Studies in the Ketosis of Fasting *

DANIEL W. FOSTER †

(From the Department of Internal Medicine, The University of Texas Southwestern Medical School at Dallas, Dallas, Texas)

Summary. A series of experiments was performed during the induction of starvation ketosis and in the acute reversal of the ketotic state. In contrast to the predictions of two widely held theories of ketogenesis, control of acetoacetate production by the liver appeared to be unrelated to changes in fatty acid mobilization from the periphery, fatty acid oxidation, fatty acid synthesis, or the acetyl coenzyme A concentration in the liver.

Ketosis of fasting was shown to be reversible within 5 minutes by the injection of glucose or insulin. This effect was due to a prompt cessation of acetoacetate production by the liver. The possibility is raised that the ketosis of fasting is due to a direct activation of acetoacetate-synthesizing enzymes secondary to a starvation-induced depression of insulin secretion by the pancreas.

Introduction

It is generally accepted that the accumulation of ketone bodies in the blood during relative or absolute carbohydrate deprivation is due to overproduction of acetoacetic and β-hydroxybutyric acids by the liver (1). The mechanism of ketone overproduction has not been well defined, though most theories attribute the increased rate of synthesis to enhanced oxidation of long chain fatty acids by the liver. According to this hypothesis, carbohydrate deprivation causes mobilization of free fatty acids from peripheral fat depots with subsequent uptake by the liver. In the liver the fatty acids are activated to long chain coenzyme A derivatives which are then oxidized at an increased rate to acetyl coenzyme A, the latter compound accumulating in the hepatic cell (2-4). In addition, elevation of long chain acyl CoA levels is postulated to contribute to the expanded acetyl CoA pool by blocking utilization of acetyl CoA in lipogenesis and the tricarboxylic acid cycle through inhibition of the acetyl CoA carboxylase (5) and citrate synthase reactions (6, 7). The direct stimulus for accelerated ketogenesis in this formulation is considered to be the increased concentration of acetyl CoA in the liver cell, which then secondarily activates acetoacetate synthesis (8, 9).

A second major theory of ketosis differs from the above in emphasizing decreased lipogenesis rather than increased fatty acid oxidation as the primary factor in initiating ketosis (10, 11). Here, too, the immediate stimulus to increased ketone production is considered to be an increased concentration of acetyl CoA in the liver.

It is clear that fully developed ketosis is accompanied by both increased fatty acid oxidation and decreased fatty acid synthesis. The question to be considered is whether alterations in these lipid pathways initiate the accelerated hepatic ketogenesis found during starvation.

In the studies to be described below an attempt has been made to determine the relationship between fatty acid oxidation, fatty acid synthesis, and ketone body production in starvation at varying time intervals after the onset of fasting. Similar studies were performed during recovery from the fasted state.

* Submitted for publication August 1, 1966; accepted May 8, 1967.
This study was supported by grant CA 08269, U. S. Public Health Service.
† Research Career Development Awardee (5-K3-AM 9968), U. S. Public Health Service.
Address requests for reprints to Dr. Daniel W. Foster, Dept. of Internal Medicine, University of Texas Southwestern Medical School at Dallas, 5323 Harry Hines Blvd., Dallas, Texas 75235.

1283
in the blood and of hepatic acetyl CoA concentrations in the control of acetoacetate synthesis by the liver has also been assessed. The results indicate that under the conditions of these experiments hepatic ketogenesis during starvation can be altered independently of changes in fatty acid synthesis, fatty acid oxidation, nonesterified fatty acid levels in the blood, and acetyl CoA concentrations in the hepatic cell. They thus provide evidence that the ketosis of fasting may be causally unrelated to changes in lipid metabolism and suggest that current theories of ketosis may have to be modified.

Methods

Treatment of animals

Male Holtzman rats, weighing approximately 200 g and maintained on a balanced diet containing 60% carbohydrate by weight,1 were used in all experiments. The animals were allowed to eat ad libitum until 48 hours before use, at which time tube feeding was initiated to assure a uniform caloric intake. Immediately after the last feeding control rats were killed, and additional groups of animals were killed at varying intervals thereafter as indicated in the Figures. In the recovery studies a similar procedure was followed except that rats were fasted for 48 hours and killed at precisely timed intervals after the administration of 5 ml of a solution containing 7.5 g of the 60% carbohydrate diet by stomach tube or 0.4 ml of 50% glucose intravenously. In some experiments glucagon-free insulin2 was given intravenously alone or combined with glucose.

In vivo—in vitro experiments

Venous blood was obtained for chemical determinations at time of death, and the liver was quickly removed and placed in iced buffer. Slices of 0.5 mm thickness were prepared with an automatic tissue slicer, and samples were taken for measurement of glycogen and fatty acid content. Five hundred mg of slices was incubated in 25-ml center well flasks containing 3.0 ml of Krebs bicarbonate buffer, pH 7.4, and the isotopic substrate. For studies of fatty acid oxidation, palmitate-1-C14 was prepared as the potassium salt and dissolved in 1% bovine serum albumin freed of fatty acid by the method of Goodman (12). One-tenth of a ml of this preparation, containing 1.0 μC of radioactivity and 0.1 μmole of palmitate, was added to each flask. The incorporation of radioactivity from the albumin-bound palmitate-1-C14 into CO2 was utilized as the indicator of fatty acid oxidation. In the studies of acetoacetate and fatty acid synthesis acetate-2-C14 was used as the radioactive substrate. Five μmoles of acetate and 1 μC of radioactivity were present in each flask. All determinations were performed in duplicate, and slices from the same rat liver were used with each isotope.

