STUDIES ON THE MECHANISM OF ETHANOL-INDUCED HYPOGLYCEMIA*

By JAMES B. FIELD, HIBBARD E. WILLIAMS, AND GLENN E. MORTIMORE
WITH THE TECHNICAL ASSISTANCE OF ESTHER KENDIG AND
ELMORE KING

(From the Clinical Endocrinology Branch, National Institute of Arthritis and Metabolic Diseases, Bethesda, Md.)

(Submitted for publication June 27, 1962; accepted December 12, 1962)

Hypoglycemia after ingestion of ethanolic beverages has been reported (1-4). In some cases (1, 2), hypoglycemia was attributed to the non-ethanol ingredients in such mixtures as “smoke” and “solox” (methyl alcohol, and gasoline and ethyl acetate). Cummins, however, suggested that hypoglycemia might be caused by ethanol itself (3). He described a 6-year-old boy who had convulsions and hypoglycemia after ingestion of gin. Neame and Joubert also ascribed hypoglycemia observed in their patients to ethanol rather than other ingredients (4). They also emphasized the inadequate dietary intake before the ethanolic ingestion and the development of hypoglycemia.

Recently, we studied a chronic alcoholic patient who had several documented episodes of hypoglycemia and minimal evidence of abnormal liver function. Our findings indicated that his hypoglycemia was probably induced by ethanol consumption in combination with a poor dietary intake. Studies were also performed with normal control subjects which indicated that ethanol ingestion after a 2-day fast caused hypoglycemia. During ethanol-induced hypoglycemia, conversion of fructose to glucose was normal, but glycogen synthesis appeared to be inhibited, from the failure of an adequate hyperglycemic response to glucagon. Animal studies suggested that ethanol caused hypoglycemia by interfering with gluconeogenesis as well as glycogen synthesis. Recent studies reported in abstract form have also proposed that the mechanism of ethanol-induced hypoglycemia might be an interference in gluconeogenesis (5).

* Presented in part at the joint meeting of the American Society for Clinical Investigation and the American Federation for Clinical Research, Atlantic City, N. J., April 29, 1962.

MATERIALS AND METHODS

The patient C.P. was a white, 52-year-old, male plumber. He had a long history of ethanol ingestion averaging approximately one pint of whiskey daily. His dietary habits were variable and he would frequently miss one or two meals a day. His first episode of hypoglycemia came 10 years ago when he suddenly felt dizzy and collapsed after a 24-hour fast. He denied any ethanolic intake just before this episode. He was treated with iv glucose and made a prompt recovery. His next attack came 6 years later under similar circumstances; blood sugar was 28 mg per 100 ml, and he responded rapidly to 25 g iv glucose. One year later, another episode of hypoglycemia with a blood glucose of 28 mg per 100 ml was documented; a 6-hour glucose tolerance test was normal, and a 3-day fast did not cause hypoglycemia. Two years before admission, he was seen at home by his physician for another, similar, but somewhat milder, attack. He gave a history then of heavy alcoholic consumption for the 2 preceding days and no food intake for the 24 hours just before the attack. He was treated with glucose and responded promptly. The recurrence of a similar episode with a blood glucose of 25 mg per 100 ml led to the patient’s hospitalization at the Clinical Center of the National Institutes of Health. Physical examination was unremarkable, except for severe, symmetrical, subcutaneous lipomatosis limited to the upper half of the body and bilateral, sensory, peripheral neuropathy of the legs. Hemoglobin was 12 g per 100 ml and the leukocyte count was 3,400 cells per mm³. There were 55% polymorphonuclear cells, 37% lymphocytes, 5% eosinophils, and 3% monocytes. Urinalysis was normal; total protein was 6 g per 100 ml, with 27 g of albumin, and bromsulphathalein excretion was 4% in 45 minutes. Serum glutamic-oxaloacetic transaminase was 18 U and alkaline phosphatase was 7.0 King-Armstrong U. Thymol turbidity was 1+, whereas the cephalin flocculation test was negative. Serum bilirubin was 0.7 mg per 100 ml total and cholesterol was 136 mg per 100 ml. Urinary excretion of 17-hydroxycorticosteroids and 17-ketosteroids was 2.6 and 8.0 mg per 24 hours, respectively. Fasting blood glucose varied between 80 and 102 mg per 100 ml. A 6-hour oral glucose tolerance test gave the following results, in milligrams per 100 ml: fasting, 89; ½ hour, 123; 1 hour, 126; 2 hours, 97; 3 hours, 77; 4 hours, 66; 5 hours, 91; and 6 hours, 89.
Results of the oral administration of \(l \)-leucine (150 mg per kg) were as follows, in milligrams per 100 ml: fasting blood glucose, 89; 20 minutes, 84; 40 minutes, 79; 60 minutes, 86; 80 minutes, 79; 100 minutes, 84; and 120 minutes, 80. Blood glucose response to 1 g iv tolbutamide (6) was normal and gave the following results, in milligrams per 100 ml: fasting, 80; 30 minutes, 62; 60 minutes, 45; 90 minutes, 63; 120 minutes, 68; 150 minutes, 76; and 180 minutes, 82.

