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In increasing numbers investigators are meas-
uring concentrations of certain substances in
arterial and in venous blood and equating arteri-
ovenous (A-V) concentration differences ob-
tained from simultaneous arterial and venous
samples to uptake or release of the metabolite
by a tissue drained by the venous system sam-
pled. Conditions under which A-V concentra-
tion differences are valid estimates of tissue
metabolism are sharply limited and, although
the literature does contain ample warning (e.g.,
References 1-3), these limitations seem to have
been misunderstood so often that it was thought
a re-examination of the problem might be helfpul.

Fundamentally, all such investigations wish
to employ the Fick principle (4) which states
that if: @) arterial concentration of substance x
is constant, b) if venous concentration of x is
constant, ¢) if blood flow is constant and d) if
uptake (or release) of x is constant, then, input
of x (= flow multiplied by arterial concentra-
tion) = output of x (= flow multiplied by ven-
ous concentration) + tissuc metabolism of x
(where the tissue metabolism term is positive
if there is tissue uptake and negative if there is
tissue release).

Fick, of course, proposed this equation as a
means ol measuring blood flow. The equation
can be and is used to find any single characteris-
tic whenever all the others are mcasured inde-
pendently, and it is our purpose to consider only
its application to estimation of tissue metabolism.

It is obvious immediately that A-V concentri-
tion differences cannot be cquated to tissue up-
take (or rclease) unless flow is constant and
known. It is correct to speak of changes in
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steady state A-V differences (i.c., the difference
between one steady state and another steady
state) as proportional to changes in tissue up-
take (or release) if it is known that flow, al-
though not quantified, has not changed. The
curious practice has arisen of recognizing that
flow must be included in the calculation but then
ignoring it on the assumption that it is invariant.
Those experienced in measurement of blood flow
are familiar with its lability. Blood flow
through the forearm of man may increase ten-
fold, for example, with exercise (5). When cir-
culation to the hand is added to that of the fore-
arm, flow through the brachial artery is casily
doubled and, owing largely to the thermoregula-
tory function of blood flow to the hand, becomes
unstable in the absence of careful control of ambi-
ent temperature and humidity. It is, therefore,
not at all plausible to dismiss blood flow with
the assumption that it was constant because the
investigator was unaware that he had done any-
thing to change it. Jiggling an arterial needle
during sampling provokes vasodilatation, for
example, so that most investigators who have not
taken pains to lead blood from an artery through
flexible tubing may have altered blood flow by
as much as 50 per cent and perhaps even by more
than twofold (observations by R. Andres, G.
Cader and K. L.. Zierler).

Because blood flow may not be constant we
must inquire whether or not we can salvage ap-
plication of the Fick principle by a) defining
those variations in blood flow that are sufficiently
small to permit use of the Fick principle (that is,
if blood flow is treated as invariant, how much
can it vary and produce no more than some given
acceptable upper bound on the error estimate?),
and b) redefining the Fick principle to include
describable unsteady states of blood flow.

Validity of the use of the Fick principle de-
pends not only on steady blood flow but also on
constant arterial concentration and on constant
tissue metabolism. It happens commonly that
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it is desired to measure tissue metabolism pre-
cisely when arterial concentration is changing or
when metabolism may be changing. It is there-
fore equally necessary to ask how much change
in arterial concentration or in metabolism is
tolerable if the Fick principle is to be used or
whether the Fick principle can be modified to
include non-steady states with respect to arterial
concentration or tissue metabolism.

Many investigators have stated or implied
that even though, during non-steady states, an
A-V difference may not measure accurately
tissue uptake or release at that time, it must be
true at least qualitatively that a positive A-V
difference means that there is net tissue uptake,
and a negative A-V difference means that there is
net tissue release. This is utterly incorrect, as
we shall show.

In substance, then, we ask what interpretation
can be put on A-V differences during non-steady
states.

Indicator dilution theory: tissue metabolism is zero

1. Stationary systems. The discussion which
follows is based on principles developed for
analysis of indicator dilution theory for measure-
ment of blood flow and volume. Indicator dilu-
tion techniques rely on selection of a substance
for which metabolism is zero; i.e., the Fick princi-
ple reduces to input = output for the steady
state. The importance of indicator dilution
theory for the present application is that the
behavior of certain transient changes in input
has been analyzed.

Consider a vascular bed with a single entrance
and a single exit. Between entrance and exit,
branching and intercommunication of blood
vessels may be as complicated as you please.
The exact form of the internal structure of the
system is immaterial. Blood entering the sys-
tem during some time interval, say between time
t and ¢t + dt, will not leave the system as a unit
at some later time but will be dispersed with
respect to time. The fraction of it which leaves
the system s time units later between time ¢ + s
and t + s + ds is h(s) ds, where h(s) is the frac-
tion leaving per unit time; 4(s) is a distribution
or frequency function with dimension 1/time.
For example, if 20 per cent of blood which entered
at time zero leaves the system per unit time dur-
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ing the fourth time interval after zero, then h(4)
=0.2. Thesum of all £(s) is unity; that is, sooner
or later all the blood which entered at time ¢

leaves the system and f k(1) dt = 1.
0

The distribution function of transit times
through the system is k(s) or h(t). If, for ex-
ample, the shortest transit time is 3 time units
and 30 per cent of the blood has such a transit
time, 40 per cent of the blood has a transit time
of 4 time units and the remaining 30 per cent of
the blood has a transit time of 5 time units,
then, #(0) = 0, k(1) = 0, k(2) = 0, A(3) = 0.3,
h(4) = 0.4, k(5) = 0.3, h(6) = 0. The mean
transit time, {, is (3 X 0.3) + (4 X 0.4) +

(5 X 0.3) = f ") de.

An indicator is a substance which is so dis-
persed through the system that the distribution
function of its transit times is the same as that of
the native material under investigation. That
is, the distribution function of transit times of
the indicator, which we can observe and measure,
gives us the desired distribution function of
transit times of native unmarked material which
we cannot otherwise observe.