At the end of the incubation period the reaction was stopped by the addition of 0.25 ml of 10 N H2SO4 and radioactive CO2 was collected into 1 N NaOH in the center well after shaking 30 minutes in ice (13). The incubation mixture was then decanted, and the slices were washed twice with 2-ml vol of water. The washes and incubation mixture were combined and centrifuged, and the clear supernatant was utilized for isolation of radioactive acetoacetate. The protein pellet remaining from the centrifugation of the latter was dissolved in water and added back to the washed slices in the center well flasks for determination of fatty acid radioactivity.

Acetoacetate was isolated, with minor modifications, by the method of Van Slyke (14) as described by Weichselbaum and Somogyi (15). The insoluble Denigès salt was collected by centrifugation and washed twice with 20 ml of water. The precipitate was dissolved in 1.0 ml of 4 N HCl, and a 0.2-ml aliquot was taken for assay of radioactivity. Control experiments without tissue showed no activity in the Denigès salt from acetate or palmitate alone.

For determination of fatty acid radioactivity 0.5 ml of 90% KOH was added to the incubation flask, and the contents were saponified for 1 hour at 15 pounds pressure. Nonsaponifiable lipid was extracted with petroleum ether and discarded, and the total fatty acids were isolated and washed after acidification according to the method of Sipperstein and Fagan (13).

Glycogen was isolated after homogenization of samples of the tissue slices according to Stetten and Boxer (16) and hydrolyzed by the method of Good, Kramer, and Somogyi (17) for assay by glucose oxidase (18). Total fatty acids were measured gravimetrically after saponification and extraction of fatty acids as described above (13).

Nonesterified fatty acids in the liver were determined by a modification of the method utilized by White and Engel (19). Livers were frozen in liquid nitrogen and ground to a powder in a mortar and pestle cooled in liquid nitrogen. One-half g of frozen powder was then homogenized with 10 ml of the fatty acid extraction mixture of Dole (20). Titration of free fatty acids was carried out by the Trout, Estes, and Friedberg modification of the latter method (21). With a ratio of extraction mixture to tissue of 20:1, recovery of palmitic acid added to the powdered tissue was complete (for example, in a typical experiment 0.5 g of liver contained 1.02 μmoles of nonesterified fatty acids, whereas 0.5 g of liver plus 3.96 μmoles of palmitate yielded 4.94 μmoles of nonesterified fatty acids, a recovery of 99%).

Blood sugar was determined by the glucose oxidase method (18). Total blood ketones were measured by the method of Lyon and Bloom (22).

In separate experiments acetyl CoA concentrations in the liver were measured during the onset of fasting and 15 minutes after the reversal of ketosis by the iv adminis-
KETOSIS OF FASTING

1285

loweration of glucose and insulin. Acetyl CoA was assayed spectrophotometrically utilizing citrate-condensing enzyme as described by Ochoa, Stern, and Schneider (23). Preparation of the samples for assay was carried out as described by Wieland and Weiss (4) except that rats were anesthetized with pentobarbital rather than ether since the latter anesthetic causes a prompt and sustained fall in blood ketone concentrations. As has been pointed out by Pearson (24) and Buckel and Eggerer (25), the coupled assay for acetyl CoA underestimates the concentration of this compound because of a shift in the equilibrium of the malate dehydrogenase reaction during the assay. The actual values obtained in these experiments have been corrected according to the formula of the latter authors (25). Ninety-five per cent of standard acetyl CoA added to the frozen liver powder was recovered in the perchloric acid extracts in control experiments. The recovery could be increased to about 99% by a additional perchloric acid wash of the precipitated protein. In view of the very small increased yield this wash was omitted in the experiments shown. Blood was obtained at the time the liver was removed for measurement of acetocetate by the method of Walker (26) modified according to Kalnitsky and Tapley (27).

In the experiments concerned with the oxidation of acetocetic acid-3-14C various tissues and organs were removed from the animals as indicated, and 100 mg of slices was incubated with 10 µmoles of sodium acetocetate containing 1 µC of radioactivity. The hemidiaphragm was not sliced but used intact. The rate of oxidation of ketone bodies was assayed by 14CO2 production from acetocetate-3-14C after a 48-hour fast and 10 minutes after the iv injection of 200 mg of glucose.

In vivo experiments

Fatty acid synthesis. For studies of in vivo fatty acid synthesis 10 µmoles of sodium acetate-2-14C containing 2 µC of radioactivity was injected intraperitoneally in 1 ml of isotonic saline. After 30 minutes the animals were killed and the livers perfused with 20 ml of ice-cold phosphate buffer, 0.1 M, pH 7.4. The tissue was then minced into a 5-ml vol of water to which was added 1 ml of 90% KOH. The livers were saponified and extracted for fatty acids as described above.

