Inhibition of Primary ADP-Induced Platelet Aggregation in Normal Subjects after Administration of Nitrofurantoin (Furadantin)

ENNIO C. ROSSI and NATHAN W. LEVIN with the technical assistance of GERLINDE LOUIS

From the Department of Medicine, Northwestern University School of Medicine and the Veterans Administration Research Hospital, Chicago, Illinois 60611

ABSTRACT The evidence indicating that platelets may play a role in the occurrence of certain thromboembolic phenomena has stimulated a search for inhibitors of platelet function. This report presents data to indicate that nitrofurantoin is a potent inhibitor of primary ADP-induced platelet aggregation. The addition of 10 μM nitrofurantoin to citrated platelet-rich plasma obtained from 12 normal subjects produced a 29±6% (2 SD) inhibition of the velocity of platelet aggregation induced by 2 μM ADP. The inhibitory effect of nitrofurantoin demonstrated competitive kinetics in respect to ADP. The intravenous (180 mg) or oral (200 mg) administration of nitrofurantoin produced a serum nitrofurantoin concentration ranging from 2.7 to 23 μM in 28 normal subjects. Platelet-rich plasma obtained from these subjects demonstrated inhibition of the velocity of ADP-induced platelet aggregation that correlated with the log of the serum nitrofurantoin concentration (P < 0.001). Collagen-induced platelet aggregation was also inhibited in a dose-related manner, and the bleeding time was significantly prolonged in the two subjects with the highest serum nitrofurantoin concentration. These studies indicate that nitrofurantoin in vivo inhibits platelet function to a degree that is proportional to the serum nitrofurantoin concentration.

INTRODUCTION

When platelets adhere to collagen (1, 2) they release ADP (3), which, in turn, produces platelet aggregation (4). Although these platelet functions are important for hemostasis (5), the formation of platelet aggregates in diseased blood vessels may cause occlusion (6). For this reason inhibitors of platelet function have been sought in the hope that such drugs might decrease the morbidity and mortality associated with vascular disease.

Aspirin prolongs the bleeding time (7–12) and inhibits collagen-induced platelet aggregation (10, 11, 13). Sulfinpyrazone prolongs the survival time of 51Cr-labelled platelets (14) and also inhibits platelet aggregation induced by collagen (15). Both drugs are inhibitors of the platelet release reaction (11, 15–17), and they are currently being tested for their effectiveness in the treatment of various forms of thrombotic disease (18, 19).

The search for a potentially useful inhibitor of primary ADP-induced platelet aggregation has not been as successful. Inhibitors such as prostaglandin E1 (PGE1) (20), adenosine (21), and chloroadenosine (22) can not be used in patients because of various deleterious effects (23, 24), and 2-methylthio-AMP (25) must be given intravenously to be effective. Recently we reported that furosemide inhibited primary ADP-induced platelet aggregation in vitro (26). These studies led us to investigate the effects of another furfuryl drug, nitrofurantoin, upon platelets. Our results indicate that nitrofurantoin is a potent inhibitor of primary ADP-induced platelet aggregation in vitro and that its inhibitory effect can be demonstrated in platelet-rich plasma (PRP) obtained from normal subjects after oral administration of nitrofurantoin.

Abbreviations used in this paper: Kd, inhibitor constant; LT, light transmission; PGE1, prostaglandin E1; PPP, platelet-poor plasma; PRP, platelet-rich plasma; TTP, thrombotic thrombocytopenic purpura.
METHODS

Blood was drawn from healthy human volunteers and placed in 3.8 g/100 ml trisodium citrate in a 9:1 ratio. In some experiments heparin (4 U/ml of blood) was used as the anticoagulant. PRP was prepared by centrifugation at 150g for 10 min at room temperature.

Materials. Nitrofurantoin sodium crystallized (Eaton Laboratories, Inc., Div. of Norwich Pharmacal Co., Norwich, N. Y.) was dissolved in water. Dilutions of the nitrofurantoin stock solution (10 mg/ml) were prepared in a solution containing 100 mM Tris-HCl (pH 7.5), 95 mM NaCl, and 3 mM KCl. Solutions of ADP (Sigma Chemical Co., St. Louis, Mo.) were also prepared in the above Tris-HCl buffer. Collagen was prepared from human skin according to the method of Schmid, Dunnm, and Rossi (27). Stock solutions of PGE1, theophylline, and epinephrine were prepared as described elsewhere (26).

