THE IN VITRO BINDING OF COBALT® LABELED VITAMIN B₁. BY NORMAL AND LEUKEMIC SERA

BY AARON MILLER WITH THE TECHNICAL ASSISTANCE OF JOHN F. SULLIVAN

(From the Radioisotope and Medical Services, Boston Veterans Administration Hospital, and The Department of Medicine, Boston University School of Medicine, Boston, Mass.)

(Submitted for publication August 17, 1957; accepted December 26, 1957)

In chronic myelogenous leukemia both the serum concentration of vitamin B_{12} and the capacity of the serum to bind added vitamin B₁₂ are markedly increased (1-3), suggesting an abnormality of the serum proteins in this disease. In vitro measurements of vitamin B₁₂ binding capacity employing a microbiological assay method have not demonstrated a qualitative difference between normal and leukemic sera in respect to the binding of added vitamin B_{12} by the various serum protein fractions (1, 4). In the present study an equilibrium dialysis technique using cobalt⁶⁰ labeled vitamin B₁₂ has been employed to measure the binding capacity of normal and leukemic sera for added vitamin B_{12} and to identify the protein fractions which bind the added vitamin B_{12} .

METHODS

A. Experimental plan

Venous blood samples were obtained from patients in the fasting state. After two to three hours at room temperature the serum was separated under sterile conditions and stored at -20° C. until tested. The serum concentration of vitamin B₁₂, the capacity of the serum to bind added cobalt⁶⁰ labeled vitamin B₁₂ and the distribution of the added vitamin B₁₂ among the serum proteins were determined. Studies were carried out on 13 patients with chronic myelogenous leukemia, 8 patients with other types of leukemias, 8 patients with nonmalignant granulocytic leukocytoses, 2 patients with polycythemia vera and 22 control subjects, the latter group being composed of healthy laboratory personnel or ambulatory hospitalized patients suffering from functional disorders.

B. Analytical procedures

Serum vitamin B_{12} concentration. "Total" vitamin B_{12} concentration of the serum was determined by the modification of Lear, Harris, Castle, and Fleming (5) of the *Euglena gracilis* method of Ross (6). "Free" vitamin B_{12} , measured on occasional serum samples from normal subjects and patients with chronic myelogenous leukemia, constituted 15 per cent or less of the total serum vitamin B_{12} .

Serum vitamin binding capacity. Following the addition of a known excess quantity of radioactive vitamin B_{12} to serum, the degree of binding of the added vitamin B_{12} could be determined by a modification of the equilibrium dialysis method as described by Klotz, Walker, and Pivan (7). To duplicate or triplicate 2 ml. samples of serum was added 2 ml. of a solution containing 0.40 m μ g. of Co[®] vitamin B₁₂ and 5 ml. of 1/15 M phosphate buffer (pH 7.3). This mixture was placed in a Visking¹ cellulose dialysis sac at 22° C. A protein-free blank prepared in triplicate with phosphate buffer in place of serum was run simultaneously. Each dialysis bag was placed into 3 by 17 cm. test tubes and the amount of radioactivity in each sample determined by means of a plastic scintillation well counter. After one hour incubation at 22° C., the bags were dialyzed against 250 ml. of 1/15 M phosphate buffer, pH 7.3. Initially, the dialysis was carried on for 24 hours at 22° C. with constant agitation but subsequently this was performed for 48 hours at 4° C. without agitation. Equilibrium was attained in both situations, and similar values for vitamin B₁₂ binding were obtained under both experimental conditions. At the conclusion of dialysis each bag was rinsed externally in running water for one-half to one minute after which its radioactivity was determined in the plastic scintillation well counter. The bags were then slit in two, emptied of their contents, washed for one-half to one minute in running water and recounted for the measurement of the residual radioactivity bound to the bag. The unsaturated vitamin B₁₂ binding capacity of the serum (UBBC) was determined from the following calculations:

1. Fraction of added $Co^{60}B_{12}$ bound per ml.

 $= \frac{(a) \operatorname{Co}^{00}B_{12} \text{ in bag postdialysis (cpm)} - \operatorname{Co}^{00}B_{12} \text{ bound to bag (cpm)}}{\operatorname{Co}^{00}B_{12} \text{ added predialysis (cpm)} \times \text{ml. serum}}$

- mean $Co^{60}B_{12}$ in blank calculated as in (a)

2. UBBC, mµg./ml. = Co⁶⁰B₁₂ added predialysis (mµg.) × calculation 1.

¹ Secured from Visking Corporation, Chicago, Illinois.

No correction for Donnan's equilibrium was needed as vitamin B_{12} is essentially un-ionized (8). The total vitamin B_{12} binding capacity of the serum (TBBC) was obtained from the sum of the serum vitamin B_{12} concentration and the UBBC.

Technical considerations. Two ml. of a 1:50 dilution of Co⁶⁰ vitamin B_{12} of specific activity 0.97 μ c./1.00 μ g. were used in each determination of the UBBC unless otherwise stated. This was equivalent to 22 to 23,000 cpm under the counting conditions used. Radioactivity measurements were made in a large plastic scintillation well counter (well, 3.7 cm. in diameter and 10 cm. in depth) with other physical characteristics as previously described (9). A Co⁶⁰ standard was counted each morning to correct for daily variations in the counter. The geometry of counting in pre- and postdialysis samples was constant. Samples were counted sufficiently long to give a counting error of less than 2 per cent except for the counting of empty dialysis bags where less than 5 to 7 per cent counting error was obtained.