Fatty acid oxidation. Fatty acid oxidation was measured in the whole animal by collection and assay of expired CO2 for 14C content after the iv injection of palmitic acid-1-14C. Vena caval and arterial cannuus were placed as described in the next section, and the animal was positioned in a glass metabolic cage through which CO2-free air was drawn by vacuum. The expired air was collected in bubbling towers containing sodium hydroxide (28). Palmitate-1-14C was prepared by dissolving the sodium salt in isotonic saline containing 2.0% bovine serum albumin such that 1.0 ml contained 5 µmoles of palmitate and 50 µC of radioactivity. This solution was diluted 2:1 with plasma from rats fasted 48 hours (28). Six-tenths ml of the final clear solution was injected intravenously and 14CO2 collected for six 10-minute periods. The initial study in each rat was done after a 48-hour fast. When expired radioactivity had become negligible, 3 to 6 hours later, ketosis was reversed by the iv injection of 0.05 U of insulin and 0.1 ml of 50% glucose. The latter was included to avoid the possibility of hypoglycemia with insulin alone. Ten minutes later palmitate-1-14C was again injected, and 14CO2 was collected. Arterial blood ketone levels were measured at intervals throughout the experiment.

In a parallel set of experiments rats were injected with palmitic acid-1-14C exactly as above except that 14CO2 was not collected. Five minutes after the injection of isotope, blood was rapidly drawn from the vena cava for determination of the specific radioactivity of the plasma free fatty acids. Fatty acids were extracted and titrated as described previously (20, 21), and a portion of the extracted sample was counted for radioactivity.

Plasma nonesterified fatty acids in fasting and recovery. Rats were tube fed as described above and fasted for 48 hours. At the end of the 48-hour fast glucagon-free insulin was given intravenously in the doses indicated in the Figures. All animals not treated with insulin were given a control injection of saline to eliminate any differences due to the injection technique alone. The animals were anesthetized with pentobarbital given intraperitoneally 5 minutes before blood was drawn. Nonesterified fatty acids and acetocetate were measured in the same sample.

The isotopic steady state. Rats were anesthetized with pentobarbital, and no. 10 polyethylene catheters were placed in the femoral artery on one side and the inferior cava for deter-
TABLE I

Hepatic glycogen and fatty acid concentrations and blood glucose levels with the onset of fasting and during recovery*

<table>
<thead>
<tr>
<th>Determinations</th>
<th>Hours after onset of fasting</th>
<th>Hours after refeeding</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>Blood glucose</td>
<td>151 ± 18</td>
<td>107 ± 11</td>
</tr>
<tr>
<td>Liver glycogen</td>
<td>42.1 ± 7.5</td>
<td>6.8 ± 1.9</td>
</tr>
<tr>
<td>Liver fatty acids (total)</td>
<td>34.2 ± 2.2</td>
<td>31.6 ± 3.0</td>
</tr>
</tbody>
</table>

* Experimental details are given in the text. Results for glycogen and fatty acid are given as milligrams per 1,000 mg wet weight of liver and are tabulated as means and standard errors of the means for nine animals at each time interval. Blood glucose is given as milligrams per 100 ml whole blood.

1 or 2 ml of ethyl acetate, and absorbancy was measured at 450 μs in a Beckman DU spectrophotometer. The remaining portion of the sample was used for isolation and assay of the radioactive acetoacetate as described above. In some experiments acetoacetate and β-hydroxybutyrate concentrations were measured enzymatically by the method of Williamson, Mellanby, and Krebs (29). Acetoacetate levels were comparable when measured by the two methods, and specific activities of acetoacetate and β-hydroxybutyrate were identical in the steady state.

Assay of radioactivity

Samples to be assayed for radioactivity were prepared as follows: ¹⁴CO₂. The NaOH contained in the center well of the flasks was diluted 1:10 with water, and 1.0 ml was added to 15 ml of the solution described by Bray (30). Fatty acid-¹³C. The washed pentane extract containing the long chain fatty acids was evaporated to dryness under nitrogen and dissolved in 10 ml of toluene containing 400 mg of 2,5-diphenyloxazole and 5 mg of 1,4-di(2-(5-phenyloxazolyl)] benzene per 100 ml. Acetoacetate-¹⁴C. Two-tenths ml of the acid solution containing the solubilized Denigès salt was added to 3.8 ml of ethanol together with 16 ml of the toluene phosphor solution.

All samples were counted in a liquid scintillation spectrometer with and without internal standards added to each vial to correct for differential quenching in the separate solvent systems. The results were adjusted to the fatty acid solvent system where counting efficiency was approximately 50%.

Materials

All materials were obtained from commercial sources and were of the highest available grade. Purity of the ethyl acetoacetate-³⁻¹³C used for preparation of the sodium salt was determined by gas chromatography. A single symmetrical peak with the precise retention time of authentic ethyl acetoacetate was obtained. This peak contained all of the injected radioactivity. The ethyl ester

* Radioactive substrates were obtained from the New England Nuclear Corp., Boston, Mass. The (n,n⁻)-β-hydroxybutyric acid dehydrogenase was obtained from Boehringer and Sons through Calbiochem, Los Angeles, Calif.
RESULTS

Changes in the liver with the onset of fasting. Changes in blood sugar, liver glycogen, and total hepatic fatty acids in fasting and recovery are recorded in Table I. The blood sugar and glycogen concentrations decreased in the expected fashion with the onset of starvation. As has been previously noted, total fatty acids of the liver were unchanged by fasting (31, 32). This is in contrast to the situation in experimental diabetes where fat content of the liver does increase and appears to be correlated with the degree of ketosis (3).