Normal control subjects ranged in age from 18 to 25 and had no evident abnormalities of carbohydrate metabolism.

Absolute or 95% ethanol diluted to a final concentration of 10% with water was given orally after variable periods of fasting. Mild euphoria and drowsiness almost always followed ethanol ingestion. In some studies, 50 g iv fructose was given during 2 minutes 2 hours after ethanol. One mg im glucagon was administered 2 or 3 hours after ethanol.

Male rabbits weighing approximately 2 kg were given 6 ml ethanol per kg body weight diluted with 2 vol of water, or water alone by stomach tube after a 2-day fast. It has been reported that this amount of alcohol produces hypoglycemia in rabbits whose liver glycogen has been depleted by infusions of emulsified lecithin (7). Samples for blood sugar were obtained before administra-

tion of ethanol or water and 1 hour later, since preliminary experiments indicated that then the effect on blood sugar was maximal. After the second blood sugar, the animals were killed by a blow on the head, and the liver was quickly removed. Portions were immediately homogenized in 5% trichloroacetic acid for determination of glycogen, which was precipitated by the addition of 2 vol absolute ethanol. Slices weighing between 100 and 200 mg were prepared with a Stadie-Riggs microtome from the remainder of the liver and incubated in the high potassium buffer of Buchanan, Hastings, and Nesbitt (8) for 90 minutes at 37° C in a Dubnoff metabolic shaker. Glucose concentration was 360 mg per 100 ml and the medium contained 0.25 \(\mu \)c (250,000 cpm) of glucose-\(1^{-14} \)C. The gas phase was 95% \(\mathrm{O}_2 \) and 5% \(\mathrm{CO}_2 \). When liver slices were incubated with pyruvate-\(2^{-14} \)C (0.25 \(\mu \)c and 0.4 mg per 100 ml), no glucose was added to the buffer, and incubation lasted 30 minutes. At the end of incubation, concentration of glycogen and incorporation of radioactivity into the glycogen was determined. In order to correct for possible radioactive contamination of glycogen by the large amount of radioactive substrate added to the incubation flasks, some slices were incubated only momentarily and then homogenized in 5% trichloroacetic acid. Glycogen was precipitated by addition of ethanol and redissolved in water. Radioactivity present in the glycogen in these flasks was considered to be due to trapped substrate and was subtracted from the radioactivity present in glycogen at the end of incubation. This blank radioactivity was less than 5% of that present in glycogen at the end of incubation. To 0.2 ml of the aqueous glycogen solution was added 3.8 ml of hyamine and 10 ml of 0.4% diphenyloxazole in toluene as the phosphor for liquid scintillation counting. Results are expressed as counts per minute in glycogen per 100 mg of liver slice per total incubation period. Oxidation of pyruvate-\(2^{-14} \)C and glucose-\(1^{-14} \)C was measured as described previously (9).

