
tages. For example, to assess the role of insulin, B cell
cytotoxins have been given to the whole animal which necessar-
ily creates a chronic hyperglycemia. Recent evidence suggests
that chronic hyperglycemia itself can decrease the sensitivity of
B and A cells to acute glucose exposure (16-22). Therefore, the
chronically diabetic animal may not be the best model in which
to determine if the acute glucose exposure per se can directly
suppress the A cell under physiologic conditions in the nondia-
betic animal. Finally, studies on islet microvasculature suggest
that the A cell is downstream from the B cell and therefore
presumably bathed by high concentrations of insulin (15).
Thus, very high rates of local insulin infusions may be needed
to adequately replace the insulin lost by chemical destruction
of the beta cell. In previous studies the amount of insulin re-
quired for repletion has probably been underestimated.

In light of these newly recognized concerns, we developed
an animal model, adopted from that of Gomori and Goldner
(23), in which chronic beta cell deficiency was present only in
the ventral lobe of the canine pancreas. The functioning dorsal
lobe continued to secrete sufficient insulin to maintain fasting
normoglycemia in these animals. Wewere then able to study
the effects of acute increases of glucose on glucagon secretion
from the B cell-deficient lobe in chronically euglycemic ani-
mals. Subsequently, we infused insulin at high rates directly
into the pancreatic artery which supplied the beta cell deficient
lobe in order to normalize the intra-islet insulin levels. Wewere
thus able to assess the effect of insulin alone or in combination
with acute hyperglycemia on the A cell now reexposed to high
levels of intra-islet insulin.
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Methods

Animals and surgery preparations
In the dog, the pancreas can be divided into three parts: the dorsal lobe
supplied by branches of the splenic artery and vein, the ventral lobe
which shares the blood supply of the proximal duodenum, and the
embryologically-distinct uncinate process supplied by the inferior pan-
creatic artery and vein. Although the uncinate process is well known to
be glucagon poor, the ventral lobe, studied in these experiments, has a
glucagon content similar to the glucagon-rich dorsal lobe (24, 25). (This
was confirmed by measurements of glucagon content in our labora-
tory.) In these experiments the circulation to the dorsal lobe was tran-
siently clamped during alloxan injection (see below) to protect its beta
cells from destruction. The ventral lobe was exposed to the alloxan and
became insulin deficient. Glucagon secretion was studied from the
ventral lobe of non-alloxan-injected dogs, alloxan-injected dogs, and
alloxan-injected, insulin-infused dogs (see below). The procedure was
performed in two stages:

STAGE ONE: PANCREATICCLAMPINGDURING ALLOXAN
INJECTION
Adult, mongrel dogs (weight 22-43 kg) were fasted overnight and anes-
thetized with pentobarbital sodium (30 mg/kg i.v. and 0.1-0.2 mg/kg
per min infusion). Preoperatively, the dogs were hydrated by infusing
1.5 liters of 0.9% saline and given mannitol (25 g) via a central venous
catheter in order to create an osmotic diuresis and thus minimize sub-
sequent alloxan-induced renal damage. A laparotomy was performed
and a clamp was placed across the vascular bundle supplying the dorsal
lobe of the pancreas. Another clamp was placed between the dorsal and
ventral lobes, thus temporarily isolating the dorsal lobe from the sys-
temic circulation. A bolus of alloxan (65 mg/kg) was then injected into
a central vein over a period of 30 s and the clamps were removed 2 min
later. Because alloxan has a half-life of less than 1 min (23, 26), the B
cells of the dorsal lobe were expected to be protected from the alloxan.
The dorsal lobe rapidly regained normal color after removal of the
clamps. The dogs recovered from the laparotomy and 2-3 wk later
stage two was performed.

