Article tools
  • View PDF
  • Cite this article
  • E-mail this article
  • Send a letter
  • Information on reuse
  • Standard abbreviations
  • Article usage
Author information
Need help?

Research Article

Metabolic effects of cachectin/tumor necrosis factor are modified by site of production. Cachectin/tumor necrosis factor-secreting tumor in skeletal muscle induces chronic cachexia, while implantation in brain induces predominantly acute anorexia.

K J Tracey, S Morgello, B Koplin, T J Fahey, 3rd, J Fox, A Aledo, K R Manogue and A Cerami

Laboratory of Medical Biochemistry, Rockefeller University, New York, New York.

Published December 1990

We have developed a murine model of wasting by injecting intracerebrally cells which continuously secrete h-cachectin/TNF (CHO-TNF) to: (a) determine the effects of cachectin/TNF produced continuously in the central nervous system (CNS), and (b) compare the metabolic effects of cachectin/TNF-secreting tumor in the brain to the cachexia caused by CHO-TNF tumor in peripheral tissue (IM). Intracerebral CHO-TNF tumors produced increased serum h-cachectin/TNF levels with lethal hypophagia and weight loss (mean survival time of 11 d); these changes were not observed in association with nonsecretory control brain tumors. The metabolic consequences of intracerebral cachectin/TNF production were indistinguishable from acute, lethal starvation: whole-body lipid content was decreased significantly but protein was conserved. Although intramuscular cachectin/TNF-secreting tumors caused similar increases of serum h-cachectin/TNF levels, profound anorexia did not develop; wasting developed after a longer period of tumor burden (50 d) with classical signs of cachexia (i.e., anemia and depletion of both protein and lipid). These studies provide a reproducible animal model of site-specific cytokine production and suggest that, regardless of serum levels, cachectin/TNF produced locally in brain influences both the rate of development of wasting and its net metabolic effects.


Browse pages

Click on an image below to see the page. View PDF of the complete article