Six pairs of isolated livers were perfused as previously described (10). Male rats of the Osborne-Mendel strain weighing between 140 and 150 g were fasted for 18 hours before the experiment. Two perfusions were run simultaneously; one served as a control and ethanol was added to the other at an initial concentration of 0.41%. The ethanol-perfused liver appeared somewhat darker than the control, but there was no obvious difference in its ability to extract oxygen from the perfusing solution. The total amount of perfusing solution was 40 ml. Conversion of fructose to glucose and glycogen was assayed by adding 250 mg of fructose to the perfusing medium 30 minutes after the onset of perfusion. In these experiments, glycogen content of the liver was determined at the end of a 90-minute perfusion. Concentrations of glucose, urea, and amino acids in the perfusing solution were measured at appropriate times in 0.2-ml samples.

Blood glucose was determined with glucose oxidase.\(^1\)

\(^1\) Glucostat, Worthington Biochemical Corp., Freehold, N. J.
STUDIES ON THE MECHANISM OF ETHANOL-INDED HYPOGLYCEMIA

499

TABLE I

Influence of duration of fast on blood glucose response to ethanol and glucagon

<table>
<thead>
<tr>
<th>Subject</th>
<th>Duration of fast</th>
<th>Ethanol ingestion†</th>
<th>Blood glucose (in milligrams per 100 ml) minutes after fast*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>hours</td>
<td>Yes</td>
<td>60</td>
</tr>
<tr>
<td>P.D.</td>
<td>13</td>
<td>Yes</td>
<td>71</td>
</tr>
<tr>
<td>F.F.</td>
<td>13</td>
<td>Yes</td>
<td>79</td>
</tr>
<tr>
<td>G.S.</td>
<td>13</td>
<td>Yes</td>
<td>78</td>
</tr>
<tr>
<td>C.P.</td>
<td>13</td>
<td>Yes</td>
<td>90</td>
</tr>
<tr>
<td>P.D.</td>
<td>44</td>
<td>Yes</td>
<td>62</td>
</tr>
<tr>
<td>P.D.</td>
<td>44</td>
<td>No</td>
<td>65</td>
</tr>
<tr>
<td>C.B.</td>
<td>44</td>
<td>Yes</td>
<td>59</td>
</tr>
<tr>
<td>C.B.</td>
<td>44</td>
<td>No</td>
<td>59</td>
</tr>
<tr>
<td>G.S.</td>
<td>44</td>
<td>Yes</td>
<td>65</td>
</tr>
<tr>
<td>G.S.</td>
<td>44</td>
<td>No</td>
<td>61</td>
</tr>
<tr>
<td>F.F.</td>
<td>44</td>
<td>Yes</td>
<td>58</td>
</tr>
<tr>
<td>F.F.</td>
<td>44</td>
<td>No</td>
<td>65</td>
</tr>
<tr>
<td>M.G.</td>
<td>44</td>
<td>Yes</td>
<td>56</td>
</tr>
<tr>
<td>M.G.</td>
<td>44</td>
<td>No</td>
<td>57</td>
</tr>
</tbody>
</table>

* During this 5½-hour period, the subjects continued in the fasting state except for ingestion of ethanol in the appropriate experiments.
† When ethanol was administered, it was given after the 120-minute sample for blood glucose was obtained.
‡ One mg glucagon im was administered after this sample was obtained. See legend for Figures 2 and 3.

Total blood sugars were measured by the method of Somogyi-Nelson (11), and blood fructose was calculated by subtracting the value of glucose obtained with glucose oxidase from the values obtained by copper reduction. Plasma FFA were estimated according to the procedure of Dole (12). Serum urea nitrogen was determined by a commercially designed urease-phenate-hypochlorite method. Amino acid levels were measured in serum protein-free filtrates by the method of Rosen (13). Glycogen was determined by the method of Carroll, Longley, and Roe (14).