STAGETWO: CANNULATIONOF PANCREATICVEIN
In these acute experiments the dogs were anesthetized with pentobarbi-
tal sodium (30 mg/kg injection and 0.1-0.2 mg/kg per min infusion)
and a laparotomy was performed. The surgical procedure has been
previously described (27). Briefly, the superior pancreatico-duodenal
vein, which drains the ventral lobe of the pancreas, was cannulated
with a silastic catheter and bypassed through an electromagnetic flow
probe and a sampling port into the portal vein. The small vascular
branches between the duodenum and pancreas were ligated and cut.
This allowed the measurement of insulin (I), glucagon (G), and pancre-
atic somatostatin (SS) output from the ventral pancreatic lobe without
contamination by duodenal venous drainage. In addition, the femoral
artery was cannulated for blood pressure recording and blood sam-
pling.

In experimental protocol 2 (see below), the superior pancreatico-
duodenal artery was also cannulated and infused with either saline or
insulin at a rate of 0.2 ml/min.

Experimental protocol I: four step glucose infusion. Secretion of G,
I, and SS from the control or insulin-deficient ventral lobe of the pan-
creas were measured in eight alloxan-treated and seven controls dogs in
response to arginine and to four levels of increasing hyperglycemia.
Blood samples were drawn simultaneously from the femoral artery and
pancreatic vein -15, -5, and 0 min. Arginine, 2.5 g, was given by bolus
intravenous injection and blood was drawn 2, 5, 10, and 15 min after
the injection. In addition, femoral arterial blood samples were taken at

1. Abbreviations used in this paper: G, glucagon; I, insulin; IRG, immu-
noreactive glucagon; IRI, immunoreactive insulin; SLI, somatostatin-
like immunoreactivity; SS, somatostatin.

3, 4, 6, and 8 min after the arginine injections. Arginine was adminis-
tered to six of the eight alloxan-treated animals and all seven of the
control animals.

After 45 min, a second set of baseline samples at -15, -5, and 0
min were drawn. Glucose was administered by intravenous bolus and
constant infusion at four different rates (steps 1-4) (see below). Simulta-
neous blood samples were obtained from the femoral artery and pancre-
atic vein at 5, 10, 20, 30, and 35 min after each bolus.

Protocol I

Intravenous Intravenous
Step glucose bolus glucose infusion

mg/kg mg/kg per min x 35 min

One 25 2.5
Two 25 5
Three 50 10
Four 200 40

Experimental protocol II: intrapancreatic insulin infusion
and two step glucose infusion. In a separate set of alloxan-
treated dogs (n = 6), insulin was replaced in the alloxan-
damaged ventral lobe by infusing exogenous insulin (500 mU/
min X 90 min) into the superior pancreatico-duodenal artery.
This insulin dose was calculated to reproduce or exceed the
intra-islet insulin level at which there was acute suppression of
immunoreactive glucagon (IRG) (step 2) seen in control ani-
mals during protocol I. The calculation assumed that blood
flow to the pancreatic islet is 10% of the total pancreatic blood
flow and that therefore the insulin concentration in the pan-
creatico-duodenal vein is tenfold lower than that in pure islet
blood. We therefore infused insulin at a rate at least 10-fold
higher than the insulin output seen in control animals in proto-
col I, step 2. Additionally, because marked IRG suppression
was seen in protocol I control dogs at glucose infusion steps 3
and 4, glucose was infused at these rates during protocol II (see
below).
Protocol II

Pancreatic duodenal Peripheral glucose

Artery infusion IV bolus Infusion

500 mU/min mg/kg mg/kg per min

Insulin infusion Insulin
Step three Insulin 50 10
Step four Insulin 200 40

Assays

Blood samples for assay of immunoreactive insulin (IRI) and glucose
were drawn on EDTA, those for IRG on benzamidine and heparin
(28), and those for somatostatin-like immunoreactivity (SLI) on a mix-
ture of anticoagulants and proteolytic inhibitors as described by De
Haen et al. (29). The radioimmunoassays for IRI (30), IRG (27), and
SLI (27) have been previously described.