If an indicator is introduced as some function
of time, 7(¢), into the entrance of the system, its
concentration at exit is described by the relation
which we shall develop provided the following
conditions hold: a) flow through the system is
constant; b) volume of the system is constant;
¢) indicator is mixed thoroughly with inflowing
blood at the entrance to the system so that
i(t)/F = Ca(t), that is, injected indicator di-
vided by appropriate fluid flow is the input con-
centration of indicator; d) all injected indicator
leaves the system eventually, that is, there are no
stagnant pools; e) the system is stationary, that
is, the distribution function of transit times does
not change during the period of observation.
(This is a more strenuous limitation than de-
manding constant flow and volume, because it is
possible to vary the distribution function and
still hold flow and volume constant.)

We wish to describe concentration of indicator
at exit at time ¢, Cy(f), as a function of concen-
tration of indicator at entrance, C4(¢). Con-
sider the contribution to the exit concentration
at time ¢ made by indicator which entered the
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system s time units earlier, thatis, at time (¢ —s).
The fraction of injected indicator leaving the
system per unit time is k£(s). The amount of it
leaving the system during the interval between
s and s + ds time units after introduction is
Cs(t — s)-h(s)-ds. Now let s vary from O to ¢
and sum Cs(t — s)-h(s)-ds over all such time
intervals. The sum is the desired concentration
at exit, or

Cv(t) = j;‘ Ca(t — s) h(s) ds [1]

Equation 1 is owing to Stephenson (6) and
further discussion of it may be found in Refer-

ences 7-9. For present purposes we are inter-

ested in examining the effect on A-V differences
of several functions that C4 () might assume.

Consider first the behavior of Equation 1 when
C4(t) is a constant = I/F for t > 0 and =0
for ¢ < 0, where I is the constant rate of injec-
tion of indicator and F is constant blood flow.
Equation 1 becomes

t
Colt) = -H' h(s) ds [2]
0
© .. I
Becausef h(t)dt = 1, limit Cv(t) = 7 Cv(t)
0 t-»o0

approaches that limit along the curve that is pro-
portional to the cumulative frequency function

t
of transit times, f h(s) ds = H(t). The cum-
0

ulative frequency function of transit times de-
scribes the fraction of blood which has traversed
the system by time . Thus, if 30 per cent of the
blood has a transit time of 3 time units, 40 per
cent has a transit time of 4 time units and none
has any shorter transit time, then at the end of
the fourth time unit 70 per cent of the blood
which entered at time zero has left the system,
or H(4) = 0.7. Thelimit of H(¢), of course, is 1.

Depending on the exact nature of k(t), Cv(t)
will look something like the curve drawn in
Figure, 1. The A-V difference C4(t) — Cv(t)
= (I/F) — Cy(t), is positive from time zero
until some time at which the last particle of that
indicator which was injected at zero time has
left the system. At that instant H(¢) = 1.

It is obvious, despite the fact that there is a
period of time during which Cy(t) < Ca4(?), that
there has been no tissue metabolism of indicator;
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F1G. 1. INDICATOR DILUTION CURVE. Flow constant, and

stationarity exists. Constant injection.

that is, a positive A-V difference does not nec-
essarily mean that there has been uptake of the
substance by tissues. In the case at hand, the
area between the arterial and venous concentra-
tions (see Figure 1) is exactly the mean transit
time multipled by the steady state concentra-
tion of indicator, I/ F (see Reference 7 for proof).
The mean transit time, {, is exactly the volume,
V, in which indicator is distributed, divided by
the flow, F, through the system. The inte-
grated A-V difference is therefore proportional
to V/F.

If at some time, T, after the steady state has
been reached, injection of indicator ceases,
arterial concentration at entrance falls immedi-
ately to zero. We now imagine that indicator is
washed out of the system by indicator-free fluid
and the equation becomes

(0, <0
I [t <
= hi(s)ds,0<t< T
ey -7, 7 3
I t—T
— - >
[F(l fT h(s)ds),t_ T
Figure 1 demonstrates Equation 3. After

time T, Cy () exceeds C,(¢) until all indicator is
washed out of the system. This negative A-V
difference, of course, does not mean that some
tissue is producing the indicator and delivering
it to the circulation. Indeed, the integrated
negative A-V difference is exactly the same size
as the integrated positive A-V difference and is a
measure of {.

There is nothing in this analysis which re-
stricts the indicator to the vascular system.
If one uses an indicator which diffuses into inter-
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stitial space, so long as the original assumptions
are met, one simply changes the distribution
function of transit times to include extravascular
paths. The flow remains the same. The vol-
ume measured is larger than that of the vascular
system because it is the volume of distribution
of indicator. The integrated A-V difference
from time zero to T is therefore larger, but there
is still no measure of tissue metabolism. The
indicator may be distributed throughout tissue
water. It will still obey Equation 3. The
integrated A-V difference from time zero to T
will be larger. It may even exceed the A-V
difference of those metabolized substances which
have an apparent volume of distribution less
than that of total water.

Now let us consider the behavior of Equation
1 when C4 (¢) is not constant. A simple case lets
C4(2) increase with constant velocity, that is,

0,t<0
CA(t) =
at,t>0

where a is a constant. Equation 1 becomes

Cv(t) =a f‘ [t —s]h(s)ds

=atfth(s) ds—aftsh(s) ds [4]

The asymptotic behavior of Cy (¢) is definite from

t
Equation 4 because lim h(s) ds = 1 and lim

t—>0 0 t->00
t
f sh(s)d =1L
0
lim Cy(t) =a-(t — 1) = Cat — 1)
t—>c0

Therefore,

that is, when all indicator introduced at time
zero is washed out of the system, then Cy(f)
equals the arterial concentration introduced
time units earlier and Cy(¢) continues to be so
related to C4(t) from then on. There will,
therefore, always be a positive A-V difference
even though there is obviously no tissue metab-
olism of indicator.

Now let C4(t) decrease linearly from some pre-
viously constant concentration; that is,

Ca(0),t<0
Ca(0) —a-t,0<t< Ca(0)/a
OytZ CA(O)/a

CA(t) =
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Then Equation 1 becomes
Cr(t) = C4a(0)

—af‘[t—s]h(s)ds, 0<t [5]

and the asymptotic behavior, until C4(t) = 0
att = C4(0)/a, is

lim Cy(t) = Ca(t — 0)
t—>o00

The A-V difference, once Cy (¢) reaches the above
value, is C4(t) — Cv(t) = — a{; that is, the A-V
difference is always negative.