RESULTS

The data in Figure 1 indicate that oral ingestion of 40 ml of ethanol by the patient C.P. after 68 hours of fasting produced hypoglycemia. Administration of 1 ml of glucagon 3 hours later did not increase blood sugar during the next 30 minutes. The patient did not exercise during this experiment. In contrast, fasting for 71 hours with exercise but without ethanol did not cause hypoglycemia, and 1 ml glucagon caused a prompt rise in blood glucose. Hypoglycemia induced by ethanol was not limited to the patient, but was elicited in all of five normal subjects after 44 hours of fasting (Table I). A representative experiment is presented in Figure 2. Hypoglycemia resulted from the ingestion of 35 ml of ethanol and only a small rise in blood glucose was seen after glucagon. Fasting for 48 hours without ethanol did not cause hypoglycemia, and there was a somewhat greater increase in blood glucose after glucagon. Three subjects as well as patient C.P. did

![Graph](https://example.com/graph.png)

FIG. 2. EFFECT OF 48-HOUR FAST AND ETHANOL ON BLOOD GLUCOSE IN NORMAL SUBJECT. After a 44-hour fast, the subject was given 35 ml of ethanol diluted with water or water alone and blood glucose was determined hourly thereafter. One mg glucagon was given 3 hours after ethanol or water, and blood glucose was measured 30 minutes later.
not develop hypoglycemia when 35 to 50 ml of ethanol was administered after an overnight fast, and there was no inhibition of the hyperglycemic response to 1 mg im glucagon (Table I). A representative experiment is shown in Figure 3. These studies indicate that the failure of glucagon to raise blood sugar during ethanol-induced hypoglycemia is not due to an inhibition of glucagon action on liver glycogen, but would be consistent with marked depletion of liver glycogen at the time of hypoglycemia. Ethanol after a 24-hour fast did not produce hypoglycemia, whereas it always did so after a 44-hour fast.

In one subject, plasma FFA were also measured with blood glucose after ethanol and a 44-hour fast (Figure 4). During ethanol-induced hypoglycemia, there was a progressive rise in plasma FFA, suggesting that the hypoglycemia was not primarily insulin-mediated (12). Similar conclusions were proposed by Freinkel, Singer, Siebert, and Anderson on the basis of insulin assay and the absence of any increase in peripheral glucose utilization during ethanol-induced hypoglycemia (5). When a similar degree of hypoglycemia was produced with 10 U of regular insulin given subcutaneously, an initial fall in plasma FFA was observed that corresponded to the nadir of blood glucose. As blood glucose returned to normal, there was a secondary rise in FFA. Fasting for 48 hours alone was not associated with hypoglycemia, nor with a progressive change in plasma FFA during the last 5 hours of the fast.

The effect of ethanol on conversion of fructose to glucose and glycogen was studied in four control subjects and the patient C.P. with identical results (Table II). The data from one of these studies is presented in Figure 5. Administration of fructose during ethanol-induced hypoglycemia caused an increase in blood glucose greater than that produced by the same amount of fructose without antecedent ethanol. Thus, conversion of fructose to glucose was not inhibited by ethanol. The synthesis of glycogen from fructose, however, appeared to be decreased by ethanol, since there was only a small further rise in blood glucose after glucagon in the ethanol experiments as compared with the control experiments. Prior administration of ethanol did not appear to influence the rate of disappearance of fructose from the blood (Table III). Similar inhibition by ethanol of glycogen synthesis from fructose was also demon-
glucose was demonstrated in two sets of perfusion studies of isolated rat liver (Table IV). During the first 30 minutes of the perfusion, there was an increase in glucose concentration of the perfusion medium representing both glycogen breakdown and gluconeogenesis. After addition of fructose to the perfusate, increases in glucose concentration in the media were noted in both control and ethanol-perfused livers. In the presence of the higher concentration of ethanol in the perfusion (1.6%), conversion of fructose to glucose was not so rapid as in the control liver. The similarity, however, of these increases when the initial ethanol concentration was 0.41% indicated that conversion of fructose to glucose was not inhibited by this amount of ethanol. When glycogen content of the livers was measured at the end of perfusions, considerably less glycogen was present in ethanol-perfused livers than in the controls.

