STUDIES ON ALCOHOL DIURESIS. II. THE EVALUATION OF ETHYL ALCOHOL AS AN INHIBITOR OF THE NEUROHYPOPHYSIS 1, 2

By CHARLES R. KLEEMAN, MILTON E. RUBINI, EZRA LAMDIN, AND FRANKLIN H. EPSTEIN

(From the Department of Internal Medicine, Yale University School of Medicine, New Haven, Conn.)

(Submitted for publication September 7, 1954; accepted November 24, 1954)

In the normally hydrated semi-recumbent individual, alcohol causes a rise in urine flow that is characterized by an increase of free water clearance (CH₂O) and a decreased excretion of sodium, potassium and chloride (1). The evidence to date strongly suggests that the rise of CH₂O is caused by inhibition of the release of antidiuretic hormone.

The present study was undertaken to evaluate the effect of alcohol on the excretion of water and solutes in physiologic states in which alterations in the activity of antidiuretic hormone have been demonstrated or suggested. The following states were studied: 1) Minimal antidiuretic hormones (ADH) activity produced by sustained positive loads of water; 2) Increased ADH activity produced by infusions of hypertonic sodium chloride solutions, a) during water diuresis with high urine flows (10 to 15 cc. per min.), and b) in subjects with low urine flows (1 to 2 cc. per min.); 3) Increased antidiuretic activity produced by venous congestion of the limbs.

MATERIALS, METHODS AND RESULTS

Subjects were normal males, aged 25 to 32. No control of diet prior to the day of study was attempted. One to one and a half hours after a light breakfast the subjects voided and reclined in a semi-recumbent position. All studies were begun at 8:30 to 9:00 A.M.; diurnal variations in urinary flow and composition (2) were therefore presumably similar in all experiments. Alcohol was given as 120 cc. of 100 proof bourbon whisky imbibed over a 10-minute period. Techniques for collection of blood and urine and chemical methods have been described in the previous paper (1). In all studies insensible water loss was assumed to be approximately 50 cc. per hour. Changes in extracellular

space were calculated approximately from changes in the chloride space (3), assuming an initial extracellular volume of 20 per cent of body weight. Changes in plasma volume were calculated from changes in hemoglobin and hematocrit (1). Urine flow was divided into two fractions:

Osmolar clearance (Cosm)

= milliosmols per kilo of urine milliosmols per kilo of plasma

× urine flow (cc. per min.)

Free water clearance (C_{H20}) = urine flow $-C_{oam}$

Group I. Effect of alcohol during water diuresis (Table I, Figure 1C)

A positive water balance was induced in two semirecumbent subjects by drinking one liter of water, and was maintained by infusing 4 per cent fructose solution intravenously and administering supplemental water by mouth. The accuracy of this technique was checked by weighing the subject at the beginning and the end of each experiment. Fructose solution was chosen because of its minimal effect on the total hexose in the blood. By limiting the rate of infusion to 8 cc. per minute or less, no reducing substances could be detected in the urine by qualitative test with Benedict's solution. After a maximal steady urine flow had been maintained for at least two 30-minute periods, alcohol was imbibed. Urine was collected at 15 to 30-minute intervals during the next three hours.

Under these circumstances, alcohol did *not* induce a further increase in urine flow or CH₂0 (Figure 1C). If large positive loads of water (1000 cc.) completely inhibit ADH release ("physiologic diabetes insipidus"), this result would be expected.⁵ The rates of excretion

¹ Supported in part by a Grant from the U. S. Public Health Service.

² Presented in abstract form at the meeting of the American Society for Clinical Investigation, Atlantic City, May 2-5, 1954.

⁸ Major, MC, USA.

⁴ Postdoctorate Research Fellow of the U. S. Public Health Service.

⁵ The statement that maximum water diuresis is associated with complete inhibition of ADH release or so-called "physiologic diabetes insipidus" probably is true for the recumbent and semi-recumbent positions only. In unpublished experiments the authors have demonstrated that when a positive water load of 1000 cc. is maintained, the maximum urinary flow and free water clearance (CH₂O) attained in the standing or 45° position were further increased by lying down. This suggests a continual "tonic" release of ADH in the upright positions in spite of the sustained water load or non-hormonal factors blocking the maximum rise in urinary flow.