With the onset of fasting after a high carbohydrate diet, profound changes occurred in the patterns of fatty acid and acetoacetate synthesis by rat liver slices. These changes are shown graphically in Figure 1. By 12 hours after the final tube feeding fatty acid synthesis had fallen almost tenfold from 111 μmole/g per hour to 16 μmole/g per hour. At the same time a fivefold rise of acetoacetate synthesis occurred, from 15 to 81 μmole/g per hour. Simultaneously blood ketones increased from 1.0 to 5.0 mg per 100 ml, continuing to rise to 9.0 mg per 100 ml at 48 hours. At 24 hours fatty acid synthesis had fallen almost to zero and remained at this level at 48 hours. In contrast to the striking changes in fatty acid and acetoacetate synthesis, fatty acid oxidation was unchanged during the first 24 hours, rising slightly but with no statistical significance at 48 hours.

It should be emphasized that the indicator of fatty acid oxidation in these experiments was 14CO2 production from palmitate-1-14C. Two factors could conceivably interfere with the adequacy of this procedure. First, since palmitate oxidation to CO2 requires breakdown of the long chain fatty acyl CoA to acetyl CoA and subsequent oxidation of acetyl CoA to CO2, a depression of the latter reaction might mask increased oxidation of palmitate to acetyl CoA. Second, the radioactive palmitate added to the slices might be diluted by an expanded hepatic fatty acid pool with the same effect. The data of Table II indicate that 14CO2 production from acetate-2-14C was not impaired by a 48-hour fast though acetoacetate production increased sevenfold. An essentially identical pattern was found in slices from the same liver when palmitate-1-14C was the substrate as would be expected from the fact that acetyl CoA is an obligatory intermediate in CO2 and acetoacetate production from long chain fatty acids. Since 14CO2 production from acetate was unimpaired, it is
clear that an increased oxidation of palmitate-114C to acetyl CoA would be reflected by an increased recovery of radioactivity in CO\textsubscript{2} as well as acetooacetate provided that isotope dilution in an expanded fatty acid pool had not occurred. When hepatic free fatty acid levels were measured, as shown in Table III, a definite increase was found at 24 hours that decreased to near fed levels at 48 hours. Correction of the 14CO\textsubscript{2} recoveries from palmitate listed in Table II by these data indicates a maximal increase of palmitate oxidation at 24 hours of about twofold and at 48 hours of 1.6-fold. The increase in fatty acid oxidation was thus considerably smaller than the tenfold changes occurring in acetooacetate and fatty acid synthesis in the same time interval.

On the basis of these experiments, it appeared that accelerated ketogenesis by the liver and a rise in blood ketones occurred without equivalent change in fatty acid oxidation by hepatic tissue. Since fatty acid synthesis fell concomitantly with the rise in acetooacetate production and to equivalent degree, the results were compatible with the viewpoint that decreased lipogenesis might initiate overproduction of ketones by the liver. Studies performed at earlier intervals after the onset of fasting were unsuccessful in differentiating these two effects.

Changes in the liver with recovery from fasting. In view of the fact that fatty acid synthesis and acetooacetate production varied simultaneously and in reciprocal fashion with the onset of fasting, even at the earliest time intervals, these pathways were next studied in the recovery from fasting in an attempt to see whether an increased synthesis of fatty acids could be demonstrated before a fall in acetooacetate synthesis. Such a sequence would be expected if decreased fatty acid synthesis did, in fact, initiate acetooacetate overproduction in the liver.

In the initial experiments, shown in Figure 1, fasting was terminated after 48 hours by administration of 5 ml of the high carbohydrate diet by stomach tube. Fatty acid synthesis, fatty acid oxidation, acetooacetate synthesis, and blood ketones were measured at 6 and 12 hours. At the 6-hour period blood ketones and acetooacetate synthesis had both returned to normal, and fatty acid synthesis had increased from barely detectable levels to 80 m\textmu moles per hour. By 12 hours lipogenesis had increased to above normal levels as is typical for refeeding after starvation (33). Fatty acid oxidation was not significantly changed. Thus reversal of ketosis was accompanied by reversal of the changes in fatty acid and acetooacetate synthesis in the liver, but again the two pathways appeared to change simultaneously.

To study this relationship further, experiments were next performed at earlier intervals during the recovery from fasting. As before, rats were fasted for 48 hours and then tube fed the high carbohydrate diet. Studies were carried out at 1, 2, and 3 hours after refeeding with the results shown in Figure 2. At 1 hour blood ketones fell from 9.5 to 2.7 mg per 100 ml, and acetooacetate synthesis decreased from 145 to 65 m\textmu moles per hour. Surprisingly, however, no increase in fatty acid synthesis occurred, even up to 3 hours. These findings indicate that changes in acetooacetate synthesis in the liver were not dependent upon changes in fatty acid synthesis.
Acetyl coenzyme A concentrations in the liver during fasting. Since both the theory of increased fatty acid oxidation and that of decreased fatty acid synthesis suggest that the stimulation of acetoacetate synthesis in the liver is the result of an expanded acetyl CoA pool, the hepatic concentration of acetyl CoA was measured during the onset of fasting and in reversal of the ketogenic state. If either theory were correct, a direct relationship should exist between acetyl CoA concentrations in the liver and blood acetoacetate levels; conversely, if ketosis, as suggested above, is not initiated by changes in fatty acid synthesis or oxidation, such a direct relationship would not be found. The results of studies to define this relationship are shown in Table IV. During the first 12 hours of fasting acetyl CoA levels approximately doubled in the liver and continued to increase slightly to 24 hours. At the 12-hour period acetoacetate concentrations in the blood also doubled and increased further by 24 hours. At 48 hours, however, acetyl CoA levels in the liver showed a sharp and unexpected fall, whereas blood acetoacetate continued to increase to about twice the concentrations found at 24 hours. More importantly, 15 minutes after the administration of glucose and insulin, when acetoacetate levels in the blood had fallen from 8.3 to 1.2 mg per 100 ml, acetyl CoA concentrations in the liver remained completely unchanged. The results indicate that the rate of acetoacetate synthesis in the liver cannot be related primarily to acetyl CoA concentration.