TABLE III

Failure of ethanol to influence rate of fructose disappearance*

<table>
<thead>
<tr>
<th>Subject</th>
<th>Ethanol ingestion</th>
<th>20 minutes</th>
<th>40 minutes</th>
<th>60 minutes</th>
</tr>
</thead>
<tbody>
<tr>
<td>M.G.</td>
<td>No</td>
<td>135</td>
<td>52</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>143</td>
<td>59</td>
<td>25</td>
</tr>
<tr>
<td>C.B.</td>
<td>No</td>
<td>108</td>
<td>37</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>134</td>
<td>60</td>
<td>29</td>
</tr>
<tr>
<td>G.S.</td>
<td>No</td>
<td>76</td>
<td>26</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>115</td>
<td>46</td>
<td>18</td>
</tr>
<tr>
<td>F.F.</td>
<td>No</td>
<td>90</td>
<td>37</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>84</td>
<td>25</td>
<td>11</td>
</tr>
<tr>
<td>C.P.</td>
<td>No</td>
<td>105</td>
<td>51</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>92</td>
<td>39</td>
<td>20</td>
</tr>
</tbody>
</table>

* Fifty g iv fructose was administered during 2 minutes, and blood samples were obtained at 20-minute intervals for the next 60 minutes. Fructose was determined as the difference between the total reducing substances measured by Somogyi-Nelson method (11), and the blood glucose values were obtained with glucose oxidase.

Fig. 5. Effect of ethanol on conversion of fructose to glucose and glycogen. After a 44-hour fast, the subject was given 40 ml of ethanol diluted with water or water alone, and blood sugar was measured for the next 31 hours. Two hours after ethanol or water, 50 g iv fructose was administered and 1 hour later, 1 mg im glucagon.
Further confirmation of ethanol-induced inhibition of glycogen synthesis was obtained from studies with rabbits treated with ethanol (Table V). During the 1 hour after ethanol administration, blood glucose decreased, whereas it increased in the rabbits given water. The difference in response of these two groups is statistically significant. The rise in blood glucose probably reflects epinephrine discharge concomitant with intubation of unanesthetized, restrained animals. One hour after administration of either ethanol or water, the animals were killed and liver glycogen content was determined. There was significantly less glycogen in the livers of the rabbits treated with ethanol than in the controls (Table V). These changes in liver glycogen are consistent with those reported earlier by Forbes and Duncan (15). Since there was an actual decline in blood glucose of ethanol-treated rabbits, it is difficult to attribute the decrease in liver glycogen to augmented glycogenolysis. Liver slices from ethanol-treated rabbits incorporated considerably less radioactive glucose-1-C14 into glycogen during a 90-minute incubation than did those from control rabbits. The actual glycogen content of the slices changed very little during incubation (Table V). Liver slices from rabbits given ethanol also oxidized less than 50\% as much glucose-1-C14 as did slices from control animals (Table VI). When pyruvate-2-C14 was the substrate, oxidation to C14O\textsubscript{2} was less than 25\% of control values, and incorporation of label from pyruvate into glycogen was about 50\% of that in slices from control rabbits.

In addition to its inhibition of glycogen synthesis, ethanol also interfered with gluconeogenesis as measured by urea production by isolated rat liver in four sets of experiments (Table VII). Data from a representative experiment is given in Figure 6. In the ethanol-perfused liver, glucose production was decreased approximately 50\%, as was urea production. Amino acid production by both control and ethanol-perfused livers was approximately the same, suggesting that the block in gluconeogenesis is probably in the deamination of amino acids rather than the breakdown of protein.