It is instructive to combine a rising and falling
arterial injection so that the envelope of arterial
concentration is triangular with time, as in

Figure 2. Then
0, t<L0
Calt) = a-t, 0t T
a- 2T —¢), TLtL2T
0, t>2T

Substitution of the appropriate values of Ca4(t
— 5) into Equation 1 yields the curve of Cv ()
for a = 1 and for the function k() illustrated in
Figure 2. The area under the curve Cy4 () equals
the area under the curve Cy(t) because all in-
jected indicator must leave the system.

F f C4(t) dt is the total indicator injected and
0

F f Cy(t) dt is the total indicator leaving the
o :

system. It follows immediately, therefore, that
the shaded area marked 4 > Vin Figure 2 equals
the shaded area marked ¥V > A. The points to

F1G. 2.
and stationarity exists.
decreases linearly.

INDICATOR DILUTION CURVE. Flow constant,
Ca(t) increases linearly, then
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be noted in Figure 2 are: that the maximal ve-
nous concentration is less than the maximal
arterial ; that until 4.5 time units C4 > Cy, al-
though there is no tissue uptake, and after 4.5
time units Cy > Cy4, although there is no tissue
production; and that Cy continues to rise for a
time after C4 has begun to fall.

We can now make a general statement about
A-V differences of indicators during transient
changes in indicator input effected by altered
Ca(t). Assume that C4(¢) and Cy(t) are con-
stant for a sufficiently long time before ¢t = 0
and that at { = 0 a change in C4(¢) begins.
Equation 1 can be integrated by parts to yield

Cy(t) = ft Cilt —s5) h(s) ds
= Ca(t — s) H(s)|4
+ftC’A(t — s) H(s)ds [6]

where I(¢) is the cumulative distribution func-
t

tion f h(s) ds, C'4 is the first derivative of Cy
0

and d Ca(t)/dt = — d Ca(t — s5)/ds.

Because H(C) = 0 in the real vascular system,
Calt —s) H(s)|§ = Ca(O)H().

Because H(t) < 1, if C'4(t) > 0 (that is, if

t
C.(t) is increasing with time), f C'a(t —s)
C

H(s) ds < ft C'alt —s) ds = Ca(t) — C4(0).
0

Substituting these functions in the integra-
tion by parts yields Cyv(¢) < C4(C)H(t) + Ca(t)
= Ca(0) = Ca(t) — Ca(0) [1 — H(1)], or Cv ()
< Ca(t).

If arterial concentration is decreasing with

t
time, C"4(t) <0 and f Clalt — s) H(s) ds
0

t
> f C'4(t —s) ds. With this substitution
0

and by argument similar to that used above,
Cv(t) > Ca(d).

Thus, if arterial concentration increases there
is a positive A-V difference. If arterial con-
centration decreases there is a negative A-V
difference. If arterial concentration is constant
for a sufficiently long period (that is, long enough
for H(t) to become unity) then venous concen-

2115

tration will, when H(f) = 1, equal arterial con-
centration. A-V differences occur because posi-
tive times are required for traversal of the vascu-
lar net (that is, because H(0) # 1). Clearly,
then, A-V differences during non-steady states
are not in themselves evidence of tissue metab-
olism.

2. Nonstationary systems; variable flow. We
have so far been concerned with input changes
produced by altered concentration at constant
flow. Now consider input changes produced by
altered flow.

Consider first the simplest but least likely case,
in which flow is altered without altering the dis-
tribution of transit times (that is, stationarity
exists). This is possible if the relation V/F = {
through every path is constant. Such an event
is handled simply by generalizing Equation 1

7]

where my(t) is output (= flow at time { multi-
plied by venous concentration at time ¢) at time
¢t and m;(t) is input at time £, If Fo(¢) is flow at
output, F;(¢) is inflow, and C4 is the constant
arterial concentration, then Equation 7 becomes

mo(t) = ftmi(t —5) h(s) ds

C t
Cv(t) = 2| Fi(t —s) h(s) ds.
v0) = g | R = 9) (o) ds
Since nothing has been done to alter concentra-

tion anywhere in the system, it must be that
Cv(t) = C4. Therefore,

t
RO = [(RG =9k ds L8]
0

In a system of rigid tubes containing incom-
pressible fluid such as water, flow everywhere in
the system is identical at any time. In particu-
lar, Fo(t) = F;(t), the limiting case in which
k() is simply a brief spike beginning at ¢ = 0.

More realistically we must consider that a
change in flow is associated with a change in the
distribution of transit times through the system,
that is, there is nonstationarity. Then if flow,
F, is a function of time, F(¢), so is the distribu-
tion of transit times a function, not only of
elapsed time following introduction of indicator,
but also of absolute time at which indicator was
introduced. The problem has been explored by
Sherman (10) following methods used by Zadeh
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(11) in analysis of variable or dynamic electrical
networks which depend on specified combina-
tions of input, output and time. The following
development relies largely on the work of Zadeh
and of Sherman.

We have until now defined the time, or the
center of gravity of the time interval at which
indicator is added to the system, as zero time.
Let us now permit this time of indicator addition
to be any time, x. Then A(x) is the distribution
function of transit times through the system
which exists at time x. But the distribution
function of transit times is also a function of the
time elapsed since addition of indicator, a time
which we will designate a, where a = ¢t — x, the
difference between absolute time, ¢, and time of
indicator addition. The distribution function is
therefore k(x,a) = k(x,t — x) = k(t — a, a).