In vitro studies. Platelet aggregation studies were performed according to the method of Born (28). A platelet aggregometer (Chrono-Log Corp., Broomall, Pa.) was used, and changes in light transmission were recorded on an EU-20B servo recorder (Heath/Schiller/Scientific Instruments Co., Benton Harbor, Mich.). 0.2 ml of PRP was placed into a siliconized 1.5 ml cuvette containing a stir bar and 0.02 ml of the drug to be tested (final concentrations: nitrofurantoin, 5-30 μM; PGE1, 15 nM; or theophylline, 1 mM). The cuvette was placed in the aggregometer, which was adapted to accept 1.5-m cuvettes, and 0.02 ml of an ADP solution that gave a final concentration in the cuvette of 0.01-15 μM ADP was added to the cuvette. In other experiments, epinephrine (final concentration 2 μg/ml) or collagen was used to induce platelet aggregation. The aggregation observed in samples containing inhibitors was compared to that observed in appropriate control samples diluted with 0.02 ml of Tris buffer.

ADP release by platelets in the presence of collagen and nitrofurantoin was measured on samples of PRP obtained from normal subjects. Before an ADP release experiment was performed, a dose-response curve with various dilutions of collagen was performed upon each sample of PRP in order to determine the lowest concentration of collagen required to produce at least 50% aggregation within 5 min in that particular sample of PRP. 2 ml of PRP were placed in each of two siliconized 10-ml cuvettes. One cuvette contained 0.2 ml nitrofurantoin solution (final concentration, 40 μM) while the other contained 0.2 ml Tris buffer. The cuvettes were placed in an aggregometer set at 37°C and 0.2 ml of the appropriate predetermined dilution of collagen was added. The amount of aggregation present after 5 min of constant stirring was recorded, and the cuvette was removed from the aggregometer. Nitrofurantoin or Tris buffer was then added to the test or control sample so that the nitrofurantoin concentration and volume of all samples would be constant through the deproteinization and assay procedures. An additional control assay consisting of platelet poor plasma (PPP), collagen, and nitrofurantoin was performed with each set of tests. A calibration curve for ADP was prepared by assaying mixtures of PPP, nitrofurantoin, and known amounts of ADP. The removal of platelet aggregates, the preparation of deproteinized plasma supernates, and the enzymatic assay of ADP were performed as described by Weiss, Aledort, and Kochwa (11).

The effect of nitrofurantoin upon the retention of platelets by glass bead columns was studied in samples of whole blood to which nitrofurantoin was added. The method employed is described in detail elsewhere (29). In summary, 11.5-ml blood samples were drawn sequentially into 20-ml plastic syringes containing 1 ml of a nitrofurantoin solution. A 38 mM nitrofurantoin solution prepared in 0.425 g/100 ml NaCl was the highest concentration used in these experiments. This solution had an osmolality of 240 mosmol and a pH of 9. Since the addition of Tris-HCl buffer to this solution resulted in the precipitation of nitrofurantoin, the solution was not buffered. For this reason, so-called "adhesiveness" studies were performed using a 240 mosM NaCl solution adjusted to pH 9 with NaOH. The syringes were placed on a syringe pump, and blood was forced through a glass bead column constructed by packing 2.6 grams of type 670 Super-Brite Beads (Reflective Products Div., 3M Corporation, St. Paul, Minn.) into lengths of polyvinyl tubing. (1 D, 0.118 inches, Abbott Laboratory, Samples Chicago, Ill.). The flow rate employed was 6 ml/min. Four aliquots (2 ml each) of effluent blood were collected in plastic tubes each containing 5.4 mg of sodium EDTA. The difference between the platelet counts before and after passage through the column divided by the platelet count before passage represented the percent of platelets retained by the column.

In vivo studies. 27 healthy volunteers each ingested 200 mg nitrofurantoin in a single dose. Blood samples were drawn for serum nitrofurantoin levels and platelet aggregation studies before and at 2 and 4 h after nitrofurantoin ingestion. A different venipuncture site was used for each blood sample obtained from the same individual. In one volunteer, 180 mg of sodium nitrofurantoin in 500 c 5% glucose in H2O was given intravenously over a 24-h period. Blood samples were drawn before infusion, 1 h after its initiation and 15 min after its conclusion. Serum nitrofurantoin levels were determined according to a modification of the method of Buzard, Vrablic, and Paul (30).