The concentration of the stock Co⁶⁰ vitamin B₁₂ used for the measurement of the UBBC was determined by the Euglena gracilis assay. Due to the known photolability of the cyano group of the vitamin B₁₂ molecule, aliquots of the stock Co⁶⁰B₁₂ solution were exposed to a fluorescent light source at 4° C. for a 12 day period. The binding of the Co⁶⁰ vitamin B₁₂ solution exposed to light was 80 per cent greater than a similar aliquot of the vitamin B_{12} solution protected from light. For this reason, the Co[®] vitamin B₁₂ was shielded from any source of light during all phases of the binding measurement. Serum, diluted 1 to 4 with 1/15 M phosphate buffer, pH 7.3, had a similar binding capacity as that of undiluted serum. Increasing or decreasing the amount of Co⁶⁰ vitamin B₁₂ over a fourfold range, slightly increased, or did not affect, the amount of vitamin B₁₂ bound in both the normal and leukemic sera (Table I).

Experiments designed to evaluate the effect of temperature on vitamin B_{12} binding indicated that similar amounts of Co⁶⁰ vitamin B_{12} were bound by serum at 4° C. and 22° C. No difference in binding was noted between aliquots of serum dialyzed at 4° C. and 22° C. The binding of radioactive material to the dialysis bag was influenced by the dialysis temperature however, 4 to 8 per

TABLE I

The relationship between the quantity of added vitamin B_{12} and the unsaturated vitamin B_{12} binding capacity of serum aliquots

	Amount of vit. B ₁₂ added per ml. serum mµg.	Unsaturated vit. B12 binding capacity mµg./ml.
Normal serum A	5 10 20	1.62 1.86 2.08
Normal serum B	4 20	1.33 1.56
Myelogenous leukemic serum	10 50	7.20 7.30

cent of the Co[®] vitamin B₁₂ becoming bound at 22° C. as compared to 1 to 2 per cent at 4° C. The firmness of this bond is reflected by the fact that only 10 to 20 per cent of the bag radioactivity disappeared after 48 hours of dialysis. Dialysis against distilled water, phosphate buffer, pH 7 to 8, dextran solution, barbital buffer (pH 8.6) and saline had no effect on binding. Multiple successive freezing and thawing of serum did not affect binding capacity. The UBBC of serum stored at -20° C. remained stable over a six month period. In a patient with chronic myelogenous leukemia, no difference in vitamin B₁₂ binding was found between serum collected, as described previously, and heparinized plasma separated from the cellular elements at 4° C. immediately after venipuncture. Serum with increased vitamin B12 binding showed better agreement between duplicate samples than those with normal binding. The vitamin B₁₂ binding values showed a maximum difference in duplicate samples of 15 per cent in serum with binding greater than 4.00 mµg. per ml., 20 per cent with binding from 1.50 to 4.00 mµg. per ml., and 35 per cent in samples with binding less than 1.50 mµg. per ml. If sufficient serum was available, vitamin B₁₂ binding was remeasured when the upper limits of precision were approached. The variation in the serum vitamin B₁₂ concentration, the UBBC, and the TBBC of a normal subject over a two week interval of time is shown in Table II.

TABLE II

Vitamin B_{12} content and binding capacity of serum and the distribution of serum bound vitamin B_{12} as determined at different times in a normal subject

Subject	Samum.			F	raction of v	itamin B12 b	ound to seru	ım
	Serum B ₁ : conc. mµg./ml.	UBBC* mµg./ml.	TBBC† mµg./ml.	Albumin %	α-1 globu- lin %	α-2 globu- lin %	β-globu- lin %	γ-globu- lin %
A. M.								
4/1/56	0.35	1.96	2.31	14	3	28	42	13
4/8/56	0.34	2.20	2.54	14	6	26	37	17
4/15/56	0.33	2.25	2.58	18	0	31	33	18

* UBBC refers to unsaturated vitamin B₁₂ binding capacity.

† TBBC refers to total vitamin B₁₂ binding capacity.

557

	Serum vit. B_{12} concentration $m\mu g./ml.$		UBBC* mµg./ml.		TBBC† mμg./ml.	
	Range	Mean \pm S.D.	Range	Mean \pm S.D.	Range	Mean \pm S.D.
Normal	0.27-1.27	0.64 ± 0.10	1.00-2.40	1.51 ± 0.56	1.32-2.81	2.23 ± 0.43
Chronic myelogenous leukemia	4.20-14.30	8.09 ± 4.55	4.75-14.25	8.87 ± 4.12	10.45-26.05	16.86 ± 7.78

TABLE IIIThe vitamin B12 content and binding capacity of serum in 22 normal subjects as compared to10 untreated cases of chronic myelogenous leukemia

* UBBC refers to unsaturated vitamin B₁₂ binding capacity.

† TBBC refers to total vitamin B₁₂ binding capacity.

Electrophoresis. One ml. of serum and 15 mµg. of Co^{∞} vitamin B₁₂ (in 0.5 ml.) were allowed to bind for one hour at 22° C. and then dialyzed at 4° C. for 48 hours against frequent changes of phosphate buffer, pH 7.3. Then, 0.12 ml. aliquots of the serum containing bound Co^{∞} vitamin B₁₂ were electrophoresed for 18 hours on 4 by 47 cm. Schleicher and Schuell paper No. 2043B, using veronal buffer pH 8.6 (ionic strength, 0.08) and a voltage of 110 to 114. At least four individual strips equivalent to 0.48 ml. of the serum-Co^{∞} vitamin B₁₂ mixture were run on each patient. Strips were then stained by a ninhydrin spray method. No loss of radioactivity occurred after staining the strips. This was in contrast

to the bromphenol blue or amido black methods of staining where considerable losses of radioactivity were encountered. Under the conditions used, the albumin fraction usually moved 9 to 12 cm. from the origin while the gamma globulin moved slightly towards the anode (0.05 to 1.5 cm.). "Free" Co^{∞} vitamin B_{12} (vitamin in saline solution) remained at the origin or moved slightly towards the anode (0.5 to 1 cm.). In serum which had not been dialyzed containing large amounts of unbound Co^{∞} vitamin B_{12} , the free radiovitamin had a mobility similar to that in saline solution, occupying an area just adjacent to or overlapping that occupied by the gamma globulins. Each stained protein fraction was then sepa-