Because %(x, a) is a distribution function (that
is, because all indicator introduced at any given
time x must eventually leave the system)

fh(x,t—x) dt=f h(t —a,a) dt=1

Now consider that k(x,e) is the distribution
function not only of indicator particles but of all
fluid that entered the system at any given time x.
Consider the contribution to outflow at time ¢
made by fluid that entered the system at a par-
ticular time before ¢, x;. Of the total inflow
F;(x,), the fraction leaving at @ time units later
[that is, between times tand ¢+ df (= x, + @
and x; 4+ a + da)] is Fi(x1) k(x1, a) da, or
d Fo(t) = Fi(x1) h(x1, a) da. The total outflow
is obtained simply by integrating the above ex-
pression for d Fy(t), letting x vary over all pre-
vious times before ¢, or
t
Folt) = f Fix) h(x,t —x)de  [9]
—0
It is implicit in Equation 9 that once a particle
enters the system at any given time x it is com-
mitted to traverse the system at some given tran-
sit time @ with the probability defined by 4 (x, a),
and that changes in flow occurring at some other
%, and therefore changes in %(x, a) do not affect
transit times of particles already in the system.
Further, as Sherman pointed out (10), Fo(¢) is
defined only in terms of F;(x) and not in terms of
F;(¢), the simultaneous inflow.
By an argument analogous to that used to

KENNETH L. ZIERLER

develop Equation 9, output of indicator as a
function of input and time is

Fo(t) Cv (2)

‘ Fi(x) Ca(x) h(x,t — x) dx [10]

—o0

For the case of constant arterial concentration
Ca, venous concentration at time £ is

Cr(t) = Sa

mﬁw Fi(x) h(x,t — x) dx = Ca

which is expected because C, is neither diluted
nor concentrated as it passes through the system.

For the special case in which F;(x) and Ca(x)
vary inversely so that their product is constant,
I, Equation 10 becomes

Cv(t) =

I t
Foll) f_ﬁh(x,t x) dx [11]
After sufficiently long time, because the integral
in Equation 11 becomes unity, limit of Cy ()
= JI/Fo(t). Until that time is reached, there
will be an A-V concentration difference.

We can define precisely what is meant by a
sufficiently long time with the aid of Figure 3.
Several possible distribution functions are il-
lustrated as histograms by A, C, and F. The
total area of each distribution function is unity.
Experimentally, these distribution functions are
determined by injecting quickly a single quantity
of indicator into the entrance to the system under
study and measuring its concentration at exit
during a period of stationarity. In communica-
tion engineering this is equivalent to applying a
brief pulse to the input to a network and observ-
ing the response at output. In B the unit pulse
is applied repeatedly, as indicated by the arrows,
or in a hydrodynamic system indicator is in-
jected at constant rate. Output distribution
functions are superposed until the height of the
output response becomes unity, and it remains
unity as long as constant input is maintained.
Although when output response is unity it
equals the unit input, the output response does
not represent any single unit input admitted at
some earlier time but it is made up of contribu-
tions from a number of earlier inputs. The
time at which the output response reaches unity
is exactly the longest transit time in the system,
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F16. 3. VARIOUS DISTRIBUTION FUNCTIONS AND THEIR
COMBINATIONS IN STATIONARY AND NONSTATIONARY STATES.
Alternating white and shaded areas represent distribution
of materials entering at successive time intervals. Each
arrow style represents a different distribution function
pertinent to entrance time indicated by arrow. The func-

tions are: A. k(x,a) = h(¢). B. J:h(s) ds = th h(x,t
— x) dx, where h(s) = (). C. h(x,a) = hs(t). D.
fx “h(x,t —x) dx, where h(xi) = (), h(x2) to h(xs)

= (). E. j; 'l h(x,t —x) dx, where h(x)) = h(xs)
= h(xs) = h(xr) = m(t) and h(xs) = h(xs) = h(xe)
=h(xs) =hs()). F. h(x,a)=h:(t). G. Ltlh(x,t—x) dx,
where h;(¢) and h;(t) exist at alternate time units. H.
j; “h(x, t — x) dx, where h(x1) to h(xs) = hi(t), h(xs) to
k(o) = ha).

determined from the single sudden injection
curve A.

In Figure 3D, constant injection of indicator
occurs but the system is nonstationary in that
the distribution function changes from #4,(¢)
during the first time interval to k. (#) for all sub-
sequent time intervals. Output, which is super-
posed distribution functions, reaches unity at a
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time ¢ exactly equal to x,, the time at which the
distribution function through the system changed
from &y to hs, plus the longest transit time in the
function ky(t) or in k,(¢), whichever is longer.

In Figure 3E and G there is constant injection
through a nonstationary system. In both cases
the distribution function alternates between two
functions. In E, the longest transit time of both
functions is the same. The output reaches unity
exactly at that longest transit time and remains
there. In G, the longest transit time of one dis-
tribution function differs from that of the other.
The output response eventually (at a time equal
to the greater of the longest transit times of the
two distribution functions) oscillates symmetri-
cally about unity, exceeding unity by as much as
it is alternately less than unity. The frequency
of output oscillation is exactly that at which the
two distribution functions alternate.

In Figure 3H, the system changes from one
steady state, in which the distribution function is
hi(t) to a second state in which the distribution
function is k2(¢). The time required for output
to restabilize at unity after the change is made is
exactly the longest transit time in the new dis-
tribution function.

To return to Equation 11, the sufficiently long
time required for Cy (¢) to equal I/ Fo(?) is either
the longest transit time of any distribution func-
tion which describes the system for a time at
least equal to its longest time or, if the system is
always nonstationary but oscillates in some regu-
lar way about a group of distribution functions,
it is the longest of all transit times described by
any distribution function and Cy(t) can be taken
as a weighted mean of its oscillating value.

The relation between flow and the distribution
function may be confusing. It is possible, but
not likely, that a change in the distribution of
transit times could occur without a change in
flow and it has already been stated that a change
in flow could occur without a change in distribu-
tion function if volume changed appropriately,
but this is again unlikely. Therefore, unless it
can be demonstrated otherwise in a specific case,
whenever flow changes it is safer to assume that
the distribution function also changes and Equa-
tion 10 is more apt to be descriptive of the real
system than is Equation 7.

But the basic assumption underlying Equa-
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tion 10 is probably an oversimplification so that
even Equation 10 may be inadequate. The as-
sumption that distribution functions are super-
posable rests formally on the assumption that
the system is linear; that is, that the relation
between input and output can be described by a
linear equation. This assumption implies that
once a particle has entered the system it is
committed to traverse it in a given transit time;
that is, changes in the distribution function of
transit times are assumed not to affect particles
already in the system but only new particles
just entering the system.