Data analysis
Pancreatic hormone outputs from the ventral lobe were calculated by
subtracting the femoral arterial concentrations from the pancreatic ve-
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nous concentrations and multiplying the difference by the pancreatic
venous plasma flow. In each dog, hormone outputs at 10, 20, 30, and
35 min of each step were averaged. IRG and SLI outputs are expressed
as mean percentage change from basal±SE. The ventral lobe hormone
responses to arginine were calculated as the area under the curve above
baseline from values obtained from samples at 2-15 min.

Statistical analysis
Analysis of hormone outputs were done using the Dunnett's test for
multiple comparisons versus baseline on an analysis of variance with
repeated measures. Significance was accepted at the 5%level through-
out. All results are expressed as mean±SEM.

Results

Experimental protocol I: four step glucose infusion
Responses to arginine. To determine if the alloxan exposure
was sufficient to damage the majority of B cells in the ventral
lobe of the pancreas, we measured and compared the inte-
grated acute hormone responses with an arginine bolus (5 g
i.v.) from the ventral lobe of either alloxan-treated (n = 6) or
control (n = 7) dogs. The integrated acute ventral lobe insulin
responses to arginine (2-15 min) were markedly impaired in
alloxan-treated dogs compared with the control animals
(10.5±2.4 vs. 73.2±15.7 mU; P< 0.005; i±SEM). In contrast,
the integrated acute glucagon response to arginine in control
animals (5.1±1.3 ng) was not different than that in alloxan-
treated dogs (4.1 ± 1.0 ng). The integrated acute somatostatin
response to arginine appeared to be higher in alloxan-treated as
compared with control animals (8.3±1.5 vs. 4.8±1.1 pmol),
but the difference was not significant P = 0.07).

Glucose infusion. To determine if the momentary clamping
of the dorsal pancreas protected enough B cells to prevent fast-
ing hyperglycemia in the alloxan-treated animals, glucose val-
ues were measured in both control and alloxan-treated animals
both before and during surgery. Arterial plasma glucose was
104±8 mg/dl (mean±SE) in control animals and 102±3 mg/dl
in alloxan-treated dogs both before anesthesia (P = NS). Mean
glucose after induction of anesthesia and surgery was 112±2
mg/dl in controls and 125±9 mg/dl in alloxan-treated animals.

Glucose was infused at four different rates (steps 1-4, see
Methods) to determine the amount of hyperglycemia necessary
to suppress glucagon secretion in both control and alloxan-
treated animals. Mean (±SE) plasma glucose in control dogs at
step one was 123±2 mg/dl; step two, 153±6 mg/dl; step three,
212±14 mg/dl; and step four, 468±45 mg/dl (Fig. 1). In al-
loxan-treated dogs the mean plasma glucose were significantly
higher (P < 0.01) than in control dogs at each step. At step one,
glucose in the alloxan-treated dogs was 146±10 mg/dl; step

two, 185+12 mg/dl; step three, 273±13 mg/dl; and step four,
594±51 mg/dl (Fig. 1).

Insulin responses. To determine the magnitude of the ven-
tral B cell response to the four steps of glucose in both control
and in the alloxan-treated animals, we measured IRI output
from the ventral lobe of the pancreas in both groups (see Fig. 2).
In control dogs, the mean basal IRI output from the ventral
lobe was 6.7±1.9 mU/min. At step one IRI output rose to a
steady level of 11.6±2.7 mU/min; step two, 25.7±6.1 mU/
min; step three, 54.2±12 mU/min; and step four, 77.5±25.9
mU/min. In contrast, in alloxan-treated dogs the mean basal
IRI output from the ventral lobe was 2.7±0.6 mU/min, rose to
4.5±1 at step one, and then stabilized at 5.6±1.4, 5.6±1.2, and
5.2±1 mU/min at steps two through four. Thus, the IRI out-
puts were significantly (P < 0.002) and markedly lower in the
alloxan-treated dogs both before and during the glucose infu-
sions.