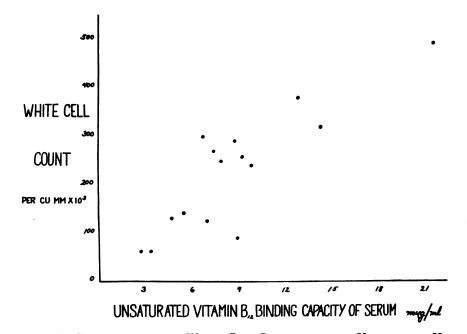


Fig. 1. Correlation of the White Cell Count with the Unsaturated Vitamin B_{12} Binding Capacity in 10 Patients with Chronic Myelogenous Leukemia in Relapse

The above points represent the white cell count and the unsaturated vitamin B_{12} binding capacity of a patient with chronic myelogenous leukemia in relapse. Some patients, studied at different times during one or more relapses, are represented by more than one point. The coefficient of correlation between the above two measurements was 0.88.

Patient		WBC per cu. mm. × 10 ²	Serum B_{12} conc. $m\mu g./ml.$	UBBC mµg./ml.	TBBC mµg./ml.	Therapy
F. C.	10/4/56 10/29/56	3,814 280	14.30 11.53	12.75 1.70	27.05 13.23	X-ray to spleen
	12/7/56	623	3.30	2.75	6.05	
	4/5/57	5,005	6.50	20.00	26.50	X-ray to spleen
	4/15/57	1,506	5.50	14.40	19.90	
	4/20/57	749	6.20	8.99	15.19	
Т. М.	6/13/56	2,109	7.83	9.22	17.05	P-32
	6/28/56	1,942	7.65			
	8/10/56	2,470	7.91	8.72	16.63	X-ray to spleen
	8/23/56	391	7.90	3.79	11.69	
	9/6/56	234 107	7.68 4.20	4.36 1.24	12.04 5.44	
	10/4/56 11/15/56	107	4.20 2.45	0.90	5.44 3.35	
J. C.	10/4/56	2,000	4.35	7.80	12.15	X-ray to spleen
	10/17/56	324	4.05	1.53	5.58	
	11/13/56	286	1.76	1.37	3.13	
	12/13/56	625	3.45	3.40	6.85	
	1/17/57	1,397	5.56	5.50	11.06	
	2/21/57	2,254		6.54		
S. M.	10/23/56	900	7.94	8.96	16.90	Myleran®
	12/13/56	145	3.80	2.90	6.70	
T. E.	9/11/56	766	2.25	5.00	7.25	5 weeks after incomplete response to X-ray, Myleran® begun
	11/15/56	59	2.19	2.18	4.37	
G. L.		185	0.94	1.40	2.34	1 yr. following treatment with Myleran
S. D.		100	1.70	0.90	2.60	6 months following X-ray to spleen
S. B.		1,201	4.20	7.00	11.20	
A. R.		1,311	5.70	4.75	10.45	
R. L.		2,200	4.65	7.45	12.10	
T. W.		3,000	14.00	6.70	20.70	
T. K. V. P.		3,212 1,920	8.90 9.00	14.25 9.85	23.15 18.85	

TABLE IV Tabular summary of vitamin B_{12} data in treated and untreated cases of chronic myelogenous leukemia

rated by cutting out each individual protein fraction of the electrophoretic strip. Each of the combined stained protein fractions was then counted in a sodium iodide well counter. As low counting rates were usually found, each fraction was counted for 10 minutes, with the background for each sample determined by 10 minute counting preceding and following the sample count. The chief binding protein fractions in normal sera (betaand alpha-2 globulins) counted from three-fourths to one and one-half times background, whereas the other fractions counted 10 to 40 per cent above background. In sera with high UBBC's the chief binding protein counted from two to four times background. The binding in each protein fraction was expressed as (a) per cent Co^{$\circ\circ$} vitamin B₁₂ bound calculated by dividing the radioactivity found in each protein fraction by the total radioactivity in all fractions times 100, and as the (b) mµg. of $Co^{\bullet \bullet}$ vitamin B₁₂ bound per ml. calculated from the UBBC and calculation (a). The variation in vitamin B_{12} binding by the serum protein fractions of a normal subject measured over a two week interval of time is shown in Table II.

RESULTS

Serum vitamin B_{12} concentration and binding capacity

Normals. In 22 normal subjects the mean serum vitamin B_{12} concentration was equal to 0.64 mµg. per ml. (range, 0.27 to 1.27 mµg per ml.), the mean UBBC equal to 1.51 mµg per ml. (range, 1.00 to 2.40 mµg. per ml.), and the mean TBBC equal to 2.23 mµg. per ml. (range, 1.32 to 2.81 mµg. per ml.) (Table III).