Table IV

Effect of ethanol on the conversion of fructose to glucose and glycogen by the isolated perfused liver

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Ethanol added to perfusion</th>
<th>Glucose concentration (in milligrams per 100 ml)</th>
<th>Glycogen content at end of perfusion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>1</td>
<td>No</td>
<td>39</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>32</td>
<td>56</td>
</tr>
<tr>
<td>2</td>
<td>No</td>
<td>68</td>
<td>117</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>69</td>
<td>100</td>
</tr>
</tbody>
</table>

* In experiment 1, ethanol at an initial concentration of 1.6\% was added to the perfusing medium of one liver at zero time. In experiment 2, initial ethanol concentration was 0.44\%. After 30 minutes of perfusion, 250 mg of fructose was added to the perfusion medium of the livers. At the end of perfusion, glycogen content of the liver was measured.

Table V

Effect of ethanol in vivo on blood glucose and in vitro glycogen synthesis

<table>
<thead>
<tr>
<th>Treatment</th>
<th>No. of rabbits</th>
<th>Blood sugar change in 1 hour</th>
<th>Liver glycogen</th>
<th>Radioactivity incorporated into glycogen from glucose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>mg/100 ml</td>
<td>Before incubation</td>
<td>After incubation</td>
</tr>
<tr>
<td>Water</td>
<td>5</td>
<td>+25 ± 6†</td>
<td>11.9 ± 1.7†</td>
<td>10.4 ± 0.3†</td>
</tr>
<tr>
<td>Ethanol</td>
<td>5</td>
<td>-9 ± 5</td>
<td>4.4 ± 0.3</td>
<td>3.5 ± 1.1</td>
</tr>
</tbody>
</table>

*Rabbits were tube-fed either ethanol or water, and change in blood sugar over the next 60 minutes was measured. The animals were then sacrificed, and glycogen content of the liver was determined. Liver slices were then incubated for 90 minutes and the amount of glycogen and incorporation of radioactive glucose-1-C14 into glycogen ascertained. Glucose concentration was 360 mg per 100 ml.

† Standard error of the mean.
STUDIES ON THE MECHANISM OF ETHANOL-INDUCED HYPOGLYCEMIA

• Effect of ethanol on glucose-1-C14 and pyruvate-2-C14 oxidation to C14O2 by rabbit liver slices

<table>
<thead>
<tr>
<th>Treatment</th>
<th>No. of rabbits</th>
<th>C14O2 derived from Glucose-1-C14</th>
<th>Pyruvate-2-C14</th>
<th>Radioactivity incorporated into glycogen from pyruvate</th>
<th>cpm/g</th>
<th>cpm/g</th>
<th>cpm/100 mg liver</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>2</td>
<td>15,250</td>
<td>122,400</td>
<td></td>
<td>3,655</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>13,265</td>
<td>113,975</td>
<td></td>
<td>2,110</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethanol</td>
<td>2</td>
<td>5,105</td>
<td>23,910</td>
<td></td>
<td>1,495</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6,370</td>
<td>24,475</td>
<td></td>
<td>1,083</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Rabbits were tube-fed either ethanol or water 1 hour before sacrifice. Liver slices were incubated in a glucose concentration of 360 mg per 100 ml and 250,000 cpm glucose-1-C14, or in a pyruvate concentration of 0.4 mg per 100 ml and 250,000 cpm pyruvate-2-C14.

DISCUSSION

These studies indicate that ethanol ingestion can produce hypoglycemia and that previously reported cases (1–4) were probably due to ethanol rather than some other nonethanol toxin. Prior poor nutrition is evidently important in the genesis of ethanol hypoglycemia; 35 to 50 ml of ethanol did not cause hypoglycemia when it was administered after an overnight fast, but did so after a 44-hour fast. This observation confirms the earlier findings of Tennent (16) and Lieber and coworkers (17), who also noted no effect of ethanol on blood glucose after an overnight fast. As a consequence of inadequate dietary intake, liver glycogen is probably depleted and this would also contribute to hypoglycemia. The importance of glycogen depletion is suggested by earlier studies in animals in which hypoglycemia was produced only in those whose livers were devoid of glycogen (7, 16). This is consistent with the observations of Neame and Joubert, who reported liver glycogen absent from biopsy specimens obtained on their patients during hypoglycemia (4).