Time course of reversal of ketosis and the role of insulin. As noted above blood ketones were observed to return to near normal levels within 1 hour (Figure 2) after reversal of ketosis by tube feeding the high glucose diet and within 15 minutes (Table IV) after the administration of glucose and insulin intravenously. Studies were

<table>
<thead>
<tr>
<th>Determination</th>
<th>0</th>
<th>12 hours</th>
<th>24 hours</th>
<th>48 hours</th>
<th>15 minutes treated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetyl CoA, mumoles/g liver</td>
<td>34.4 ± 2.8</td>
<td>65.9 ± 4.0</td>
<td>70.5 ± 4.9</td>
<td>50.5 ± 3.2</td>
<td>47.1 ± 3.1</td>
</tr>
<tr>
<td>p</td>
<td><0.001</td>
<td>NS</td>
<td><0.005</td>
<td>NS</td>
<td><0.005</td>
</tr>
<tr>
<td>Acetoacetate, mg/100 ml</td>
<td>1.3 ± 0.3</td>
<td>2.9 ± 0.4</td>
<td>4.4 ± 0.7</td>
<td>8.3 ± 1.4</td>
<td>1.2 ± 0.4</td>
</tr>
<tr>
<td>p</td>
<td><0.025</td>
<td>NS</td>
<td><0.005</td>
<td><0.001</td>
<td></td>
</tr>
</tbody>
</table>

*Rats were anesthetized with pentobarbital and the livers were frozen in liquid nitrogen. The frozen livers were powdered in a mortar and pestle cooled in liquid nitrogen and homogenized with 6% perchloric acid. Acetyl CoA was measured in the protein-free supernatant. The reaction mixture, in a volume of 1 ml, contained 100 µmoles Tris-HCl buffer, pH 7.0, 2 µmoles NAD, 5 µmoles potassium malate, 25 µg of malic dehydrogenase, and the sample to be measured. After equilibrium of the malate-oxalacetate system had occurred, the reaction was started by the addition of 10 µg of citrate-condensing enzyme, and the increase in absorbancy at 340 nm was measured. In the recovery studies fasting was terminated by the iv injection of glucose and insulin, and determinations were made 15 minutes later. Blood was obtained for acetoacetate determination at the time of the removal of the livers. Results are recorded as means ± standard error of the means. p values are listed as not significant if greater than 0.05.

The acetyl CoA concentrations reported here are higher than those given by Wieland and Weiss (9), Tubbs and Garland (34), and Bortz and Lynen (35), who found 19.9, 17.2, and 16.1 mumoles, respectively, per g of wet tissue in fed animals. Their results were uncorrected for the underestimation of the coupled assay for acetyl CoA (24, 25). The uncorrected value in these experiments was 19.2 mumoles per g of wet tissue in the fed state.
change in the rate of synthesis was seen at 1 and 3 hours after refeeding.

The rate of oxidation of palmitic acid-1\(^{14}\)C to \(^{14}\)CO\(_2\) was measured in five animals before and after reversal of ketosis. The results were similar in all. A typical experiment is shown in Figure 4. In the fasted state 24\% of the injected radioactivity was recovered in \(^{14}\)CO\(_2\) in 60 minutes. Three hours later the animal was treated with insulin and glucose. Acetacacetate concentration in the blood immediately before reversal of ketosis was 11.6\%. Eight minutes after the administration of insulin and glucose, acetacacetate decreased to 4.6 mg per 100 ml in the expected fashion. At 10 minutes palmitate-1\(^{14}\)C was injected. The cumulative recovery curve of isotope in \(^{14}\)CO\(_2\) was almost superimposable on the pretreatment curve, and again 24\% of the injected radioactivity was collected in the 60-minute period. Acetacacetate concentration at the end of the experiment was 1.6 mg per 100 ml. Measured specific activity of unesterified fatty acids in the blood 5 minutes after the injection of the radioactive palmitate was 3,120 ± 64 cpm per \(\mu\)mole in four fasted animals and 2,520 ± 99 cpm per \(\mu\)mole in four animals treated with glucose and insulin.

The fact that insulin alone reversed the ketosis of fasting suggests that the response to glucose in the previous studies was mediated totally or in part through physiologic stimulation of insulin secretion by the pancreas.

Fatty acid synthesis and oxidation in vivo during recovery from fasting. The data of Figure 2 indicated that fatty acid synthesis and oxidation were unchanged for up to 3 hours after the reversal of fasting ketosis when measured in the liver slice in vitro. Although close parallel existed between in vitro acetacacetate synthesis and blood ketone levels and although the changes in fatty acid synthesis were those expected with fasting, it was possible that the time course of these changes might be different in vivo. A comparison of fatty acid synthesis in the intact animal in the fed and fasting state is shown in Table V. Forty-eight hours after initiation of the fast, fatty acid synthesis fell from 735 to 55 \(\mu\)mamoles per half hour, a decrease of 93\% from the rate in the fed animal. No
These experiments support the conclusions drawn from in vivo data and indicate that under circumstances where ketosis has been reversed in vivo no change occurs in fatty acid synthesis or oxidation.