Glucagon response. To determine which step of glucose in-
fusion was sufficient to suppress glucagon secretion we mea-
sured ventral lobe IRG output before and during the four steps
of glucose infusions (see Fig. 3). In control dogs, the mean basal
IRG output from the ventral lobe was 1.24±0.36 ng/min. At
step one there was no significant change in IRG output
(-6±9%) but output decreased significantly to -49±4, -50±8,
and -62±6% of basal at steps two, three, and four, respectively
(all P < 0.001). In alloxan-treated dogs, the basal IRG output
was 1.20±0.32 ng/min. In contrast to the control dogs, there
was no significant change from baseline IRG at steps one
through four, although there appeared to be a small progressive
trend downward (+14±15, -3±19, -24±15, and -29±16%)
(P = NS). Thus, the control dogs had an abrupt suppression of
glucagon at step 2 (glucose, 153±6 mg/dl) followed by a small
further decline in glucagon secretion. In the alloxan-treated
dogs this abrupt suppression was absent; however, there was a
slow downward trend of glucagon secretion with increasing
glucose levels that did not achieve statistical significance.

Somatostatin response. To determine if the suppression of
glucagon secretion in control dogs was indirectly due to stimu-
lation of pancreatic somatostatin secretion by hyperglycemia,
we measured ventral lobe SLI output during the four glucose
steps (see Fig. 4). In control dogs, the mean basal SLI output
from the ventral lobe was 2.4±0.8 pmol/min. SLI output did
not rise significantly above baseline at step one (0±8%), step
two (6±9%), or step three (39±12%) despite the significant sup-
pression of glucagon secretion at step 2. At step four SLI output
rose significantly (+87±28%) (P < 0.01). In the alloxan-treated
animals, the basal SLI output was 2.6±0.4 pmol/min, not dif-
ferent from control animals. However, no significant change in
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SLI output occurred in response to hyperglycemia: step one,
+11±6%; step two, -3+1 1%; step three, -10±7%; and step
four, = +6±13%.

Experimental protocol II: intrapancreatic insulin infusion
with a two step glucose infusion in alloxan-treated dogs
To determine the importance of islet insulin per se in the re-
sponse of the A cells to hyperglycemia, we infused high concen-
trations of insulin into the pancreatic artery supplying the al-
loxan-treated ventral lobe of the pancreas and then infused
glucose intravenously at the two highest rates of the previous
protocol (steps three and four).

Glucose values. Basal values after induction of anesthesia
and surgery were 116±4.5 mg/dl. Mean (±SE) plasma glucose
during insulin infusion alone was 112±2.5 mg/dl, plasma glu-
cose at step three was 185±19.4 mg/dl, and step four was
430±41.8 mg/dl (see Fig. 5).

Insulin responses. During the first 25 min of intra-pancre-
atic insulin infusion, calculated IRI output rose to 439±126
mU/min, more than 10-fold higher than the endogenous insu-
lin output seen in control animals in protocol I, step 2 (see
Methods). Calculated IRI output during both steps of glucose
infusion, step three (553±92 mU/min) and step four (599±1 1 1
mU/min), was not significantly different than during infusion
of insulin alone.

Glucagon responses. In these alloxan-treated dogs the basal
IRG output was 1.5±0.45 ng/min. In response to intrapancre-
atic insulin infusion alone, IRG output did not change signifi-
cantly (+4±15% from baseline). However, IRG output de-
creased significantly when glucose was infused intravenously
during intrapancreatic insulin infusion. IRG output decreased

Figure 4. Protocol I:
pancreatic somatostatin
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Figure 5. Protocol II:
systemic glucose con-
centration. Arterial
plasma glucose concen-
tration (mg/dl) before
and during infusion of
intrapancreatic insulin
alone and in conjunc-
tion with a two-step in-
travenous glucose infu-
sion in alloxan-treated
(n = 6) anesthetized
dogs (mean±SE).

by -42± 10%(P < 0.05) from baseline during glucose step three
and by -68±5% (P < 0.01) from baseline during glucose step
four (see Fig. 6).