Indirect evidence obtained during the present studies also suggests that diminished liver glycogen is present during ethanol-induced hypoglycemia, since administration of glucagon resulted in very little, if any, increase in blood sugar. It seems unlikely that ethanol directly inhibits the effect of glucagon, since there was a brisk rise in blood glucose when glucagon was given after ethanol and an overnight fast (Table I and Figure 3). It is possible that the presence of adequate liver glycogen

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Ethanol added to perfusion</th>
<th>Net amino acids produced</th>
<th>Net urea-N produced</th>
<th>Increase in perfusion glucose concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Yes</td>
<td>60</td>
<td>70</td>
<td>82 mg/100 ml</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>44</td>
<td>193</td>
<td>160</td>
</tr>
<tr>
<td>2</td>
<td>Yes</td>
<td>124</td>
<td>90</td>
<td>208</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>292</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Yes</td>
<td>75</td>
<td>172</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>90</td>
<td>321</td>
<td>81</td>
</tr>
<tr>
<td>4</td>
<td>Yes</td>
<td>67</td>
<td>279</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>61</td>
<td>321</td>
<td>71</td>
</tr>
</tbody>
</table>
after only an overnight fast may account for the failure of ethanol to induce hypoglycemia at this
time. The apparently normal response to glu-
cagon in patient C.P. after 71 hours of fasting and
exercise (Figure 1) is probably related to in-
creased lactate as a result of exercise and its sub-
sequent conversion to liver glycogen. Blood glu-
cose response to glucagon after 47 hours of fasting
without ethanol was small, further suggesting that
liver glycogen was decreased under these condi-
tions (Table I, Figures 2 and 4).

The possibility should be considered that the
consequences of ethanol on carbohydrate metabo-
ism represent generalized toxic effects on the
liver. Neane and Joubert postulated that poor
dietary intake makes the liver especially vul-
nerable to toxic substances such as ethanol (4).
Liver biopsy specimens from their patients, how-
ever, revealed little evidence of severe hepatic dis-
ease, although most of their patients had elevations
of serum transaminase. Freinkel and associates
also reported normal or only minimally abnormal
hepatic histology in their patients who were biop-
sied (5). In the present studies, serum transami-
nase values did not exceed the upper limits of nor-
mal during or after hypoglycemia. None of the
control subjects had any abnormalities in hepatic function. Furthermore, the patient C.P. had only
minimally abnormal liver function at a time when
ethanol caused hypoglycemia. Ethanol does not
produce such a generalized toxic effect on the liver,
so that the disappearance of fructose and its con-
version to glucose were impaired (Table III and
Figure 5).

These studies indicate that in the presence of
ethanol there is depressed a) urea production in
the perfused rat liver, b) glycogen synthesis as
measured in vivo and in vitro, and c) in vitro
oxidation of added glucose and pyruvate by the
liver. Decreased production of urea by the liver
perfused with ethanol would impair gluconeogene-
sis and thus contribute to the diminished glucose
release by this preparation (Table VII and Figure
6). Whereas glucose released during the first 30
minutes of perfusion represents both gluconeogene-
sis and glycogenolysis, that during the subse-
quent period is a manifestation almost solely of gluconeogene-
sis, since glycogen present at the beginning of
perfusion is no longer detectable after 30 minutes.
Since less glucose was released by the ethanol-
perfused liver throughout the entire experiment,
it suggests that the impaired urea formation is
associated with diminished gluconeogenesis. In
each individual experiment, however, there was
usually no good correlation between the amount
of urea and glucose produced by either the con-