The volume of citrate PRP obtained from pre- and post-nitrofurantoin blood samples did not show significant variation in any individual. Platelet counts were obtained on all samples of PRP. Variation in the platelet counts of PRPs obtained after nitrofurantoin ingestion did not exceed a 16% variation. The platelet count in the postnitrofurantoin PRP was not equilibrated to the count obtained in the prenitrofurantoin PRP. In this manner, the time interval between harvest and testing of PRPs's was both minimal and constant. Pre- and postnitrofurantoin PRPs were harvested with fresh ADP solutions that gave final concentrations of 1, 1.5, 2, 3, and 6 μM. Aggregation studies of each PRP were begun within 2 min of harvest and were completed within 10 min time.

In order to study the primary wave of ADP-induced platelet aggregation, the speed of the paper in the recorder was set at 4 inches/min. The velocity of aggregation was measured by drawing by eye a line tangential to the initial rapid phase of platelet aggregation (31). The difference in light transmission (LT) along this tangent at 15 s from the initiation of aggregation was recorded. The value obtained with a postnitrofurantoin PRP was mathematically corrected for differences in platelet count from the prenitrofurantoin PRP by multiplying the ΔLT (postnitrofurantoin PRP/platelet count postnitrofurantoin PRP) by the ratio platelet count prenitrofurantoin PRP/platelet count postnitrofurantoin PRP. The percent inhibition of the velocity of platelet aggregation after nitrofurantoin administration was calculated for each ADP concentration according to the following formula:

\[ \text{ALT control PRP} - \Delta \text{LT nitrofurantoin PRP (corrected for } \Delta \text{ in platelet count)}/\text{ALT control PRP} \]
The retention of platelets by glass bead columns (platelet adhesiveness) was measured before and after nitrofurantoin administration in five normal subjects according to the method of Bowie, Owen, Thompson, and Didisheim (32) with the exception that heparin was not used (29). Bleeding times were measured according to the method of Mielke, Kaneshiro, Maher, Weiner, and Rapaport (12). Platelet counts were done by phase microscopy (33).

RESULTS

In vitro studies. Nitrofurantoin in vitro inhibited primary ADP-induced platelet aggregation in all samples of citrated-PRP obtained from 12 normal subjects. The effect of nitrofurantoin was immediate and proportional to its concentration. In a 10 μM concentration, nitrofurantoin produced a 29±6% (2 SD) inhibition of the velocity of aggregation induced by 2 μM ADP. The effect of nitrofurantoin was demonstrated in heparinized as well as in citrated PRP, and it was not corrected in citrated PRP by calcium in concentrations up to 20 mM. The inhibitory effect of 10 μM nitrofurantoin in combination with either 15 nM PGE1 (an adenylyl cyclase stimulator [34]) or 1 mM theophylline (a phosphodiesterase inhibitor [35]) was also tested. In both combinations an additive increase of inhibition was observed. Potentiated inhibition, as obtained when PGE1 and theophylline are combined (36), was not observed (Table I).

The inhibitory effect of in vitro nitrofurantoin upon the velocity of primary ADP-induced platelet aggregation, (i.e. the velocity of the increase in LT), is shown

<table>
<thead>
<tr>
<th>Platelet-rich plasma + 2 μM ADP</th>
<th>% Aggregation</th>
</tr>
</thead>
<tbody>
<tr>
<td>plus Tris buffer</td>
<td>100%*</td>
</tr>
<tr>
<td>plus 10 μM nitrofurantoin</td>
<td>72%</td>
</tr>
<tr>
<td>plus 15 nM PGE1</td>
<td>64%</td>
</tr>
<tr>
<td>plus 1 mM theophylline</td>
<td>89%</td>
</tr>
<tr>
<td>plus 10 μM nitrofurantoin;</td>
<td>32%</td>
</tr>
<tr>
<td>15 nM PGE1</td>
<td></td>
</tr>
<tr>
<td>plus 10 μM nitrofurantoin;</td>
<td>65%</td>
</tr>
<tr>
<td>1 mM theophylline</td>
<td>0%</td>
</tr>
<tr>
<td>plus 15 nM PGE1;</td>
<td></td>
</tr>
<tr>
<td>1 mM theophylline</td>
<td></td>
</tr>
</tbody>
</table>

* All studies were performed on samples from the same specimen of citrated PRP (platelet count—338,000/mm³). The amounts of all substances added are expressed as final concentrations. The amount of platelet aggregation observed 1 min after the addition of 2 μM ADP to a sample of PRP containing Tris buffer was defined as 100% (control value). Aggregation values observed in the presence of inhibitors are expressed as percentage of the control value.