Somatostatin responses. To determine if restored glucagon
suppression by hyperglycemia coincided with restoration of the
pancreatic somatostatin response to hyperglycemia, ventral
lobe SLI output was measured. In these alloxan-treated dogs,
the basal SLI output was 1.4±0.3 pmol/min. There was no
significant increase in SLI output after infusion of insulin alone
(+ 16±22%) or after the step 3 glucose infusion (+32±29%).
There was, however, a significant increase of ventral lobe SLI
output during step 4 glucose infusion (+ 102±46%) (P < 0.05)
(Fig. 7).

Discussion

This study was designed to determine the mechanism of the
insensitivity ofthe islet A cell to the suppressive effects of hyper-
glycemia in insulin-deficient animals. Specifically, we sought
to determine if local insulin deficiency, in the absence of
chronic hyperglycemia, could produce such insensitivity. Fur-
ther, we sought to determine whether the presumably large and
rapid increases of local insulin that normally accompany acute
hyperglycemia in noninsulin-deficient animals suppress the A
cell directly, or whether high local levels of insulin simply allow
glucose to suppress the A cell. Finally, we also carefully evalu-
ated the potential role of pancreatic somatostatin in such gluca-
gon suppression by examining the dose-response relation be-
tween glucose-induced stimulation of pancreatic secretion and
glucose-induced suppression of pancreatic glucagon secretion
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in noninsulin-deficient animals, and by examining the effect of
local insulin deficiency and local insulin repletion on the pan-

creatic somatostatin response to acute hyperglycemia.
Because severe insulin deficiency usually causes marked

fasting hyperglycemia in either animals or man, chronic hyper-
glycemia itself has long been considered a candidate to mediate
the glucose insensitivity of the A cell seen in diabetes. Chronic
hyperglycemia has been shown to alter islet cell responses ( 16-
22). Creation of mild to moderate chronic hyperglycemia after
partial pancreatectomy or streptozocin treatment in rats results
in impaired insulin responses to acute glucose infusions as well
as impaired glucose regulation of nonglucose secretagogues
(16, 18). Alleviation of the chronic hyperglycemia by insulin
treatment or phloridzin prevents these B cell secretory defects
(19, 20). Additionally, mild chronic hyperglycemia alters the A
cell response to acute hypoglycemia (31). Thus, it is likely that
the chronic hyperglycemia of diabetes contributes to the insen-
sitivity of the A cell. However, the question addressed in this
study concerns the role of local insulin deficiency per se. To
answer that question it was necessary to avoid the complication
of chronic hyperglycemia while still producing insulin defi-
ciency.

In this study local insulin deficiency was produced in the
ventral portion of the canine pancreas by using a modification
of the technique of Gomori and Goldner (23). This approach
takes advantage of the very short half-life of alloxan in blood
(23, 26). By briefly clamping the vascular supply to the dorsal
lobe of the pancreas for 2 min, we were able to isolate it from
the B cell toxic effects of systemically injected alloxan and at
the same time destroy the B cells in the unprotected ventral
lobe. Sufficient B cells were protected in the dorsal lobe to
maintain fasting normoglycemia, though under conditions of
anesthesia and surgical stress, plasma glucose levels in the al-
loxan treated dogs were slightly higher than controls. In con-

trast, severe B cell destruction occurred in the ventral lobe as

evidenced by markedly diminished ventral lobe insulin output
in response to both arginine and glucose. Thus, the model ap-

parently fulfilled the dual goals of local insulin deficiency with-
out the chronic severe hyperglycemia usually associated with
this degree of insulin deficiency.

The data from protocol I demonstrate that local intra-islet
insulin deficiency is associated with impaired glucagon sup-

pression by acute hyperglycemia. For example, in the control
dogs there was a marked suppression of glucagon secretion
when glucose rose to 150 mg/dl, which was absent in the

alloxan-treated dogs, although in the later condition glucagon
output appears to decline slowly with progressive hyperglyce-
mia. Thus, at marked hyperglycemia an insulin-independent
process could be responsible for some glucagon suppression as

suggested by previous work with isolated A cells (5). However,
we conclude that at moderate hyperglycemia, local insulin defi-
ciency alone produces an insensitivity of the A cell to glucose.