Chronic myelogenous leukemia. The average serum B_{12} concentration, UBBC, and TBBC were greatly increased over normal in 10 patients with active chronic myelogenous leukemia, the first by a factor of 12, the second by a factor of 6, and the third by a factor of 7 (Table III). An excellent correlation was found between the white blood cell count and the UBBC in patients in relapse, the

coefficient of correlation equal to 0.88 (Figure 1). A poorer correlation was found between the white blood cell count and the serum B_{12} concentration (a coefficient of correlation of 0.58). With successful treatment of the disease (X-ray or Myleran[®]), the UBBC fell rapidly towards normal, paralleling the decline in white blood cell count, this phenomena being noted as soon as five days after the onset of therapy. Restoration of normal UBBC levels occurred within two weeks after the onset of treatment in one patient (Patient J. C., Table IV). By contrast, the concentration of vitamin B₁₂ in the serum did not begin to decline for as long as two to three weeks after the onset of treatment. Even in complete remission serum B_{12} levels remained elevated with the sole exception of Patient G. L. (Table IV). With relapse, the serum vitamin B_{12} level and the UBBC rose together.

tent, the UBBC, and TBBC were normal in three patients with chronic lymphocytic leukemia except for a slight increase in TBBC in one of the three (Table V). Two patients with chronic monocytic leukemia had elevated serum B_{12} levels, UBBC's, and TBBC's approaching or equalling that found in chronic myelogenous leukemia. In contrast to chronic myelogenous leukemia, a poor correlation existed between the white blood cell count and the UBBC. After a partial response to X-ray treatment, the serum B₁₂ level fell to normal whereas the UBBC and TBBC were elevated (Patient T. D.). One of three patients with acute leukemia had a moderate increase in UBBC and TBBC associated with a normal serum B_{12} level. This patient had a dramatic clinical response to cortisone associated with a decrease in the UBBC and TBBC to normal.

Leukocytosis Eight patients with neutrophilic on-leukocytoses due to varying causes with or with-

Other leukemias. The serum vitamin B_{12} con-

	TABLE V
Tabular summary of vitamin B_{12} data	in cases other than chronic myelogenous leukemia

	Diagnosis and clinical comments	WBC per cu. mm. × 10 ²	Serum B ₁₂ conc. $m\mu g./ml.$	UBBC mµg./ml.	TBBC mµg./ml.
Chronic 1	ymphocytic leukemia				
T. B. G. M. M. G.		4,000 610 3,866	1.06 0.64 1.27	1.65 1.12 1.97	2.71 1.76 3.24
Chronic :	monocytic leukemia				
Т. D. J. M.	9/19/56 11/15/56 (Partial response to X-ray treatment)	486 129 32	6.00 0.50 1.90	9.00 5.50 5.20	15.00 6.00 7.10
Acute let	ıkemia				
T. C. B. M. S. C.	4/20/57 4/29/57 (Good response to cortisone)	154 1,862 250 41	0.23 0.73 0.26 0.20	1.74 1.26 3.97 1.96	1.97 1.99 4.23 2.16
Leukocy	toses				
C. C. T. D. J. F. J. E. T. C. J. A. S. H.	Pulmonary tuberculosis and bacterial pneumonia Polycythemia vera with leukemoid reaction Epidermoid carcinoma of throat with metastases Septicemia Pulmonary tuberculosis with leukemoid reaction Carcinoma of lung with secondary infection Polycythemia vera, postoperative after lobectomy for	352 580 322 484 300 300 534	0.98 0.85 3.73 0.42 0.40 0.50 0.25	1.55 6.30 5.60 3.86 2.79 2.70 2.94	2.53 7.15 9.33 4.28 3.19 3.20 3.19
Т. А.	carcinoma of lung ? Myeloid metaplasia	692	0.23	6.15	6.89
Polycyth	emia vera				
S. M. T. S.		100 144	0.57 1.96	2.40 1.48	2.97 3.44
Miscella	neous				
J. R.	Chronic pancytopenia of ? etiology	28	0.27	2.75	3.02

	All	bumin α-1 globulin		lobulin	α-2 g	lobulin	β-glo	obulin	γ -g	obulin
Subject	Vit. B ₁₂ bound %	Vit. B ₁₂ bound mµg./ml.	Vit. B ₁₂ bound %	Vit. B_{12} bound $m\mu g./ml.$	Vit. B ₁₂ bound %	Vit. B ₁₂ bound mµg./ml.	Vit. B12 bound %	Vit. B_{12} bound $m\mu g./ml.$	Vit. B ₁₂ bound %	Vit. B12 bound mµg./ml.
T. M. F. M. J. A. H. L. J. C. A. C. A. M. F. M. S. M. F. M. T. G. M. S. S. F. M. S. S. F. M. L. P. R. T. B.	11 5 6 7 4 8 18 8 4 13 11 11 3 6 7 8 16 12	0.18 0.06 0.11 0.09 0.08 0.09 0.35 0.18 0.10 0.21 0.26	7 8 7 6 1 3 8 0 4 0 2 5 4 2 4 5 6 6	0.11 0.10 0.12 0.08 0.02 0.03 0.16 0.00 0.10 0.00 0.05	29 32 23 18 16 29 29 31 47 33 34 19 17 32 31 38 16 24	$\begin{array}{c} 0.47\\ 0.40\\ 0.41\\ 0.26\\ 0.31\\ 0.57\\ 0.68\\ 1.14\\ 0.54\\ 0.82 \end{array}$	32 38 48 49 66 43 37 44 32 40 56 41 57 45 48 33 41 45	$\begin{array}{c} 0.52\\ 0.48\\ 0.85\\ 0.61\\ 1.29\\ 0.46\\ 0.73\\ 0.97\\ 0.78\\ 0.65\\ 1.34\end{array}$	21 17 16 20 13 17 8 17 13 14 17 24 19 15 10 16 21 13	0.34 0.21 0.28 0.25 0.18 0.16 0.37 0.31 0.23 0.41
Range Mean ± standard	3–18	0.06–0.35	0–9	0-0.12	16–47	0.26–1.14	32–66	0.46–1.34	10–24	0.16-0.4

TABLE VI

The binding of Co^{60} labeled vitamin B_{12} by the protein fractions of serum from normal subjects

out leukemoid reactions were studied (Table V). The commonest finding was a normal serum vitamin B_{12} concentration and an elevated UBBC and TBBC (six of eight patients). One patient (J. F.) had an elevated serum vitamin B_{12} concentration, UBBC, and TBBC approximating those found in chronic myelogenous leukemia while the last patient had a normal serum B_{12} concentration, UBBC, and TBBC.