This assumption is not apt to be valid in
general. When the distribution function
changes owing to vasoactivity, for example, the
transit times of particles already in the system
are probably changed. In the extreme, with
closure of some portions of a capillary bed, flow
ceases and diffusion, which until now has been
considered negligible, becomes the only means
by which solute particles can move through the
system ; that is, movement of solute and solvent,
previously considered to be coupled and de-
scribed by a common distribution function,
becomes uncoupled so that one distribution func-
tion does not describe transit times through the
system. The system is, therefore, probably
formally nonlinear and the development of
Equation 10, which rests on the superposition
principle, is inappropriate. There is no simple
formal solution to this problem. A description
of the relations between input, output and time
in such a nonlinear system requires detailed
knowledge of the behavior of every particle
within the system as a function of position within
the system and time, and there is no experimental
method for obtaining the necessary information
at present. This means that in nonstationary
and nonlinear systems there is no way to relate
simultaneous arterial and venous concentrations,
and no simple correction factor, such as evolved
from discussion of Equation 4, is applicable.

Tissue metabolism not zero

1. Tissue uptake. We have been examining
in increasing complexity A-V concentrations of
substances for which tissue uptake or output is
zero. The problem is even more difficult when
we let tissue uptake assume nonzero values.
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In the first place, the distribution of transit
times of a substance, some of which is metabo-
lized, is different from the distribution of transit
times of a solute confined to plasma or to total
extracellular fluid and is even apt to be different
from that of total water. The transit times
under consideration are only of those particles
which leave the system and so contribute to the
venous concentration. If tissue uptake from
every channel through the system were propor-
tional to the rate at which the metabolizable
substance flowed through that channel, then
and only then, would the distribution of transit
times of the substance be identical with the dis-
tribution of transit times of some nonmetabolized
indicator. Although there may be in certain
special cases a close relation between vascularity
and metabolism, in general, we anticipate that
the fractional uptake from some channels will
be different from that in others. There might
be little uptake from blood through channels
with very short transit times, the extreme being
the case of arteriovenous shunts, and there might
be a great deal of uptake from blood coursing
through intricate capillary nets with long transit
times.

For example, if %(¢), the distribution function
of indicator transit times is £(0) = 0, 2(1) = 0,
h(2) = 0.3, k(3) = 04, k(4) = 0.3, k(5), and
so forth = 0, then the distribution function of
transit times, g(¢), of a metabolized substance
through the same vascular bed might be g(0)
=0, g1) =0, g(2) =05, g@3) =03, g4
= 0.2, g(5), and so forth = 0. In this example,
the mean transit time for nonmetabolized par-

ticles, f th(t) dt, is longer than the mean
Jo

transit time for metabolized particles,

f ¢t g(t) dt, because a large fraction of metabol-
0

ized particles coursing through long-transit-time
channels was eliminated by metabolism within
the system.

The purpose of this example is to make it clear
that no simple known relation exists between
transit times of indicators and of metabolities.
It is therefore not possible to “‘correct’ observed
venous concentrations by displacement along
the time axis in accordance with some notion of
the distribution of transit times of nonmetabo-
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lized indicators, although the correction can be
made as a reasonable approximation in those
cases in which nearly all of the substance tra-
verses the system; that is, in those cases in which
only a small fraction of entering material is
taken up by tissues. For example, in the fore-
arm of man at rest in the basal state about 98
per cent of glucose delivered by arterial blood
appears in forearm venous effluent (12). In
this example, then, g(¢) is probably very nearly
the same as k(f) so that for certain practical
purposes it would be acceptable to assume that
g(t) was indeed A(t).

The relation between % (¢) and g(¢) is easily
defined. Consider those particles whose transit
times are between ¢ and ¢ + d¢ time units. Of
those nonmetabolizable or indicator particles
entering at zero time, the fraction leaving in the
time interval ¢ to ¢ + dt is h(¢) dt. Of metab-
olizable particles, the fraction of those that
entered at zero time which leave in the same time
interval is 7(t) h(¢) dt, where 0< r(¢) < 1.
Integration over all time yields the fraction of
metabolizable particles which entered at zero
time and which eventually leave the system,

p = f r(t) h(t) dt and 0 < p < 1. Therefore,
0

of those metabolizable particles entering at zero
time and which are not metabolized, the fraction
leaving the system per unit time between ¢ and
t 4 dt time units later is

g) =r®) h@)/p [12]

When g(¢) = k(#), from Equation 12 r(¢) = p,
a constant, or g(¢) can equal £(¢) only if r(2) is
constant. When p is almost unity, there can be
no assurance that any given g(¢) = k(#), but

ftCA(t — ) g(s) ds = ftCA(t — ) h(s) ds

for sufficiently large ¢.

One can, during steady states, observe the
distribution function of transit times of certain
metabolizable substances by using tracer quanti-
ties of labeled material otherwise identical with
the metabolized substance. This distribution
function, g(¢), can be evaluated only while there
is stationarity. This requires not only that flow
and volume remain constant but also that there
be constant uptake of metabolite per unit time,
Q, for if rate of uptake changes with time it
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cannot be assumed that the proportional change
in every channel is identical, which is required if
g(#) is to be the same.

The quantity of metabolite entering the sys-
tem between time ¢ and ¢ + dt is FCa(t) dt.
Of this quantity, assuming uptake is constant,
the total amount leaving the system during all
subsequent time intervals is [F Ca4(t) — Q] dt.
By the arguments used to develop Equation 1

Cv(t) = j;t[CA(t —5) — %] g(s) ds
= [(cat =920 0 - $ew 0]
where G(¢) = ftg(s) ds, and F C4(t) > Q.

In a form analogous to that of the classical
Fick equation, Equation 13 becomes

Q = -G%[ j;t Ca(t —s) g(s) ds — CV(t)]

In the discussion of Equation 6 we showed that

if d C4(t)/dt > 0, ft Ca(t — s) g(s) ds < Ca(t),

t
and if d C4(¢)/dt <O, f Ca(t —s) g(s) ds
0

> C4(t). Therefore, after sufficient time has
elapsed so that G(¢) has passed to unity, if Ca(f)
is increasing, the A-V difference overestimates ),
and if C,4(2) is decreasing the A-V difference un-
derestimates Q. Indeed it is even possible for
the A-V difference to be negative, if d C4(¢)/dt is
sufficiently negative and the mean transit time
is sufficiently long, despite the fact that there
may be real tissue uptake of the substance
measured.