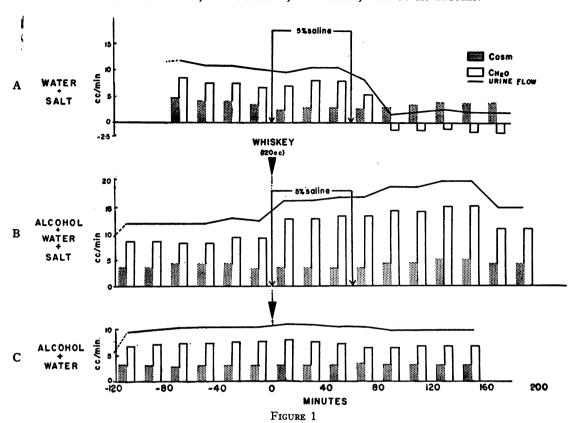
			+770		% %	•		+	+17	++ 10 10 10	717	-								
			Osmolarity	Corr.*	mOsm./	303		290	288	287 285	290		700			700	280		280	
			Osmo	Obs.	mosm./	303		290	303	313 314	312		700			767	38		301	
		Blood		Hd	Units							7 30	86.7				7.33		7.44	
•				Alc.	m8. %							•	>			•	105	8	20	riod.
				ฮ	mEq./L.	105.0		99.5	101.2	100.7	103.0	105 5	200			7 101	101.5		101.7	of this pe
	without alcohol			¥	mEq./L. mEq./L. mEq./L.	4.64		4.78	3.59	3.07 3.07	3.49	8	3			3 90	4.12		3.92	0 minutes
TABLE I				Na	mEq./L.	146.7		140.6	142.1	142.2	142.0	140 5	2			137.0	138.0		137.0	ring first 1
	with and		ıin.	Creat.	.99	126	130	127 132	148	139	145 140	i		132	130	121	125	136	122	‡ Alcohol imbibed during first 10 minutes of this period.
	Group I—1000 cc. positive H ₂ O load with and without alcohol		Clearances/min.	Free	<i>cc</i> .	-0.6		4.7.	7.8	7.3	6.9 7.0	-24	-1.2	4. r	0.0	7.5	6.4	8 V	5.0	Alcohol in
			Clea	Osm.	<i>c</i> c.	2.2	7.80 7.80 7.80	3.0	3.1	2.9	2.7	3.0	3.1	9.0	3.5	7.7	7.7	2.6 5.6	2.3	
				Vol.	3	9.1	50.0 8.0.0	10.5 10.5	10.9	10.2	9.6 9.7	9.0	2.0	1.8 1.3	12.2	9.0 7.0	80	4.0	8.2	† PV = Plasma volume.
	I—100	e e	1.	Osm.*	μOsm.	650	820	880	880	95	785 795	98	8	1,030	930	200	670	27.0	650	= Plas
	Group	Urine	Excretion rates/min.	TA	μEq.	40	y (- 1	-0	0,	- 1- 0	o, ∞	11	4	22	œ :	~ •	919	25	61	+ P.
			tion ra	NH,	μEq.	61	384	35.	39	36	34	33	58	22	78	88	8	31	27	alcohol.
			Excre	ס	μEq.	121	3=5	202	129	122	88	157	180	133	46	\$ &	8;	6 2	48	
				×	μEq.	25	34:	38	33	163	14	49	87	<u> </u>	7,	388	35	212	21	ibution
				Na	μEq.	113	888	113	127	122	30	149	295	113	8	22	25	8	78	lar contr
				Hd	Units			6.3	2.6	85 M	9:5 6:2	0.9	6.9 6.4	9.0	6.3	6.3	9.5 9	6.1	0.0	rity—osme
				Time	Min.	25	88	27	31	3 28	3.5	57	æ •	24	724	37	51‡	3	41	* Observed osmolarity—osmolar contribution of
				Subject	ž	į	Exp. 1					н.	Fen 2	Tap. 4						* Obser

of Na and Cl did not decrease after alcohol ingestion and although the urine became more acid, excretion of ammonium was not enhanced. These results contrast sharply with the findings when alcohol is administered to subjects with low or moderate urinary flows (1).

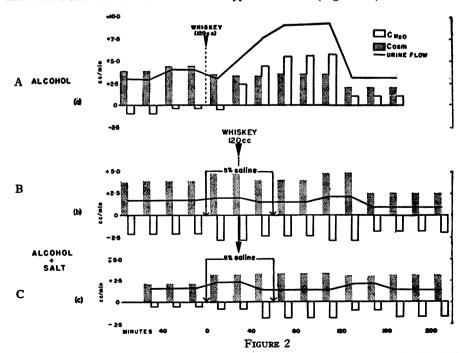
Group IIa. Effect of the simultaneous administration of alcohol and hypertonic saline to water-loaded subjects (Table IIA, Figure 1A and 1B)

Positive water balances were achieved in four experiments in a manner similar to that described for Group I. In two control tests (No. 1 and No. 2 Table IIA) 500 cc. of hypertonic saline (5 to 6 per cent) was infused without alcohol. In two further experiments (No. 3 and No. 4, Table IIA), alcohol was imbibed simultaneously with the beginning of the hypertonic infusion.

The administration of hypertonic saline without alcohol, at the height of a water diuresis, was followed by a prompt decrease in urine flow and free water clearance (Figure 1A). In contrast, the subjects receiving alcohol not only failed to show an antidiuresis, but actually increased their flow of urine above the levels reached during maximal water diuresis (Figure 1B). Free water clearance (CH_{2O}) increased in spite of a 4 to 5 per cent rise in the osmolarity of the serum. It is apparent that alcohol effectively blocked the antidiuretic response to hypertonic saline.