Other diseases. One patient with polycythemia vera had a normal serum vitamin B_{12} level and UBBC but a slightly increased TBBC while another patient with this disease had an elevation of vitamin B_{12} content and TBBC. A patient with chronic pancytopenia of unknown etiology had a normal serum vitamin B_{12} level with a slight increase in UBBC and TBBC.

Electrophoresis of serum

Normals. In 16 of 18 normal subjects the beta globulins bound the greatest per cent of the added Co^{60} vitamin B_{12} , average of 44 per cent, range, 32 to 66 per cent (Table VI). The alpha-2 globulins were also an important binding fraction containing an average of 28 per cent of the added Co^{60} vitamin B_{12} , with a range of 16 to 47 per cent, and

were the chief binding proteins in the two other subjects. Smaller amounts of radioactivity were bound by the gamma globulin and albumin fractions, whereas binding by the alpha-1 globulins was negligible (average, 4 per cent; range, 0 to 9 per cent). The amount of vitamin B_{12} bound per protein fraction expressed as $m\mu g$. per ml. is also shown in Table VI.

Chronic myelogenous leukemia. In contrast to normal subjects the alpha-1 or alpha-2 globulins were the main binding protein fractions of the serum for the added Co⁶⁰ vitamin B₁₂ (Table VII). Thus, the alpha-1 globulins contained an average of 38 per cent of the added Co⁶⁰ vitamin B_{12} , approximately nine times that of normal sera, and was the main binding protein in 5 of the 10 patients. The alpha-2 globulins bound an average of 34 per cent of the added Co^{60} vitamin B_{12} , approximately 20 per cent more than that of normal serum, and was the main binding protein in four patients. When expressed in $m\mu g$. per ml. the increase in Co⁶⁰ vitamin B₁₂ binding by the alpha-1 globulins was approximately 47 times greater than that of normal serum as compared to the sixfold increase over normal by the alpha-2 globulins. The percentage of added Co⁶⁰ vitamin

AARON MILLER

TABLE V	IIV
---------	-----

	Α	lbumin	a-1 globulin		a-2 globulin		β-globulin		γ-globulin	
Patient	Vit. B ₁₂ bound %	Vit. B ₁₂ bound mµg./ml.								
Т. М.	3	0.28	56	5.16	16	1.48	10	0.92	15	1.38
S. B.	7	0.49	25	1.75	24	1.68	31	2.17	13	0.91
A. R.	9	0.43	24	1.14	34	1.62	19	0.90	14	0.66
F. C.	3	0.38	56	7.14	29	3.70	10	1.28	2	0.26
S. M.	4	0.36	52	4.66	23	2.06	13	1.17	8	0.72
J. C.	4	0.31	30	2.34	33	2.57	23	1.79	10	0.78
J. C. R. L.	1	0.07	21	1.57	55	4.10	18	1.34	5	0.37
T. W.	0	0.00	42	2.81	42	2.81	10	0.67	Ğ	0.40
T. K.	1	0.14	36	5.13	52	7.41	7	1.00	4	0.57
V. P.	4	0.39	39	3.84	33	3.25	20	1.97	$\overline{4}$	0.39
Range	09	0.00-0.49	21–56	1.14-7.14	16-55	1.62-7.41	7-31	0.67-2.17	4–14	0.26-1.38
$\begin{array}{c} \text{Mean} \ \pm \\ \text{standard} \end{array}$		0 00 + 0 40								
deviation	4 ± 2	0.29 ± 0.18	38 ± 13	3.55 ± 2.29	34 ± 12	3.07 ± 2.04	16 ± 7	1.32 ± 0.66	8±5	0.64 ± 0.3

The binding of cobalt⁶⁰ labeled vitamin B₁₂ by the protein fractions of serum from patients with chronic myelogenous leukemia in relapse

 B_{12} bound by the beta globulins was decreased to about one-third that found for normal serum while slighter decreases were also found for the gamma globulin and albumin fractions. Despite the decrease in the per cent of added Co⁸⁰ vitamin B_{12} bound by these fractions, modest elevations in the $m\mu g$. of vitamin B_{12} bound per ml. of serum were found although these values overlapped those found in normal serum. With successful treatment, the serum protein binding pattern reverted towards that found in normal subjects and, with complete remission, a normal pattern of binding was found (Table VIII).

Other leukemias. The binding of Co^{60} vitamin B_{12} by the serum proteins of patients with chronic lymphocytic leukemia was similar to that of normal serum (Table IX). Elevated binding by both the alpha-1 and alpha-2 globulins was found in one patient with chronic monocytic leukemia, whereas in two other patients with chronic mono-

Patient	All	oumin	α-1 ε	lobulin	α -2 globulin		β-gl	obulin	γ-gl	lobulin
	Vit. B13 bound %	Vit. B12 bound mµg./ml.	Vit. B12 bound %	Vit. B12 bound mµg./ml.	Vit. B12 bound %	Vit. B12 bound mµg./ml.	Vit. B12 bound %	Vit. B12 bound mµg./ml.	Vit. B12 bound %	Vit. B12 bound mµg./ml
J. C.										
10/4/56 Rx	4	0.31	30	2.34	33	2.57	23	1.79	10	0.78
10/17/56 (After Rx)	$\overline{2}$	0.03	8	0.12	28	0.42	39	0.60	23	0.35
1/17/57 (Relapse)	4	0.22	11	0.61	42	2.31	27	1.49	16	0.88
2/21/57 (Relapse)	4 2	0.13	22	1.35	42	2.75	22	1.35	12	0.79
F. C.										
10/4/56 Rx	3	0.38	56	7.14	29	3.70	10	1.28	2	0.26
10/29/56 (After Rx)	11	0.19	27	0.46	22	0.37	26	0.44	14	0.24
12/7/56 (Relapse)	2	0.06	20	0.55	55	1.51	18	0.50	5	0.14
4/5/57 Rx	$\overline{2}$	0.40	35	7.00	52	10.40	8	1.60	3	0.60
4/15/57 Rx	$\overline{2}$	0.29	40	5.76	47	6.77	7	1.01	4	0.58
4/20/57	7	0.63	25	2.25	51	4.59	12	1.08	4 5	0.45
G. L. Remission	6	0.08	7	0.10	46	0.64	34	0.48	7	0.10