In Fig. 1. When the reciprocal of the velocity of aggregation was plotted against the reciprocal of the ADP concentration, inhibition by nitrofurantoin was revealed to be competitive in type, and the inhibitor constant \( K_{i} \) (nitrofurantoin) was 9-12 μM (Fig. 2).

Nitrofurantoin in vitro also inhibited platelet aggregation and ADP release induced by collagen (Table II), and the second wave of aggregation induced by epinephrine. In order to evaluate more fully the dual effect of nitrofurantoin upon primary ADP-induced platelet aggregation and collagen-induced platelet aggregation, a study comparing the in vitro effect of nitrofurantoin and acetylsalicylic acid upon ADP- and collagen-induced platelet aggregation was performed upon the PRP from four normal subjects (Table III). The results showed that nitrofurantoin had an inhibitory effect upon the velocity of ADP-induced aggregation while acetylsalicylic acid had the greater inhibitory effect upon collagen-induced aggregation. The effect of a combination of nitrofurantoin and acetylsalicylic acid upon collagen-induced aggregation also was tested. In this experiment the addition of 10 μM nitrofurantoin to a sample of PRP produced 27% inhibition while 22 μg/ml acetylsalicylic acid produced 39% inhibition. When the drugs were combined in these concentrations and added to a duplicate sample taken from the same PRP, 67% inhibition was observed.

Inhibition of Platelet Aggregation by Nitrofurantoin
The retention of platelets by glass bead columns was not affected by nitrofurantoin unless inordinately large concentrations of the inhibitor were used. When blood was mixed with nitrofurantoin in final concentrations ranging between 10 μM and 1 mM, there was no effect upon the retention of platelets by glass bead columns (seven experiments). However, with concentrations above 1 mM an effect could be demonstrated. Fig. 3 (Part A) shows the results of three adhesiveness studies performed on the same individual, in which whole blood was mixed with either nitrofurantoin (final concentration, 1.5 or 3 mM) or a saline solution appropriately controlled for osmolarity and pH. Note that the initial retention of platelets from the first and second aliquots of effluent blood was unaffected by nitrofurantoin while retention from the third and fourth aliquots was decreased in a dose-dependent manner. In a second subject (Fig. 3, Part B) 5.7 mM nitrofurantoin decreased platelet retention in all four aliquots. Larger concentrations of nitrofurantoin could not be tested because of difficulties with dissolution.

In vivo studies. Since the amount of nitrofurantoin required to inhibit ADP-induced aggregation in vitro was within the range achievable in vivo (37), we attempted to demonstrate inhibition of ADP-induced platelet aggregation in the PRP of normal subjects after nitrofurantoin administration. Platelet aggregation studies were performed before and after infusion of 180 mg nitrofurantoin over a 21-h period in a normal healthy subject. The serum nitrofurantoin concentration after completion of the infusion was 3.6 μg/ml (13.8 μM), and primary ADP-induced platelet aggregation

**Figure 2** The kinetics of the inhibitory effect of nitrofurantoin upon ADP-induced platelet aggregation. V, the velocity of the increase in LT (i.e., platelet aggregation), is determined by drawing by eye a line tangential to the initial rapid phase of platelet aggregation (31). When the reciprocal of the velocity is plotted against the reciprocal of the ADP concentration, the inhibitory effect of nitrofurantoin is revealed as competitive in type. The point on the abscissa intercepted by the line derived from the double reciprocal plot of a competitively inhibited reaction is given by the expression of \(-1/K_m \cdot K_i/K_i + (J)\), where I equals the inhibitor concentration and \(-1/K_m\) equals the intercept when \(I = 0\). When \(I\) is known the equation can be solved for \(K_i\). In this experiment the \(K_{nitrofurantoin} = 12 \mu M\) (when \(I = 10 \mu M\)) and 9 μM (when \(I = 30 \mu M\)).