Plasma nonesterified fatty acids in fasting and recovery. The relationship of ketosis to plasma nonesterified fatty acids was next studied. In the initial experiments, acetoacetate and nonesterified fatty acids were measured in inferior vena caval blood during the onset of fasting and 10 minutes after the iv injection of 0.05 U of insulin. The results are shown in Figure 5. By 12 hours free fatty acids had increased from 113 μEq per L to 421 μEq per L. From 12 to 48 hours a more gradual increase occurred, the peak level being 530 μEq per L. Acetoacetate concentrations rose only slightly during the first 12 hours but by 48 hours had increased about fivefold from a beginning level of 1.2 mg to a final concentration of 6.6 mg per 100 ml. Ten minutes after the injection of insulin both the ketoacid and nonesterified fatty acids had clearly decreased.

In an effort to dissociate the two phenomena, additional experiments were performed. As shown previously in Figure 3, it had been observed that the administration of insulin caused a rapid drop in the concentration of acetoacetate in the blood until hypoglycemia supervened, at which time a rebound in ketosis occurred. To exaggerate this response a group of fasted animals were given 0.5 U of insulin intravenously, a dose ten times greater than that used in the experiment of Figure 5. The results are shown in Figure 6. Five minutes after the injection of insulin the mean acetoacetate level in the blood decreased from 6.0 to 3.6 mg per 100 ml (p = < 0.005). Plasma nonesterified fatty acids also fell from 216 to 103 μEq per L (p = < 0.01). The mean blood sugar at this time was 64 mg per 100 ml. At 10 minutes acetoacetate rose sharply to 6.1 mg per 100 ml (p = < 0.05) as the blood sugar fell to 41 mg per 100 ml. In contrast, plasma nonesterified fatty acid continued to decrease, reaching a low of 53 μEq per L.

Additional evidence that the ketosis of fasting may be unrelated to an elevation of free fatty acids in the blood is provided by the data of Figure 7. In this experiment animals fasted for 48 hours.

Fig. 5. Nonesterified fatty acids and acetoacetate in the blood in fasting and recovery. Nonesterified fatty acids and acetoacetate were measured in inferior vena caval blood. After a 48-hour fast 0.05 U of glucagon-free insulin was given intravenously. Animals not injected with insulin received a control injection of saline. Each point represents the mean and standard error of the mean of the results obtained in six animals.

Fig. 6. Nonesterified fatty acids and acetoacetate in the blood with insulin treatment (0.5 U). Nonesterified fatty acids and acetoacetate were measured in blood obtained from the abdominal aorta. After a 48-hour fast 0.5 U of insulin was given intravenously. Each point represents the mean and standard error of the mean of the results obtained in eleven animals except for the fed controls, where six animals were used.
were treated with 0.01 U of insulin intravenously.

Under these circumstances no change occurred in
acetoacetate concentrations in the blood despite
the fact that nonesterified fatty acids decreased
promptly at 5 minutes and at 10 minutes were
near 0.

These experiments demonstrate that acetoac-
etate and nonesterified fatty acid concentrations in
the blood can be varied independently and support
the conclusion that ketogenesis need not be caus-
ally related to changes in long chain fatty acid mo-
bilization and oxidation.

Recovery from ketosis in the isotopic steady
state. The very rapid fall in blood ketones after
the administration of insulin or glucose raised the
question of the mechanism of this reversal. Was
it possible that cessation of hepatic overproduction
of ketones could occur within 5 minutes after
treatment, or did the reversal of the ketotic state
represent an increased peripheral oxidation of ke-
tone bodies? To answer this question, rats were
fasted for 48 hours and then infused with aceto-
acetate-3-14C until a constant specific activity of
blood acetoacetic acid had been obtained. Be-
cause of the rapid turnover of acetoacetate in the
intact rat, this could be accomplished without a
primer dose of acetoacetate-3-14C. When the iso-
topic steady state was reached, the animal was
treated with glucose or insulin intravenously
through the tail vein catheter. Since the specific
activity of the blood acetoacetate under these cir-
cumstances is the equilibrium product of nonradio-
active ketones synthesized by the liver and the
radioactive material being infused, it is clear that
cessation of hepatic synthesis would result in a
rise in specific activity of the blood, whereas an in-
creased peripheral utilization would cause no change.
A typical example of such an experiment is shown in
Figure 8 where it can be seen that the injection of insulin was followed by a prompt fall
in arterial blood acetoacetate concentration and
that concomitant with this fall a sharp rise oc-
curred in its specific activity. Identical results
were obtained when glucose was given alone.

Thus recovery from fasting ketosis is accom-
panied by a marked diminution of acetoacetate production
by the liver.