TABLE VIII The effect of treatment on the binding of cobalt⁶⁰ labeled vitamin B_{12} by the protein fractions of serum

	Albumin		a-1 globulin		α -2 globulin		β-gl	obulin	γ -globulin	
Diagnosis	Vit. B12 bound %	Vit. B12 bound mµg./ml.	Vit. B ₁₂ bound %	Vit. B12 bound mµg./ml.	Vit. B12 bound %	Vit. B12 bound mµg./ml.	Vit. B12 bound %	Vit. B12 bound mµg./ml.	Vit. B12 bound %	Vit. B12 bound mµg./ml
Chronic lymphatic leukemia										
T. B. G. M.	8 7	0.13 0.14	3 2	0.05 0.04	30 31	0.50 0.61	47 45	0.78 0.89	12 15	0.19 0.30
Chronic monocytic leukemia										
J. M. T. D. 11/15/56	4	0.21	3	0.16	40	2.08	41	2.13	12	0.62
(After Rx)	1	0.06	18	0.99	54	2.97	22	1.21	5	0.28
Acute leukemia										
Т. С.	8	0.14	6	0.11	20	0.35	35	0.61	31	0.54
S. C. 4/20/57 4/29/57	6	0.24	3	0.12	39	1.55	39	1.55	13	0.52
(After Rx)	11	0.22	3	0.06	30	0.59	49	0.96	7	0.14
Leukocytoses										
J. F.	0	0.00	25	1.40	58	3.25	14	0.78	3	0.17
J. A. S. H.	7 7	0.19 0.20	5 6	0.14 0.18	18 18	0.49 0.53	45 53	1.22 1.56	25 16	0.68 0.4 7

TABLE IX The binding of cobalt⁶⁰ labeled vitamin B₁₂ by the protein fractions of serum from patients with varying types of leukemia and leukocytoses

cytic leukemia and acute leukemia, increased binding by the alpha-2 globulins was found (Table IX).

Leukocytoses. Patient J. F., with the increase in serum vitamin B_{12} concentration, UBBC, and TBBC, also demonstrated increased binding of Co⁶⁰ vitamin B_{12} by the alpha-1 and alpha-2 globulins (Table IX). Two other patients with slight increases in the UBBC and TBBC had normal patterns of Co⁶⁰ vitamin B_{12} binding by the serum proteins.

DISCUSSION

Amounts of vitamin B_{12} bound by the sera of normal subjects as determined in this study differ greatly from those previously obtained using microbiological assay procedures (3, 4, 5). Such differences in results are not surprising in view of the different methods employed. The binding of vitamin B_{12} is defined physicochemically in a dialysis method, *i.e.*, by the ability of the free vitamin to traverse a cellulose membrane. This experimental system is not subject to the variables inherent in microbiological assay procedures.

A relatively constant amount of vitamin B_{12} was bound by normal and leukemic sera when in-

creasing concentrations of Co^{60} vitamin B_{12} were allowed to bind with normal and leukemic sera before dialysis. A similar limit in the vitamin B_{12} binding has been reported using a dialysis system (10). Recently, others have reported different results using a dialysis method differing slightly from that used in this study (11). They found no limitation in the amount of vitamin B_{12} bound by normal serum when the concentration of Co^{60} vitamin B_{12} was progressively increased. No reason for these differences in results is apparent at present.

In normal sera, using microbiological methods, the alpha globulins have been found to be the chief binding proteins for added vitamin B_{12} (4). However, the beta globulins bound the greatest amount of added Co⁶⁰ vitamin B_{12} in the present study. The alpha-2 globulins were next in vitamin B_{12} binding ability but only negligible amounts were bound by the alpha-1 globulins. In previous investigations, excess vitamin B_{12} was added to serum, the serum proteins fractionated by paper electrophoresis, and the vitamin B_{12} content of the isolated protein fractions then determined. The considerable vitamin B_{12} found in the beta globulin fraction was ascribed to "free" vitamin B_{12} . *i.e.*, that available to Euglena gracilis without preliminary heating of the serum. However, we have found that a large fraction of the Co⁶⁰ vitamin B₁₂ "bound" by normal serum as determined by dialysis is measured as "free" by the Euglena gracilis assay (12). The vitamin B_{12} in human liver homogenates has been found to be "free" as measured by Euglena gracilis even though the vitamin B₁₂ was associated with a protein which had a mobility similar to the beta globulins on electrophoresis (13). Actually, on electrophoresis "free" vitamin B_{12} (the vitamin in saline solution) moves with the endosmotic flow and not as a beta globulin. It seems apparent that the differences in our findings and those previously reported are due to the different methods employed for the determination of vitamin B_{12} binding. The interpretation of the Euglena gracilis method of determining serum vitamin B_{12} binding is difficult if the vitamin B₁₂ moving with a protein on electrophoresis can be measured as "free."