Others have used different techniques to circumvent the
complication of chronic hyperglycemia that usually accompa-
nies severe insulin deficiency. Starke et al. reversed chronic
hyperglycemia by lowering the blood glucose levels of alloxan
diabetic dogs by the administration of phloridzin, a drug that
causes renal glycosuria (2). In contrast to our findings, infusion
of glucose alone to increase plasma levels from 65 to 350 mg/dl
resulted in a suppression of glucagon secretion - 50%of base-
line which was equivalent to controls. However, in that study,
the glucose was raised from hypoglycemic, not euglycemic lev-
els. This difference is important because the mechanism by
which hypoglycemia stimulates glucagon secretion is likely to
be different from that by which hyperglycemia suppresses it
(32, 33). For example, the activation of the autonomic nerves

of the pancreas is negligible at euglycemia (34, 35) but probably
plays a role during hypoglycemia.

It is unlikely that the insensitivity of the pancreatic A and D
cells to hyperglycemia in alloxan-treated animals is due to di-
rect effect of the drug because alloxan itself is thought to have
no major direct toxic effects on either the A or D cells (26, 36).
The data in this study support that view because the basal and
arginine-stimulated glucagon and somatostatin outputs in the
alloxan-treated animals were not lower than those from control
animals. Additionally, repleting insulin to the pancreas re-

stored the ability of the alloxan-exposed A and D cells to re-

spond normally to acute hyperglycemia.
Alternatively, local insulin deficiency could have prevented

the rise of somatostatin and by this mechanism prevent sup-
pression of glucagon secretion. However, in the control ani-
mals the acute suppression of glucagon occurred at step two
(glucose levels - 150 mg/dl) and significant stimulation of so-
matostatin secretion occurred only by step 4 (glucose levels
> 400 mg/dl). Thus, increased somatostatin secretion is proba-
bly not the cause of this particular suppression of glucagon
secretion. This observation is in complete agreement with ear-
lier dose-response studies of Sorensen and Elde performed in
the isolated rat pancreas (4). It may, however, appear to be in
conflict with previous work from our laboratory (12, 27). We
had found that both at euglycemia and marked hyperglycemia,
suppression of somatostatin led to stimulation of IRG secre-
tion. Thus SS secretion may tonically restrain pancreatic gluca-
gon secretion, but the suppression of glucagon secretion, which
occurs during moderate hyperglycemia in the dog, is not me-
diated by increased somatostatin secretion per se.

Finally, the insensitivity of the A cell could be due to the
loss of a suppressive effect of local insulin directly on the A cell,
or the loss of a permissive effect of insulin on the ability of
glucose to directly suppress the A cell. To distinguish between
these two possible mechanisms we infused insulin at high rates
both before and during hyperglycemia directly into the pancre-
atic artery that supplies the ventral lobe (experimental protocol
II). The insulin dose was calculated (see Methods) to create
levels of intra-islet insulin at least equivalent to those that oc-
curred during hyperglycemia in control dogs in protocol I. We
wished to determine if high levels of intra-islet insulin, with or
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without hyperglycemia, suppressed glucagon secretion and
whether somatostatin responses were restored.

In these studies, local insulin infusion into the B cell-defi-
cient lobe did not, by itself, cause any change in IRG secretion,
suggesting that high levels of intra-islet insulin do not directly
mediate suppression of the A cell. This finding contrasts with
two previous studies. In one study, Starke (3) noted a fall in
IRG with a peripheral infusion of insulin at normoglycemia;
however, this fall in IRG could have been due to insulin's sup-
pressive effect on endogenous glucagon secretagogues such as
plasma amino acids. Secondly, Maruyama (1 1) observed an
increase in IRG secretion with acute immuneoneutrilization of
intra-islet insulin in the isolated perfused pancreas. These re-
sults are harder to reconcile with our data. One possibility is
that the chronic local insulin deficiency in our model renders
the A cells insensitive to the direct suppressive effect of the
short term insulin infusion. If so, then a time-dependent direct
effect of insulin may have contributed to the late suppression of
glucagon secretion during hyperglycemia.