Acetoacetate oxidation by various tissues before
and after treatment with glucose. Although the in
vivo experiments reported above suggested that
decreased hepatic synthesis was the major mecha-

*An analysis of the kinetics of acetoacetate metabolism will be presented in a separate report.
KETOSIS OF FASTING

TABLE VI
Oxidation of acetoacetate-3-14C by various tissues of the fasted rat before and after glucose administration*

<table>
<thead>
<tr>
<th>Tissue</th>
<th>Untreated</th>
<th>Treated</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diaphragm</td>
<td>4.0 ± 0.70</td>
<td>4.1 ± 0.79</td>
<td>NS</td>
</tr>
<tr>
<td>Skeletal muscle</td>
<td>1.1 ± 0.14</td>
<td>1.4 ± 0.19</td>
<td>NS</td>
</tr>
<tr>
<td>Kidney</td>
<td>2.5 ± 0.08</td>
<td>2.4 ± 0.01</td>
<td>NS</td>
</tr>
<tr>
<td>Adipose tissue</td>
<td>0.28 ± 0.05</td>
<td>0.28 ± 0.07</td>
<td>NS</td>
</tr>
<tr>
<td>Heart</td>
<td>5.6 ± 0.44</td>
<td>5.8 ± 0.85</td>
<td>NS</td>
</tr>
<tr>
<td>Blood ketones, mg/100 ml</td>
<td>8.9 ± 1.1</td>
<td>3.6 ± 1.0</td>
<td><0.01</td>
</tr>
</tbody>
</table>

* Rats were fasted for 48 hours and the various tissues removed as indicated. One hundred mg of slices was incubated with 10 μmoles of sodium acetoacetate-3-14C (1 μc) for 30 minutes at 37° C in 3 ml of Krebs bicarbonate buffer except that the diaphragms were not sliced and used intact as the hemidiaphragm. 14CO\textsubscript{2} was collected in 1 N NaOH as described in the text, evaporated in a drying oven to remove any traces of acetate, and dissolved in the counting solution. The treated animals were given 0.4 ml 50% glucose intravenously at the end of 48 hours and killed 10 minutes later. Results are tabulated as micromoles acetoacetate converted to CO\textsubscript{2} per 100 mg tissue in 30 minutes and are the means ± standard errors of the means in duplicate experiments from six animals.

nism whereby glucose and insulin reversed ketosis, it had been previously reported by Beatty, Peterson, Boek, and West (36) that insulin added to skeletal muscle in vitro increased the oxidation of acetoacetate to CO\textsubscript{2}. Because of this report and the fact that a small increase in peripheral oxidation of ketones would have been missed in the studies on reversal of ketosis in the isotopic steady state, acetoacetate oxidation to CO\textsubscript{2} was measured in skeletal muscle and several other organs from ketogenic animals before and 10 minutes after treatment with glucose as shown in Table VI. All tissues studied actively produced radioactive CO\textsubscript{2} from acetoacetate-3-14C. There was, however, no change in the rate of oxidation in any tissue after treatment with glucose despite the fact that blood acetoacetate fell as expected from 8.9 to 3.6 mg per 100 ml at the 10-minute period.

Discussion

The present studies were undertaken to describe the events occurring in the liver of the rat during the development of ketosis in fasting and to attempt to differentiate at the cellular level and in vivo the sequential changes in fatty acid oxidation, fatty acid synthesis, and acetoacetate synthesis that occur with starvation and its reversal. These parameters were chosen for study since, as indicated previously, most theories of ketosis emphasize the role of either increased fatty acid oxidation or decreased fatty acid synthesis as initiating factors in the overproduction of ketone bodies by the liver (1, 37). In either case it has been assumed that accelerated acetoacetate synthesis in ketosis is a secondary phenomenon, the result of increased concentrations of acetyl coenzyme A in the liver cell (8, 9).

The first point of note in the present experiments is that acetoacetate synthesis increased seven to ten times in liver slices with the onset of fasting, whereas palmitate-1-14C oxidation to 14CO\textsubscript{2} was only minimally increased, even when corrected for changes in the hepatic free fatty acid pool. In this respect liver appears to conform to the pattern found in rat heart by Opie, Evans, and Shipp (38) and rat skeletal muscle by Fritz and Kaplan (39) where palmitate oxidation was not increased by a 48-hour fast.

In contrast, fatty acid synthesis in vitro was markedly depressed by fasting and to a degree compatible with the increased acetoacetate synthesis found in the slice. Since changes in the two processes could not be separated in studies of the onset of starvation at intervals shorter than 12 hours and since after refeeding, both fatty acid synthesis and acetoacetate synthesis had returned to normal by 6 hours, the possibility that a fall in fatty acid synthesis initiated ketosis, as suggested by Siperstein (11), seemed very attractive. However, when attempts were made to confirm this by studies at earlier time intervals after refeeding or the administration of glucose, it became clear that ketone levels in the blood and acetoacetate synthesis in the liver both decreased before any change in hepatic lipogenesis.

On the basis of the in vitro studies it was considered unlikely that increased acetoacetate synthesis in starvation was initiated by changes in fatty
acid oxidation or fatty acid synthesis, though alterations in these pathways, particularly the latter, did occur with fasting. Strong confirmation of this conclusion was obtained by studies in the intact animal. The oxidation of albumin-bound palmitate-1-14C to 14CO2 was unchanged 10 minutes after the injection of glucose and insulin at a time when blood acetoacetate concentration had dropped to less than 50% of the original fasting level. Although some caution must be exercised in the interpretation of these results because of lack of knowledge of the specific activity of the tissue fatty acid pools, the fact that the measured specific activity of the unesterified fatty acids in the blood of fasted and treated animals was essentially the same and the observation that the liver free fatty acid pool was unchanged with treatment (Table III) suggest that the results may accurately reflect absolute rates of fatty acid oxidation.

Fatty acid synthesis in vivo likewise was unchanged on reversal of ketosis. Significant increases in lipogenesis did not occur until at least 3 hours after refeeding. This is in contrast to studies by Fain, Scow, Urgoiti, and Chernick (41) in the pancreatectomized diabetic rat in vivo where fatty acid synthesis increased in 30 minutes after the injection of 12 U of insulin. The reason for the difference in time required for restoration of lipogenesis in fasting and diabetes is not known.