It is of interest that the vitamin B_{12} content of normal serum is primarily bound to the alpha-1 and alpha-2 globulins (4), whereas added vitamin B_{12} was principally bound by the beta and alpha-2 globulins. The interpretation of these findings is not certain. It may be that the alpha-1 globulins are already saturated with vitamin B₁₂ accounting for their inability to bind additional vitamin B_{12} , whereas the alpha-2 globulins are only partially saturated and still capable of binding added vitamin B_{12} . The ready binding of added vitamin B_{12} by the beta globulins could be due to an in vitro avidity of the protein for the vitamin having no significance in vivo. However, in vivo binding of vitamin B_{12} by the beta globulins cannot be ruled out. Small amounts of the serum vitamin B_{12} content were found bound to the beta globulins in some normal sera (4). A protein in human liver homogenates resembling a beta globulin on electrophoresis is also capable of binding vitamin B_{12} (13). The small amount of vitamin B_{12} bound to the beta globulins in vivo could result if its rate of serum turnover was rapid as compared to the vitamin bound to the alpha globulins.

The vitamin B_{12} concentration, UBBC, and TBBC were all greatly elevated in chronic myelogenous leukemia as has been noted by other workers (1-3). The increase in UBBC was a labile abnormality decreasing rapidly to normal

with the onset of treatment in contrast to the gradual decline in serum vitamin B₁₂ levels following treatment. Of the other leukemias studied, only the patients with chronic monocytic leukemia had elevations in vitamin B₁₂ concentration, UBBC, and TBBC approaching that found in chronic myelogenous leukemia. Elevated vitamin B₁₂ levels have also been reported in monocytic leukemia (3, 14), although no increase in binding capacity was found using the Euglena gracilis binding method (3). Similarities between the monocytic and myelogenous leukemic processes are suggested by these findings. Patients with granulocytic leukocytoses of varying etiologies usually had normal serum vitamin B₁₂ levels with increased UBBC's and TBBC's although the increase in UBBC and TBBC was usually not in the range found in chronic myelogenous leukemia. Thus, serum vitamin B₁₂ levels were more helpful in distinguishing these patients from those with chronic myelogenous leukemia. However, this was not uniformly so, and Mollin and Ross have reported increased serum vitamin B₁₂ levels in two patients with chronic leukocytoses (2).

In contrast to the findings in normal sera, the alpha-1 and alpha-2 globulins were the proteins responsible for tremendous increase in the UBBC of chronic myelogenous leukemic sera. The increase in binding by the alpha-1 globulins was most striking as negligible amounts of vitamin B_{12} were bound by this protein in normal serum. Similar increased binding of added vitamin B_{12} by the alpha-1 and alpha-2 globulins of myelogenous leukemic sera had been found, using microbiological assay techniques (1). However, the difference between normal and myelogenous leukemic sera was not described by the above workers since they found the alpha-1 and alpha-2 globulins of normal serum to be the chief binding proteins for added vitamin B₁₂. The vitamin B₁₂ content of myelogenous leukemic serum is also bound to the alpha globulins (1). It is of interest that, following treatment, the alpha globulins containing the vitamin B_{12} content of the serum were cleared slowly from the circulation, whereas the alpha globulins responsible for the increased binding of added vitamin B₁₂ disappeared rapidly from the serum. Patients with an increased UBBC due to diseases other than chronic myelogenous leukemia always had increased binding of vitamin

 B_{12} by the alpha-2 globulins but only occasionally had elevated alpha-1 globulin binding. This would suggest that the increase in alpha-1 globulin binding of vitamin B_{12} is the more specific change in chronic myelogenous leukemia. The percentage Co^{60} vitamin B_{12} bound by the other three protein fractions of myelogenous leukemic sera was decreased, whereas the Co^{60} vitamin B_{12} bound in $m\mu g$. per ml. was slightly increased as compared with the increase in alpha-1 or alpha-2 globulin binding.

The cause of the increased concentration of vitamin B₁₂ in chronic myelogenous leukemia serum is unknown. The rise in serum vitamin B_{12} concentration to levels greater than the TBBC of normal serum and the invariable increase in UBBC both suggest an etiological relationship between the increased binding capacity and the hypervitaminemia. If vitamin B_{12} is bound more firmly than normal by the binding substances in myelogenous leukemic sera, a decreased serum turnover of the vitamin with a resultant rise in its serum concentration would ensue. Rates of serum turnover of bound vitamin B₁₂ have been determined in chronic myelogenous leukemia following the intravenous administration of Co⁶⁰ vitamin B_{12} (15). However, the estimation of turnover rates for normal subjects was not possible due to the small amounts of bound Co⁶⁰ vitamin B₁₂ remaining in the serum after 24 hours. The absence of hypervitaminemia despite the increase in UBBC in diseases other than chronic myelogenous leukemia is somewhat against such a hypothesis. Hypervitaminemia could also result from an excess amount of vitamin B_{12} entering the serum without any change in the serum turnover rate of the vitamin. Myelogenous leukemic leukocytes dying intravascularly could be the source of the added vitamin (2, 16). Against such a hypothesis is the absence of an increased concentration of vitamin B₁₂ in myelogenous leukemic leukocytes (2, 16). If the survival time of chronic myelogenous leukemic leukocytes was shorter than that found in the other leukemias, an increased amount of vitamin B₁₂ could also be presented to the serum. However, studies of white cell survival have demonstrated that the leukocytes in chronic myelogenous leukemia have a longer survival time than those of the acute leukemias (17).

The chemical nature of the vitamin B_{12} binding substances in myelogenous leukemic sera moving electrophoretically with the alpha globulins is also obscure. Whether these substances are proteins found normally in serum, but increased in chronic myelogenous leukemia, proteins of the serum that have been altered by the disease process, or abnormal tissue proteins foreign to normal serum, cannot be answered by this study.

SUMMARY

1. An equilibrium dialysis method for the determination of the vitamin B_{12} binding capacity of serum (UBBC) has been described. The serum concentration of vitamin B_{12} , the UBBC, and the total vitamin B_{12} binding capacity (TBBC) of sera from normal subjects and patients with chronic myelogenous leukemia, other leukemias and leukocytoses have been determined.