Whenhyperglycemia was induced during the intra-islet in-
sulin repletion, IRG secretion was suppressed, just as in control
animals. Wetherefore conclude that high intra-islet levels of
insulin allow glucose to directly suppress glucagon secretion in
response to acute hyperglycemia. Studies of other workers have
suggested that insulin is necessary for the suppression of gluca-
gon by glucose. In high concentrations, insulin has been re-
ported to inhibit glucagon secretion both in vivo and in vitro
(9-11, 37, 38). Retrograde perfusion studies designed to pre-
vent the exposure of the A cell to high levels of intra-islet insu-
lin also prevented IRG suppression with hyperglycemia (6),
and neutralization of insulin by a high affinity anti-insulin an-
tiserum stimulated glucagon release in both the isolated rat (39)
and dog pancreas (40). The demonstration that blood flow is
from the central B cell core of the islet to the Dand A cells in
the mantle of the islet (15) suggests that the A and D cells are
usually exposed to very high levels of insulin. In contrast, the
data of this study suggest that these high levels of insulin are, by
themselves, not sufficient to inhibit glucagon secretion, but are
needed to maintain the glucose sensitivity of the A cells.

These data also demonstrate that the pancreatic somato-
statin response to hyperglycemia is lost during chronic local
insulin deficiency. This finding is in agreement with those of
Hermansen (41) and Trimble (42) who found that acute hyper-
glycemia did not stimulate somatostatin secretion in either the
diabetic dog pancreas (41) or diabetic rat islets (42), respec-
tively. It is unlikely that the insensitivity of the Dcell is due to a
lack of direct effect of insulin on the D cell, as our data, and
those of others (41-44), suggest that exogenous insulin at nor-
moglycemia does not stimulate somatostatin secretion. Never-
theless, it remains possible that a stimulatory effect of insulin
on the D cell may have occurred in our study after a longer
period of insulin infusion.

This study did demonstrate that intra-islet insulin restored
the stimulation of somatostatin secretion by acute hyperglyce-
mia, suggesting that the normal somatostatin response to acute
hyperglycemia requires the presence of high levels of intra-islet
insulin. This finding contrasts with that of Hermansen who
found that the addition of insulin to the diabetic pancreas
failed to reverse the deficit in somatostatin secretion (41). How-
ever, we replaced insulin to achieve pancreatic vein insulin
concentrations 10- to 20-fold higher than those of Hermansen.
Further, the 3 d of diabetic hyperglycemia present in Herman-

sen's study may have been sufficient to render the D cell insen-
sitive to acute hyperglycemia (41). This interpretation is sup-
ported by the study of Trimble et al., in which insulin treat-
ment of chronically diabetic rats restored the ability ofthe islets
to respond to acute hyperglycemia in vitro (42). However, the
normalized somatostatin response seen in Trimble's study oc-
curred in insulin-deficient rat islets (42), and thus appears to be
in direct contrast to our finding that high rates of insulin infu-
sion are needed to restore the D cell's secretory response to
glucose. The reason for this discrepancy remains unclear.

In conclusion, this study was designed to determine the
mechanism of the insensitivity of the islet A cell to the suppres-
sive effects of hyperglycemia in insulin-deficient animals. We
have shown that in the presence of local insulin deficiency and
the absence of chronic hyperglycemia, the A cell insensitivity to
glucose remains. Additionally, although pancreatic somato-
statin at euglycemia and marked hyperglycemia can tonically
inhibit glucagon secretion, this study demonstrates that so-
matostatin does not mediate the acute fall in IRG secretion
that occurs at moderate hyperglycemia. Finally, this study dem-
onstrates that the large local insulin response to acute hypergly-
cemia in healthy animals does not directly suppress the A cell
or stimulate the D cell, but simply allows glucose to do so.
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