**Figure 3** The effect of nitrofurantoin upon the retention of platelets by glass bead columns. A, 11.5 ml of blood was drawn into a plastic syringe containing 1 ml of a 38 mM nitrofurantoin solution (final concentration, 3 mM) and a platelet adhesiveness study was performed. A second test was performed with 19 mM nitrofurantoin (final concentration, 1.5 mM). The control adhesiveness test (C) was performed with 1 ml of a 240 mOsm NaCl solution adjusted to pH 9 with NaOH (see Methods). At the conclusion of this experiment the pH of plasma samples from all three tests ranged from 7.6 to 7.75. The negative adhesiveness (29) seen in the fourth aliquot of the 3 mM nitrofurantoin test indicates that this aliquot of effluent blood contained more platelets than originally present before passage through the column (actual platelet counts were: before passage, 222,000/mm²; fourth aliquot, 353,000/mm²). B, 11.5 ml of blood was drawn into a syringe containing 2 ml of 38 mM nitrofurantoin (final concentration, 5.7 mM). The control adhesiveness was similarly altered. The plasma pHs on completion of this experiment were, test 7.78, control 7.88.
TABLE I
The Effect of in Vitro Nitrofurantoin upon Collagen-Induced Aggregation and ADP Release

<table>
<thead>
<tr>
<th>Subject</th>
<th>Collagen</th>
<th>40 μM nitrofurantoin</th>
<th>40 μM nitrofurantoin</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>1</td>
<td>88</td>
<td>35</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>90</td>
<td>13</td>
<td>16</td>
</tr>
<tr>
<td>3</td>
<td>94</td>
<td>35</td>
<td>24</td>
</tr>
<tr>
<td>4</td>
<td>60</td>
<td>21</td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td>84</td>
<td>16</td>
<td>18</td>
</tr>
<tr>
<td>Mean</td>
<td>83±13</td>
<td>24±10</td>
<td>16±6</td>
</tr>
</tbody>
</table>

* In these experiments, the LT values for PRP and PPP were defined as 0% and 100% aggregation, respectively. The results are expressed in relationship to this scale, which was determined in each individual experiment.

was inhibited (Fig. 4). A reciprocal plot of these results confirmed the competitive nature of the inhibition, and the $K_{nitrofurantoin}$ was virtually identical to that observed with the in vitro studies (Fig. 5).

27 normal subjects ingested 200 mg of nitrofurantoin in a single dose. 2 and 4 h after drug ingestion blood samples for platelet aggregation studies and serum samples for nitrofurantoin levels were obtained. In 24 subjects the peak nitrofurantoin concentrations observed in the 2- or 4-h sample was between 0.7-6.0 μg/ml (2.7-23 μM). In the other three subjects the peak concentration was only 0.2 μg/ml (0.8 μM) in one, while no serum nitrofurantoin could be detected in samples obtained from the other two subjects. Some individuals complained of mild nausea after drug ingestion. This symptom seemed to occur more frequently in subjects in whom blood levels greater than 2 μg/ml (8 μM) were achieved.

After the ingestion of nitrofurantoin, the velocity of ADP-induced platelet aggregation was inhibited in all of the PRPs in which this was studied (20 subjects). The inhibition was competitive in type, and in each subject the sample containing the highest concentration of nitrofurantoin showed the greatest inhibition of ADP-induced platelet aggregation. The percent inhibition of primary ADP-induced platelet aggregation was proportional to the log of the serum nitrofurantoin concentration. Positive correlations were observed with

TABLE II
Comparative Study of the Effects of in Vitro Nitrofurantoin and Aspirin upon ADP- and Collagen-Induced Platelet Aggregation

<table>
<thead>
<tr>
<th>Subjects</th>
<th>10 μM Nitrofurantoin</th>
<th>30 μM Nitrofurantoin</th>
<th>110 μg/ml Aspirin (0.6 mM)</th>
<th>220 μg/ml Aspirin (1.2 mM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Velocity of 2 μM ADP-induced platelet aggregation</td>
<td>% of control sample lacking drug</td>
</tr>
<tr>
<td>1</td>
<td>76</td>
<td>34</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>85</td>
<td>57</td>
<td>103</td>
<td>95</td>
</tr>
<tr>
<td>3</td>
<td>84</td>
<td>52</td>
<td>94</td>
<td>94</td>
</tr>
<tr>
<td>4</td>
<td>54</td>
<td>36</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Mean</td>
<td>75±14%</td>
<td>45±11%</td>
<td>99±4%</td>
<td>97±3%</td>
</tr>
<tr>
<td>P values</td>
<td>&lt;0.05</td>
<td>&lt;0.005</td>
<td>NS</td>
<td>NS</td>
</tr>
</tbody>
</table>