Except where g(¢) = h(¢), it is not possible to
use an indicator curve, such as that in Figure 2,
as a guide in estimation of € during transient
changes in C4(¢). For example, if in Figure 2
C.(t) were displaced upward, as in Figure 4, by
some constant for all ¢ so that there was a con-
stant steady state A-V difference, the A-V
difference during the transient would not be
that of Equation 12 unless the distribution func-
tion, (), of the indicator happened to be the
same as that of the metabolite, g(¢). If g(¢) can
be determined independently and can be proven
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F1G. 4. CONSTANT UPTAKE OF A SUBSTANCE WITH
SAME CHANGES IN ARTERIAL CONCENTRATION AS IN FIGURE
2. Uptake cannot be calculated accurately at any time
during changes in arterial or venous concentration. Flow
multiplied by integrated A-V difference from time 0 to 11
is, in this example, total tissue uptake over that time
interval.

stationary, then Equation 13 can be used to test
whether or not @ is in fact constant.

If tissue uptake is not constant but is some
function of time, Q(¢), then we must consider
that the system is not stationary. Consider
first the more general problem of varying flow
and varying uptake.

If we assume that the system is linear—that is,
that the distributions of inputs are superposable—
as we did in development of Equation 10 when
we considered effects of altered flow and distri-
bution function on indicator concentration, we
can immediately generalize Equation 10 by
analogy

mo) = [ p() mix) gl st — %) dx [14]

where me(t) = Fo(t) Cv(t), m:(t) = Fi(t) Ca(t)
and p(¢) is that fraction of m;(¢) which is not
metabolized (see Equation 12). For constant
uptake, Equation 14 becomes

mo(t) = ‘ [mi(x) — Q] g(x,t — x) dx [15]

and for constant arterial concentration, Equation
15 becomes

Cr(t) = % _' Filx) g(x, ¢t — x) da

—f?@ﬁlg(x,t—x)dx [16]
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Unlike the case of indicator dilution at con-
stant arterial concentration and varying flow, in
which C4(t) = C4, a constant (see discussion
following Equation 10), when there is tissue up-
take a change in flow produces a change in venous
concentration even if arterial concentration is
held constant. It is intuitively evident that
this must also be true in nonlinear systems.
Figure 5 illustrates the sort of changes one might
find when flow is changed in stepwise fashion so
that the system moves from one steady state to
another. An increase in inflow, C4 and Q re-
maining constant, produces a transient change in
outflow and in venous concentration, which lag
behind input changes. Owing to the lag there
is a transient increase in A-V difference and Q is
overestimated. The steady state is reached at a
time equal to the longest transit time of metabo-
lizable particles through the system, not the
longest transit time of plasma. The overesti-
mate in @ is not compensated in any way by
a subsequent reduction in A-V difference as long
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F16. 5. EFFECT OF CHANGE IN FLOW ON A-V DIFFER-
ENCE. A. Step increase in flow. B. Step increase in
input with consequent change in output. C. Change in
output concentration with change in flow, despite constant
arterial concentration and constant uptake. D. Al-
though tissue uptake, @, is constant, the product of flow
and A-V difference is not constant when there is a step
change in flow.
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as the new steady state is maintained. This
does not mean that there is tissue storage of the
apparent excess, but that there is always a lag
between input and output so that Fo(¢) Cv(2) is
not made up of those particles that entered at ¢,
but of those that entered over some time period
before . When flow is decreased to the original
rate, there is a transient decrease in A-V differ-
ence and Q is underestimated. Indeed, if the
decrease in flow is sufficiently great there may
even be negative A-V differences, as in the illus-
tration, and it may be concluded erroneously
that there is tissue output. If, when flow re-
turns to the original rate, the distribution of
transit times also returns to the original dis-
tribution, the overestimate of @ which occurred
when flow increased is exactly the same as the
underestimate of @ which occurred when flow
decreased. The integrated A-V difference multi-
plied by flow during the entire time interval will
therefore measure total uptake over that time
interval.

Although the assumption of linearity is not
apt to hold when the system is nonstationary
owing to altered flow, for reasons discussed
earlier, the system may very well remain linear
when nonstationarity is owing to altered metab-
olism in the presence of constant flow. This
greatly simplifies the problem, as follows.

For the case of constant flow Equation 14
becomes

a@=f}mamumhwwxmﬂ

Equation 17 does not tell us what tissue uptake
was at time {. Although the quantity of ma-
terial entering between time ¢ and ¢ + dt which
is metabolized eventually is (1 — p) F Ca(¢) &t,
this quantity is not @ d¢ because there is a dis-
tribution of transit times from entrance to the
various sites of metabolism within the system.
By analogy with equations developed previously
in this paper for nonstationary linear systems,
rate of tissue uptake as a function of time

Qi) = Ff_t [1 = px)] Calx) m(x,t — x) dx

t
=F Cu(x) m(x,t — x) dx

—00

- Fft p(x) Calx) m(x,t — x) dx [18]
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where m(x, a) is the distribution function of
transit times from entrance to sites of uptake.

The integral in the second term on the right-
hand side of Equation 18 is obviously related to
the integral of Equation 17 which describes
Cv(t), the difference being in the distribution
functions. The integral in the first term of
Equation 18 is clearly related to Ca(2), but it is
also clearly not C4(¢). Equation 18, in short, is
a general form of the classical Fick equation for
constant flow but for variable arterial concentra-
tion and variable uptake.

When C4(f) is constant, C., Equation 18
becomes

Q(t)=FCAj:t m(x, t — x) dx

— FCy4 t px)ym(x,t —x)dx [19]

—00

After a sufficiently long time, the first term in
Equation 19 becomes F Cy. ) If p(¢) is also con-
stant Equation 19 becomes Q(¢) = F C4(1 — p)

t
m(x,t — x) dx, and for ¢ sufficiently large,

limit Q(¢) = FC4(1 — p) = F(Cs4 — Cv), which
is the classical Fick equation.

Equation 18 is unfortunately not very useful
in that form because it contains the distribution
function, m(x, a), which is not subject to direct
experimental investigation. An approximate
evaluation of m(x, a) comes from the following
analysis.