2. In normal subjects, the average serum vitamin B_{12} concentration was equal to 0.64 mµg. per ml., the UBBC to 1.51 mµg. per ml., and the TBBC to 2.23 mµg. per ml.

3. Patients with chronic myelogenous leukemia had an average serum vitamin B_{12} concentration of 8.09 mµg. per ml., a UBBC of 8.87 mµg. per ml., and a TBBC of 16.86 mµg. per ml. Following treatment, the UBBC fell rapidly to normal, while the decline in serum vitamin B_{12} concentration was a delayed and more gradual one.

4. Two patients with chronic monocytic leukemia, and one patient with leukocytosis had an increase in serum vitamin B_{12} concentration and UBBC. Six of eight patients with leukocytosis and one of three patients with acute leukemia had normal serum vitamin B_{12} levels but elevated UBBC's. Patients with chronic lymphocytic leukemia had a concentration of vitamin B_{12} and UBBC within the normal range.

5. The beta globulins bound an average of 44 per cent of the added Co⁶⁰ vitamin B₁₂ (average, 0.79 mµg. per ml.) and was the chief binding protein in 16 of 18 normal subjects. The alpha-2 globulin was next in vitamin B₁₂ binding ability (an average of 28 per cent of the added Co⁶⁰ vitamin B₁₂ and 0.59 mµg. per ml.). The alpha-1 globulins bound the least Co⁶⁰ vitamin B₁₂ of any of the five protein fractions.

6. The alpha-1 globulins were the chief binding protein in 5 of 10 patients with chronic myeloge-

nous leukemia, binding an average of 38 per cent of the added Co⁶⁰ vitamin B₁₂ (3.55 mµg. per ml.). The alpha-2 globulins were the chief binding protein in 4 of the 10 patients, binding an average of 34 per cent of the added Co⁶⁰ vitamin B₁₂ (3.07 mµg. per ml.). With treatment of the disease, the pattern of vitamin B₁₂ binding by the serum proteins returned towards normal.

7. An increase in the binding of Co⁶⁰ vitamin B_{12} by the alpha-1 and alpha-2 globulins was noted in one patient with chronic monocytic leukemia, and one other patient with leukocytosis. Four other patients with elevated UBBC's of varying degree, due to diseases other than chronic myelogenous leukemia, had an increase in vitamin B_{12} binding by the alpha-2 globulins but no increase in alpha-1 globulin binding.

8. In addition to an increased serum concentration of, and binding capacity for, vitamin B_{12} in chronic myelogenous leukemia, there is an abnormal distribution of added vitamin B_{12} among the serum protein fractions in this disease.

ACKNOWLEDGMENTS

We are indebted to Merck and Company who kindly supplied the cobalt^{∞} labeled vitamin B₁₂ used in this study.

REFERENCES

- Beard, M. F., Pitney, W. R., and Sanneman, E. H. Serum concentrations of vitamin B₁₂ in patients suffering from leukemia. Blood 1954, 9, 789.
- Mollin, D. L., and Ross, G. I. M. Serum vitamin B₁₂ concentrations in leukaemia and in some other haematological conditions. Brit. J. Haemat. 1955, 1, 155.
- Raccuglia, G., and Sacks, M. S. Vitamin B₁₂ binding capacity of normal and leukemic sera. J. Lab. clin. Med. 1957, 50, 69.

- Pitney, W. R., Beard, M. F., and Van Loon, E. J. Observations on the bound form of vitamin B₁₂ in human serum. J. biol. Chem. 1954, 207, 143.
- Lear, A. A., Harris, J. W., Castle, W. B., and Fleming, E. M. The serum vitamin B₁₂ concentration in pernicious anemia. J. Lab clin. Med. 1954, 44, 715.
- Ross, G. I. M. Vitamin B₁₂ assay in body fluids using Euglena gracilis. J. clin. Path. 1952, 5, 250.
- Klotz, I. M., Walker, F. M., and Pivan, R. B. The binding of organic ions by proteins. J. Amer. chem. Soc. 1946, 68, 1486.
- Smith, E. L., Ball, S., and Ireland, D. M. B₁₂ vitamins (cobalamins). 2. Neutral, basic and acidic cobalamins. Biochem. J. 1952, 52, 395.
- 9. Hine, G. J., and Miller, A. Large plastic well makes efficient gamma counter. Nucleonics Oct., 1956, 14, 78.
- Rosenthal, H. L., and Sarett, H. P. The determination of vitamin B₁₂ activity in human serum. J. biol. Chem. 1952, 199, 433.
- Bertcher, R. W., and Meyer, L. M. Co[∞] vitamin B₁₂ binding capacity of normal human serum. Proc. Soc. exp. Biol. (N. Y.) 1957, 94, 169.
- 12. Miller, A. Unpublished observations.
- Pitney, W. R., Beard, M. F., and Van Loon, E. J. The vitamin B₁₂ content of electrophoretic fractions of liver homogenates. J. biol. Chem. 1955, 212, 117.
- Beard, M. F., Pitney, W. R., Sanneman, E. H., Sakol, M. J., and Moorhead, H. H. Serum concentrations of vitamin B₁₂ in acute leukemia. Ann. intern. Med. 1954, 41, 323.
- Miller, A., Corbus, H. F., and Sullivan, J. F. The plasma disappearance, excretion and tissue distribution of cobalt⁶⁰ labelled vitamin B₁₂ in normal subjects and patients with chronic myelogenous leukemia. J. clin. Invest. 1957, 36, 18.
- Thomas, J. W., and Anderson, B. B. Vitamin B₁₂ content of normal and leukaemic leukocytes. Brit. J. Haemat. 1956, 2, 41.
- Osgood, E. E., Tivey, H., Davison, K. B., Seaman, A. J., and Li, J. G. The relative rates of formation of new leukocytes in patients with acute and chronic leukemias. Cancer (Philad.) 1952, 5, 331.