Collagen-induced platelet aggregation

| Subjects | 92                   | 56                   | 5                        | 2                        |
| 1        | 92                   | 56                   | 5                        | 2                        |
| 2        | 96                   | 56                   | 5                        | 2                        |
| 3        | 92                   | 52                   | 5                        | 2                        |
| 4        | 98                   | 31                   | 10                       | 0                        |
| Mean     | 95±3%                | 35±26%               | 5±4%                     | 0.5±1%                   |
| P values | <0.05                | <0.02                | <0.001                   | <0.001                   |

Inhibition of Platelet Aggregation by Nitrofurantoin
The inhibitory effect of nitrofurantoin upon collagen-induced platelet aggregation could be overcome in part by increasing the collagen concentration.

The effect of nitrofurantoin upon the bleeding time was studied in 17 normal subjects. The baseline bleeding time in these individuals was 5.6 min (range 2–9 min), which agrees closely with the results obtained by Mielke et al (12). In these individuals, bleeding
times 2 and 4 h after nitrofurantoin ingestion were repeated immediately before obtaining blood samples for nitrofurantoin levels. The two nitrofurantoin serum levels obtained on each subject were classified as "high" or "low" values. The high nitrofurantoin concentration obtained in these subjects (9.3±6.1 \(\mu\)M) was associated with a prolongation of the bleeding time (0.8±0.4 min; \(P<0.05\)). Conversely, the mean bleeding time associated with the low nitrofurantoin concentration (2.3 ±1.8 \(\mu\)M) was similar to the baseline bleeding time (Table IV). Subjects 3 and 5, who achieved the highest nitrofurantoin concentrations (23.1 \(\mu\)M [4 h] and 21.5 \(\mu\)M [2 h], respectively), also showed the greatest prolongation in bleeding time (3.5 min). In both subjects, the prolongation in bleeding time was observed at the time when the high nitrofurantoin concentration was achieved (Fig. 8). When the prolongation of the bleeding time in all 17 subjects was plotted against the nitrofurantoin concentration, a positive correlation was noted. (\(r=0.53, t=2.415, P<0.05\)).

Since the prolongation of the bleeding time and the percent inhibition of ADP-induced platelet aggregation both correlated in a positive fashion with the serum nitrofurantoin concentration, one might expect in this study a positive correlation between the aforementioned parameters of platelet function as well. This correlation was sought. Measurements of ADP-induced platelet aggregation were performed in 12 of the 17 subjects who received nitrofurantoin and in whom changes in the bleeding time were studied. When the prolongation of the bleeding time was plotted against the inhibition of ADP-induced platelet aggregation, positive correlations were obtained (Fig. 9).

As expected, the retention of platelets by glass bead columns was not affected by nitrofurantoin administration in the five subjects tested. The highest concentration of nitrofurantoin achieved in any of these subjects was 13.8 \(\mu\)M.

**DISCUSSION**

Nitrofurantoin in vitro inhibits the velocity of primary ADP-induced platelet aggregation. The inhibition is competitive in type, and the \(K_{i}\) (nitrofurantoin) is approximately 10 \(\mu\)M. It also inhibits collagen-induced platelet aggregation in six normal subjects after the ingestion of 200 mg nitrofurantoin. A sample of PPP was prepared from each sample of PRP obtained from each individual. The amount of aggregation observed 5 min after the addition of collagen was expressed in percent on a scale in which the LT values obtained with PRP and PPP were defined as 0% and 100%, respectively. Several determinations of collagen-induced aggregation using various concentrations of collagen (assay performed by Dr. Arthur Veis), were performed on each sample of PRP. The collagen concentration given in the abscissa refers to final concentration in PRP. ●—●, before nitrofurantoin ingestion; ○—○, 2 h after ingestion; △—△, 4 h after ingestion. The numbers accompanying the results obtained at 2 and 4 h refer to the serum nitrofurantoin concentration (\(\mu\)M), which was measured in a blood sample drawn at the same time. Note that in each individual the greatest inhibition of aggregation was observed in the PRP that had the highest nitrofurantoin concentration.
aggregation and release and the second wave of epi-
ephrine-induced aggregation. When nitrofurantoin is
mixed with whole blood in a final concentration of 1–5
mM, the retention of platelets by glass bead columns is
also inhibited.