Consider what would have been the distribu-
tion of transit times, f(¢), through the system of
only those particles which were removed. That
is, if their transit times had not terminated within
the system as described by m(f), what would
have been their transit times? Refer to the
argument by which Equation 12, relating g(¢) to
h(t), was developed. Clearly,

_ [ =r@®Jr@®) _ k@) — pg)
fO = = T

Some relation must exist between the transit
time of a particle to the point of uptake and its
transit time through the entire system. It is
plausible to assume that points of uptake lie ap--
proximately midway in time between entrance:
and exit. On this assumption, m(2f) = f(t)
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and Equation 18 becomes

Q) = F tCA(x)h(t;x)dx

—00

- Fj;o Calx) p(x) g (x,‘ - x) dx [20]

Equation 20 is much simpler to handle than
Equation 18. The first term on the right-hand
side deals only with a stationary system, that is,
as long as flow is constant (and volume), the
distribution of transit times of the appropriate
indicator, described by %(¢), is not dependent on
time. We have already seen how to handle such
a function when we considered indicator dilution
through stationary systems. The second inte-
gral on the right-hand side of Equation 20 is
closely related to Cv(f), defined in Equation 17.
Indeed, if the system becomes stationary for a
sufficiently long time (the longest transit time)
the second term on the right-hand side of
Equation 20 equals F Cy (2).

From the discussion surrounding Figure 2
and Equations 4-6, after sufficiently long time,
for the case of linear increase in C4(t), which is a
useful case because many changes in arterial
concentration may be considered linear over some
practicable time interval,

Q) = FCa(t— 3 — FCrt +31,) [21]

where { is mean time through %(¢) and {, is mean
time through g(f). For the special case of Q(¢)
= 0,% = {, and Equation 21 reduces to the limit-
ing indicator dilution equation, Cy(f) = C4(¢
— ).

In short, if C4 () increases linearly an approxi-
mate measure of Q(¢) can be obtained by moving
back in time % £ units and noting C,4, by moving
up in time % £, units and noting Cy. The differ-
ence between these two corrected concentrations
is nearly equal to Q()/F; i, can be obtained by
tracer techniques or, for the case of substances
such as glucose traversing the forearm of man,
in which about 98 per cent of entering material
leaves the system, {, may be represented satis-
factorily by .

From the discussion surrounding Figure 1 and
Equations 2 and 3 for the case of constant arte-
rial concentration and relatively linear changes in
uptake, after sufficiently long time

Q) = FCs— FCr(t+31i)  [22]
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For the special case of Q(f) = 0, 4 i, degenerates
to zero because it appears in Equation 22 only
as an approximation of #, which, of course, is
nonexistent if there is no tissue uptake. Equa-
tion 22 states that even if input to the system
(flow and arterial concentration) is constant,
Q(?) is not equal to F C4 — F Cv (), but venous
concentration must be corrected backward in
time by an amount assumed to represent mean
time from entrance to points of uptake.

2. Tissue release. We have so far spoken only
of uptake and not of output of metabolites. In
a steady state, the excess of the constant venous
concentration above constant arterial concentra-
tion represents the ratio of constant tissue output
to constant flow. In non-steady states there is
no such symmetry between the analysis of up-
take and of output. Consider the case in which
a substance is introduced into our test system by
way of arterial inflow and all of it eventually
leaves the system; that is, there is no uptake.
The test tissue, however, releases additional
quantities of the substance. The concentration
at output is therefore

Cr(t) = fotcA(t — $) h(s) ds
+ %ftq'(t —s)n(s)ds [23]

where ¢(¢) is rate of tissue release at time ¢, and
n(¢t) is the distribution function of transit times
from points of release from tissue cells to the
exit from the system.

If a change in ¢ is also associated with a change
in n(¢), that is, if the distribution of released
material is not stationary, and we must assume
that this is apt to be the case, it is quite likely
that as long as % (¢) describes a stationary system,
the distribution of released material can be de-
scribed by a linear net. This means simply
that although the sites of and relative contribu-
tions to tissue release may vary with time,once
the metabolite is released it is distributed through
elements of the system described by %(¢), which
is a stationary system. By analogy with previ-
ous discussions of linear nonstationary systems,
Equation 23 is immediately generalized to

Cv(t) = j;tCA(t —s) k(s) ds

t §(x) n(x,t — x) dx [24]

00

1
+% )
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The first term on the right-hand side of Equa-
tion 24 is simply an indicator dilution term and
obviously Equation 24 reduces to the indicator
dilution Equation 1 for ¢(¢) = 0. This means
that all of the discussion of effect of varying
arterial concentration on indicator dilution
curves is applicable to Equation 24. The second
term is not the rate at which tissues release the
substance at time £, but simply the sum of all
contributions made by tissue release before time
t which reach the sampling site at exit at time ¢.

For the case of C4(f) constant, Equation 24
becomes

F[Cv(t) — Cs] = l gx) n(x, t —x)dx [25]

that is, flow multiplied by simultaneous A-V
difference is not tissue release at time ¢ but is the
sum of those fractions of tissue release at time x
whose transit times are (¢ — x).

If G(¢) increases linearly, assuming that the
mean transit time from sites of release to exit is
half the mean transit time from entrance to exit,
and if C4(¢) is constant, F [Cy(t) — Ca] = ¢(¢
— 1), that is, use of simultaneous A-V differ-
ence determines the rate of tissue release which
occurred approximately 3 { time units earlier.

If ¢(¢) is constant but C4(¢) is variable, F Cv(¢)

t
— Ff Ca(t — 5) h(s) ds = ¢, which can be
0

handled according to the discussion of indicator
dilution curves and which reduces to the classical
Fick equation for C4(f) constant.

If flow is not constant, the system probably
becomes nonlinear and the difficulties are those
encountered in the previous discussion of non-
linear systems.