The results of both in vitro and in vivo studies thus indicated that ketosis could be interrupted without changes in either fatty acid oxidation or synthesis. If, as seems likely, recovery from ketosis represents a reversal of the processes initiating ketosis, then the overproduction of acetoacetate by the liver cannot be considered to be the secondary consequence of alterations in these lipid pathways.

It should be noted that the increased fatty acid oxidation theory of ketosis requires two phases: increased mobilization of free fatty acids from peripheral fat stores and increased oxidation of these fatty acids in the liver. To study the mobilization phase, nonesterified fatty acids and acetoacetate concentrations in the blood were compared during the onset of fasting and in recovery from the fasted state. These experiments indicated that both components increased with starvation, nonesterified fatty acids showing the greater percentage rise at 12 hours. On retreatment with 0.05 U of insulin, both acetoacetate and free fatty acid levels decreased at 10 minutes in near parallel fashion. When the insulin dose was increased to 0.5 U, a different pattern was observed. At 5 minutes acetoacetate fell sharply as expected and was accompanied by a fall in nonesterified fatty acids. At 10 minutes, however, a definite dissociation occurred. Acetoacetate concentration increased in the characteristic rebound phenomenon of hypoglycemia, whereas plasma nonesterified fatty acids continued to decline. When the dose of insulin was decreased to 0.01 U, blood acetoacetate levels did not fall despite a marked decrease in free fatty acids over the 10-minute period. If ketosis were dependent on mobilization of fatty acids from the periphery, a depression of free fatty acid concentrations in the blood would have to be accompanied by a decrease in acetoacetate levels during this period in view of the repeated observation that ketones fall by 5 minutes with adequate insulin. It thus appears, in confirmation of the fatty acid oxidation data, that no necessary relationship exists between nonesterified fatty acids in the blood and starvation ketosis.

As discussed previously, current theories that invoke either increased fatty acid oxidation or decreased fatty acid synthesis as initiating steps in the development of ketosis consider the increased acetoacetate synthesis of starvation to be the result of an expanded hepatic acetyl CoA pool. Sequential measurements of acetyl CoA indicated that concentrations of this compound increased at 24 hours to levels about double those of the fed state, a result compatible with a controlling role for acetyl CoA in acetoacetate synthesis. On the other hand, at 48 hours the acetyl CoA concentration decreased, whereas acetoacetate concentrations in the blood increased still further. The critical point, however, is that the administration of glucose and insulin to animals fasted for 48 hours caused a rapid fall of acetoacetate in the blood without decrease in the concentration of acetyl CoA in the liver. This course makes unlikely the thesis that accelerated ketogenesis in the liver is primarily related to an expanded acetyl CoA pool.
It is of interest that the concentrations of both free fatty acids and acetyl CoA increased in the liver at 24 hours and decreased at 48 hours. Since nonesterified fatty acids in the blood continued to rise throughout the 48-hour fast, it seems likely that the major source of fatty acid contributing to the acetyl CoA pool in the liver is hepatic rather than peripheral triglyceride.

In regard to the metabolism of acetyl CoA, the present studies showed no impairment of acetate-2-14C oxidation to 14CO2 during 48 hours of starvation. This observation in the intact cell, together with the recent demonstration that citrate synthase activity measured directly in liver extracts is unchanged or slightly increased in fasting (43), lends no support to the concept (6, 7, 9) that palmityl CoA–induced inhibition of the latter enzyme plays a significant role in starvation ketosis.

The rapidity with which ketosis was reversible by the administration of insulin or glucose was surprising. Amatruda and Engel (44) had previously shown that insulin reversed the ketosis of fasting in 1 hour, and Fain and associates (41) reported that blood ketones in the diabetic rat decreased 30 minutes after the injection of insulin. In the studies reported here, however, acetoacetate levels began to decline within 5 minutes after treatment with insulin or glucose. Moreover, the results of experiments in the isotopic steady state clearly showed this decrease to be due to an abrupt cessation of ketone body production by the liver.

The fact that changes in acetoacetate synthesis can be dissociated from changes in fatty acid mobilization from the periphery, fatty acid oxidation, fatty acid synthesis, and acetyl CoA concentration in the liver by kinetic studies raises the possibility that the increased acetoacetate production accompanying starvation is a primary rather than a secondary event. That is, it seems possible that starvation produces an activation of acetoacetate-synthesizing enzymes independent of changes in lipid metabolism leading to alteration in acetyl CoA production or utilization. This would not, of course, imply that increased fatty acid oxidation and decreased fatty acid synthesis do not play a role in assuring substrate for acetoacetate synthesis in ketosis, only that such changes do not initiate the ketogenic state.

The mechanism by which a primary stimulation of acetoacetate synthesis might be accomplished is unknown. The observation that the injection of insulin alone reverses the ketosis of fasting within minutes by causing cessation of ketone synthesis in the liver suggests the possibility that the control of acetoacetate synthesis may be mediated by insulin itself. The corollary of this possibility would be that the ketosis of fasting may represent a primary activation of acetoacetate-synthesizing enzymes as a result of starvation-induced depression of insulin secretion by the pancreas.

Acknowledgments

The author wishes to express his appreciation to Dr. M. D. Siperstein for many helpful discussions in the course of this work. The expert technical assistance of Miss M. Joanne Guest is gratefully acknowledged.

References