The mechanism of action of nitrofurantoin is not
known. Chelation of calcium is eliminated as a possible
mechanism by the failure of calcium to correct the
inhibitory effect. Moreover, the additive rather than
potentiated inhibition observed when nitrofurantoin is
combined with PGE1 or theophylline suggests that
nitrofurantoin does not stimulate adenyly cyclase or
inhibit phosphodiesterase. However, a clear definition
of the mechanism of action of nitrofurantoin must await
further studies.

The fact that nitrofurantoin inhibits both primary
ADP-induced platelet aggregation and collagen-induced
release is not unexpected. Other inhibitors of primary
ADP-induced platelet aggregation such as adenosine,
PGE1, theophylline, and dipyridamole have also been
shown to inhibit the platelet release reaction (17, 38,
39). However, it is difficult to determined whether these
drugs do in fact inhibit collagen-induced release or
merely seem to do so because of their effects upon the
ADP-platelet interaction. Platelets adherent to collagen
may still release ADP in the presence of nitrofurantoin.
However, inhibition of the effect of this released ADP
may be sufficient to prevent subsequent ADP-induced
ADP release from platelets not adherent to collagen.
The solution to this problem requires methods that can
distinguish the actual ADP release induced by collagen
from the ADP release induced by ADP.

The ambiguity of nitrofurantoin’s effect upon platelet
release is in contrast with the more distinct effect of
aspirin. Since aspirin does not inhibit ADP-induced
aggregation, its effect upon collagen-induced platelet
aggregation must be due to interference with the
collagen-induced platelet release reaction. The studies
comparing the effects of nitrofurantoin and aspirin help to
place the multiple effects of nitrofurantoin in perspec-
tive. Concentrations of nitrofurantoin that inhibited
ADP-induced aggregation did not inhibit collagen-
inhibited aggregation nearly as effectively as aspirin.
This observation not only draws distinctions between
these two inhibitors, it also supports the possibility that
nitrofurantoin’s effects upon collagen-induced aggrega-
tion and release may be phenomena that are merely
secondary to nitrofurantoin’s primary effect upon the
ADP-platelet interaction.

**Table IV**
The Effect of Nitrofurantoin upon the Bleeding Time

<table>
<thead>
<tr>
<th>Subject</th>
<th>Time after drug ingestion when the high serum level was found</th>
<th>The high serum nitrofurantoin level</th>
<th>Bleeding time—“d”* from baseline value (high nitrofurantoin)</th>
<th>Time after drug ingestion when the low serum level was found</th>
<th>The low serum nitrofurantoin level</th>
<th>Bleeding time—“d”* from baseline value (low nitrofurantoin)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>h</td>
<td>µM</td>
<td>+1.5</td>
<td>4</td>
<td>0.4</td>
<td>−0.5</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>3.8</td>
<td>+0.5</td>
<td>2</td>
<td>0.8</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>23.1</td>
<td>+3.5</td>
<td>2</td>
<td>0.4</td>
<td>−1.0</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>7.3</td>
<td>+2.0</td>
<td>4</td>
<td>0.4</td>
<td>+1.0</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>21.5</td>
<td>+3.5</td>
<td>4</td>
<td>3.8</td>
<td>+1.5</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>13.8</td>
<td>−1.0</td>
<td>4</td>
<td>0.0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>0.8</td>
<td>0</td>
<td>4</td>
<td>0.0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>7.0</td>
<td>0</td>
<td>4</td>
<td>2.7</td>
<td>−0.5</td>
</tr>
<tr>
<td>9</td>
<td>4</td>
<td>5.0</td>
<td>+2.5</td>
<td>2</td>
<td>3.5</td>
<td>+2.0</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>5.8</td>
<td>0</td>
<td>4</td>
<td>5.0</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>7.0</td>
<td>0</td>
<td>4</td>
<td>3.5</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td>3.8</td>
<td>−2.0</td>
<td>4</td>
<td>3.5</td>
<td>−1.0</td>
</tr>
<tr>
<td>13</td>
<td>2</td>
<td>9.2</td>
<td>0</td>
<td>4</td>
<td>3.5</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>2</td>
<td>12.0</td>
<td>+1.0</td>
<td>4</td>
<td>2.7</td>
<td>−1.3</td>
</tr>
<tr>
<td>15</td>
<td>2</td>
<td>11.5</td>
<td>0</td>
<td>4</td>
<td>2.3</td>
<td>−2.0</td>
</tr>
<tr>
<td>16</td>
<td>2</td>
<td>14.2</td>
<td>+0.5</td>
<td>4</td>
<td>0.8</td>
<td>+1.0</td>
</tr>
<tr>
<td>17</td>
<td>2</td>
<td>5.8</td>
<td>+1.5</td>
<td>4</td>
<td>5.4</td>
<td>+1.0</td>
</tr>
<tr>
<td>Mean</td>
<td>h</td>
<td>9.3±0.6</td>
<td>0.8±0.4</td>
<td>2.3±1.8</td>
<td>0.0±0.3</td>
<td>NS</td>
</tr>
</tbody>
</table>