3. Simultaneous uptake and release, and other
complications. When tissue uptake and tissue
release occur simultaneously, combination of
Equations 17 and 24 yields, for constant flow,

Cr(t) = f_ px) Calx) glx, { — x) dx
+;7£;q(x) n(x, t — x) dx

Clearly, in this case the A-V difference gives
little information about metabolic events at
time . Even in the steady state this is a diffi-
cult problem requiring more experimental data
than are needed if only uptake or only release
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occurs. The problem falls into a somewhat
different category than those distributive prob-
lems considered in the general development of
equations here. In general, if the system is
homogeneous (that is, if the concentration of the
metabolite under study is the same in all venous
blood draining the system), then in the steady
state, F (C4 — Cy) is the difference between up-
take and release, uptake is measured by proper
use of tracer quantities of labeled metabolite,
and release is obtained by difference. If the
system is not homogeneous, as in the forearm of
man in which concentration of certain metabolites
may vary widely from vein to vein, then this
simple use of A-V differences of naturally occur-
ring and isotopic metabolite is inadequate. The
solution, if one is possible, requires some knowl-
edge of the anatomy of the system and in general
involves simultaneous A-V differences from more
than one vein, and may also require simultane-
ous measurement of distribution of blood flow to
various parts of the system and the use of A-V
differences of more than one molecular species.
More detailed exposition of this problem is re-
served for another communication.

We have, however, raised the problem of tissue
heterogeneity. Clearly it is worthless, in a
system with many venous effluents, all with
differing concentrations, to let all calculation of
metabolism depend on measurement of concen-
tration in blood from only one vein unless it is
known that nearly all the blood leaving the sys-
tem is drained by the vein sampled. In many
experiments it is not possible to guarantee, as a
result of anatomical good fortune or surgical
intervention, that all venous blood flows through
the vein sampled. It is therefore necessary to
sample from a sufficient number of veins to be
sure that most of the venous flow has been rep-
resented by the sampling, and it is necessary to
know the contribution to total outflow made by
blood flow through each bed represented by each
vein sampled.

For the case of multiple exits from the system
and heterogeneity of tissue metabolism, the
flow which must be determined is not that
through the whole system but only that through
the fraction of the system drained by the vein:
sampled. Therefore, in defining the steady:
state it is not enough to demonstrate that total’
flow is constant but it must be shown that flow-
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through that part of the system represented by
Cv(t) is constant.

SUMMARY AND RECOMMENDATIONS

Rate of tissue metabolism, uptake or release,
can be measured by multiplying blood (or
plasma, whichever is appropriate) flow by
arteriovenous difference only if flow is constant,
arterial concentration is constant, and rate of
tissue metabolism is constant. A further re-
striction is that if venous concentration is not
identical in all veins draining the tissue the ve-
nous concentration used must be weighted by the
relative contribution to total outflow made by
the bed drained by the vein sampled.

If flow varies with time the distribution of
transit times through the system is apt to be
unmeasurable and the system cannot be handled
by equations that depend on the superposition
principle; that is, the system is apt to become a
nonlinear nonstationary system. During such
changes in flow there does not appear to be any
reliable way to interpret the data. It isclear
only that an increase in flow will probably lead
to an overestimate of tissue uptake and a de-
crease in flow to an underestimate. These con-
siderations eliminate the possibility of using
A-V differences to measure metabolism when flow
varies. As soon as flow has remained constant
for a time equal to the longest transit time
through the system, it can be regarded as satis-
factory for use in estimation of metabolism.
This time can be determined for each system by
indicator dilution techniques. Phasic changes
in flow about a stable mean can be regarded as
constant provided the period is brief compared
with mean transit time through the system.

With these restrictions in mind we assume in
what follows that flow is constant. If either
uptake or output is a function of time, the dis-
tribution of transit times through the system is
not stationary but the system is probably satis-
factorily represented as linear; that is, the trans-
formations with respect to time of various inputs
through the system are superposable. Because
tisspe metabolism is an event occurring within
the system, the transit times from entrance to
sites of metabolism or from sites of metabolism
to exit are the ones we wish to measure but ap-
parently can’t at present. We can, however,
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plausibly relate the desired transit times to
measurable transit times through the system.
To find the metabolic rate at time ¢, clearly we
need to use arterial concentration at some time
before ¢ and venous concentration at some time
after ¢. For linear changes in uptake or output
we are able to make these temporal corrections
in arterial and venous concentration by using the
approximate mean transit time which can be
estimated by indicator dilution methods. For
a nonmetabolized substance, mean transit time
is its volume of distribution, V, divided by the
flow F (plasma or blood water, in whichever it
is dissolved) through the system. For most
metabolites the appropriate volume of distribu-
tion is probably the total extracellular volume of
the system. In the case of glucose, for example,
mean transit time through the forearm of man
in the basal state is about 10 minutes, which is a
considerable correction on some time scales.
The magnitude of the time correction also deter-
mines the frequency with which blood samples
should be taken. It is probably prudent to
sample at intervals no greater than the mean
transit time unless arterial and venous concen-
trations are relatively stable or otherwise well
defined.

If arterial concentration is also a function of
time, the data are manageable if the function is
well defined. This means that it must be meas-
ured often enough to define it. If the change in
arterial concentration is linear with time, the
correction is made by moving back in time to
that arterial concentration, found or properly
interpolated, that occurred one mean transit
time unit earlier. Treatment of combinations
of variations follows the same principle and is
given in the body of this paper. The uncer-
tainties are such that the investigator is urged
wherever possible to design his experiments so
that arterial concentration is held constant or
so that he changes arterial concentration step-
wise from one steady state to another. The
time required to reach the steady state is not the
mean transit time but the longest transit time
through the system. For the case of glucose
through the forearm of man in the basal state,
the longest transit time is about 30 minutes.

In the introduction an operational definition
of constant was promised. If the temporal cor-
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rections proposed here do not lead to a corrected
A-V difference that differs from the simultaneous
A-V difference at time ¢ by more than the experi-
mental error of measurement of an A-V differ-
ence, it is probably safe to regard the functions
‘as constant.

The effect of the non-steady state on simul-
taneous A-V differences means that a solitary
A-V difference is uninterpretable. The immedi-
ate history of the system must be known. A
single pair of A-V differences determined simul-
taneously on two substances passing through the
same bed is also not properly useful for compar-
ing the relative metabolism of the two substances
unless it is known that the distributions of their
transit times are identical.
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CORRECTION

On page 2000 of the article entitled “Studies of the Blood-
Cerebrospinal Fluid Barrier to Cortisol in the Dog” by Nicholas P.
Christy and Robert A. Fishman (J. clin. Invest. 1961, 40, 1997),
lines 9 and 10 in the right-hand column should read: “Samples of
plasma and CSF were taken at hourly intervals. Constant levels
of cortisol in plasma and CSF were attained after 4 hours and

maintained for the succeeding 5 hours.”