control or the ethanol-perfused liver. The defect in

3 Unpublished observations.

4 G. E. Mortimore, unpublished experiments.
phate is a common intermediate in the metabolism of fructose to both glucose and glycogen, it suggests that inhibition of glycogen synthesis occurs after the formation of glucose 6-phosphate. The diminished blood glucose response to glucagon in humans after ethanol and fructose as compared to the response after fructose alone also points to an impairment in glycogen synthesis, since ethanol did not interfere with either the disappearance of fructose (Table III) or its conversion to glucose (Table II and Figure 5). Furthermore, administration of ethanol to rabbits resulted in decreased liver glycogen 1 hour later. It would be unlikely that this represented increased glycogen breakdown in these animals, since there was an increase in the blood glucose of the control rabbits, as compared to no change or even a fall in the blood glucose of ethanol-treated rabbits. The failure of ethanol to produce more consistent hypoglycemia in rabbits might be due to persistence of some liver glycogen even after a 2-day fast. The relationship between liver glycogen and the effect of ethanol on blood glucose was studied by Tennent (16). Matunaga depleted the liver glycogen of animals with emulsified lecithin before inducing hypoglycemia with ethanol (7). Decreased incorporation in vitro of glucose-1-C14 and pyruvate-2-C14 into glycogen by liver slices from ethanol-treated rabbits is also consistent with inhibition of glycogen synthesis, although it might also reflect dilution of the labeled substrate by unlabeled acetate resulting from ethanol oxidation.

Glucose-1-C14 and pyruvate-2-C14 oxidation by liver slices from ethanol-treated rats was also decreased. Lieber and Schmid reported that ethanol inhibited C14O\textsubscript{2} production from labeled acetate (25). These findings could result from dilution of the labeled substrate with unlabeled acetate from ethanol oxidation, or perhaps be a consequence of changes in DPN and DPNH.

The relationship of these effects of ethanol to the production of hypoglycemia must now be considered. Hypoglycemia did not appear to be insulin-mediated, since it was not associated with a fall in plasma FFA. Lieber and co-workers found that within 30 minutes ethanol caused a transient fall in plasma FFA, but subsequently there was a return to normal (17). There were, however, no changes in the blood glucose associated with the fall in plasma FFA, indicating that insulin was probably not involved. Freinkel and associates did not find evidence of increased plasma insulin or peripheral glucose metabolism during ethanol-induced hypoglycemia (5). Furthermore, ethanol did not inhibit the glycogenolytic action of glucagon and cause hypoglycemia by this mechanism. In the postabsorptive state, hepatic release of glucose is of primary importance for the maintenance of normal blood glucose. Initially, this is accomplished by breakdown of liver glycogen and subsequently, by the process of gluconeogenesis. Since a 2-day fast with its attendant decrease in liver glycogen is essential for the production of ethanol-hypoglycemia, it would seem that inhibition of gluconeogenesis is more important. If there is adequate liver glycogen, then blood glucose can be maintained by its breakdown, and inhibition of gluconeogenesis would not cause hypoglycemia. Thus, whether ethanol causes hypoglycemia clinically would seem to depend on whether there is sufficient liver glycogen to maintain blood glucose. Ethanol did not produce hypoglycemia after an overnight fast, since liver glycogen stores were probably adequate to maintain blood glucose.

SUMMARY

Hypoglycemia has been consistently produced in humans by the ingestion of 35 to 50 ml of ethanol after a 2-day fast. Similar amounts of ethanol were ineffective after an overnight fast and did not interfere with the hyperglycemic response to glucagon. The failure of glucagon to increase blood glucose during ethanol-induced hypoglycemia would be consistent with an absence of liver glycogen. Hypoglycemia was associated with a rise in plasma free fatty acids, suggesting that it was not insulin-mediated. During hypoglycemia, intravenously administered fructose was normally converted to glucose, but there was some inhibition of its conversion to glycogen. Studies using perfused rat livers and liver slices from ethanol-treated rabbits also demonstrated decreased glycogen synthesis. Besides inhibiting glycogen synthesis, ethanol also interfered with glucose and urea formation in the isolated, perfused rat liver, but not with amino acid mobilization, suggesting a block in oxidative deamination of amino acids. Inhibition of gluconeogenesis is probably primarily responsible for hypoglycemia, in conjunction with depletion of liver glycogen.
REFERENCES