*“d”* refers to the difference between the bleeding times before and after nitrofurantoin ingestion, given in minutes. Positive
numbers denote prolongation and negative numbers denote diminution of the bleeding time.

2464 E. C. Rossi and N. W. Levin
The concentration of nitrofurantoin required to produce inhibition of platelet aggregation in vitro is obtainable in vivo. In the rat, an oral dose of nitrofurantoin is absorbed primarily in the small bowel and appears rapidly in the urine (40). Early clinical studies demonstrated that oral administration of nitrofurantoin produced high drug concentration (as measured by antibacterial activity) in urine but not in serum (41). However, the colorimetric determination for nitrofurantoin does demonstrate measurable blood levels. Felt, Hayes, Gergen, and Toole (37) gave 100 mg oral nitrofurantoin to 11 normal subjects and obtained peak blood levels of 0.9–4.8 μg/ml (3.4–18 μM) 2–6 h after ingestion. In our study 200 mg oral nitrofurantoin produced peak blood levels of 0.7–6.0 μg/ml (2.7–23 μM) in 24 of 27 subjects at 2 or 4 h after ingestion. At these drug concentrations inhibition of platelet function was demonstrable.

PRP obtained from normal subjects after the ingestion of nitrofurantoin showed inhibition of ADP- and collagen-induced platelet aggregation. Moreover, the percent inhibition of the velocity of primary ADP-induced platelet aggregation was proportional to the serum nitrofurantoin concentration. Prolongation of the bleeding time was also observed. Although the degree of prolongation was slight at best, it nonetheless served to confirm the inhibitory effect of nitrofurantoin upon platelets by means of an independently measured parameter of platelet function. This conclusion was strengthened when the degree of prolongation of the bleeding time was found to correlate with both the serum nitrofurantoin concentration and the percent inhibition of the velocity of ADP-induced platelet aggregation. Platelet retention by glass bead columns was not affected by the oral ingestion of nitrofurantoin. This was predicted by the in vitro studies that indicated that 1–5 mM nitrofurantoin was required before this test was affected.

Inhibitors of platelet function may be useful in the treatment of some forms of thrombotic disease (42). Sulfinpyrazone has been shown to be beneficial in patients with attacks of transient cerebral ischemia (18). Aspirin in one study (43) decreased the incidence of venous thrombosis after hip arthroplasty but failed in another (19) to affect the incidence of postoperative venous thrombosis. It is tempting to speculate that treat-
Since nitrofurantoin inhibits ADP-induced platelet aggregation at concentrations that can be achieved in vivo, one might consider using this drug for that purpose. However, nitrofurantoin has certain disadvantages. Its inhibitory effect upon platelet function is rapidly reversed as its concentration in the blood declines, and the prolonged administration of nitrofurantoin may be associated with signs of neurotoxicity (37). A less toxic inhibitor would be preferable. Conceivably, an investigation of nitrofurantoin analogues might lead to the discovery of such an inhibitor.

ACKNOWLEDGMENT

This work was supported by the Paul V. Galvin Charitable Trust.

REFERENCES