Group IIb. Effect of alcohol on the antidiuresis following hypertonic saline in subjects with low urine flows (Table IIB, Figure 2)

In two subjects, 300 cc. of 5 to 6 per cent saline were infused intravenously after a suitable control period. Approximately 30 minutes after starting the infusion alcohol was imbibed.


In neither subject did a water diuresis occur after alcohol. Prior administration of hypertonic saline, with a consequent increase in the effective osmotic pressure of extracellular fluid, presumably induced the release of increased amounts of ADH from the posterior pituitary (4). Since alcohol affects neither exogenous ADH nor the ability of the tubules to respond to this hormone (5) an excess of circulation ADH probably masked the inhibitory effect of alcohol upon the supraopticohypophyseal system in these experiments.

Group III. Effect of alcohol on the antidiuresis of venous congestion (Table III, Figure 3)

The effect of alcohol on the antidiuresis produced by venous congestion of the limbs was tested in three subjects in whom sphygmomanometer cuffs were inflated about the thighs to a pressure of 70 to 80 mm. Hg. (In all, a positive water load of 500 cc. was established and maintained throughout the experiment.) In two studies (No. 1 and No. 2, Table III) a control period of venous congestion for 30 minutes, instituted after maximal urine flow had been attained, produced a prompt fall in urine flow, CH₂O, and Coom, as well as in the rates of excretion of sodium, potassium, chloride, and creatinine. These

Alcohol produced no increase in an established water diuresis (Figure 1C). In contrast, when alcohol was given with an intravenous load of hypertonic saline, urine flow and CH20 increased (Figure 1B), and the characteristic antidiuretic effect of hypertonic saline (Figure 1A) was blocked.

Prior administration of hypertonic saline (Figures 2B and 2C) blocked the characteristic diuresis following alcohol (Figure 2A).

Group IIa—Hypertonic salt administration with and without alcohol in subjects with maximum water diuresis TABLE IIA

	5	space	Lilars 14.1	14.5	15.4 16.2	16.2						14.3 14.6 14.8	15.4	15.6	16.0	16.1	16.9	16.5	16.3
	PV	PVi	∀ 0	∞ 1	NO I	- 2	•	+ 3	*			++11 +32	+24		+			+10	
	Osmolarity	Corr.*	mOsm./ L.								283	276 286 291	292	307	302	312	322	318	316
Blood	Osmo	Obs.	m0sm./ L. 290	712	289	288	290	273	332	297	283	276 302 311	296	307	302	326	340	338	332
		펁	Units				7.46	7.37	7.38	7.44	7.40	7.30	7.44		7.39	7.41	7.44	7.28	7.35
		Alc.	mg. %								•	0 78 182	24						
		ŝ	mEq./L.				25.5	23.7	24.9	25.6	27.2	23.4 19.4 21.5	22.4		24.5	23.0	24.1	22.5	23.0
		ಶ	mEq./L. 108.5	104.2	111.4	112.7	105.0	101.0	110.4	107.6	101.5	100.0 108.0 113.0	107.5	98.5	95.0	103.0	103.5	105.2	105.0
		×	mEq./L. 4.08	4.50	4.30	4.15	4.59	4.38	4.26	4.61	4.20	3.68 3.18 3.43	4.20	4.30	4.32	4.10	4.31	4.23	4.08
		Na	mEq./L. 144.7	138.9	142.0 146.0	143.8	143.0	139.3	147.2	143.5	133.0	133.0 133.9 144.8	135.3	139.1	139.8	145.5	145.3	143.3	143.3
.	nin.	Creat.	66. 126 141 118	123 121 125	121 121 123 128 127	156 152	345	138	145	161 155 132	140 150 135 135	135 138	111 123 110 110 110 1123 1123 1114 1118						
	Clearances/min.	Free 6.00 100 100 100 100 100 100 100 100 100					22.21 13.22.11 14.22.11 15.24.12 15.88.				1.1 8.4 8.1	200111 200111 2001111	15.1 10.8	007778900000000000000000000000000000000					
	Clea	Osm.	66. 7.3	8.6 5.0	 	5.4.4.	6.5. 6.2.2.	0.3 3.6 3.6 5.9	0.00.00.40.00.00.00.00.00.00.00.00.00.00	6.4 0.1		 	. 9.	. 4.2.2 2.0.2	0,4,4 4,4,0	3.6			
		Vol.	66. 2.3 16.5 18.3	13.2 11.6 10.1	22.1.6 2.1.6 2.1.6 2.1.6	2:1	6.8	16.8	11.0	4.0.4 4.0.4	7.1 6.9 12.0 12.0	12.3 16.2 18.7	20.0 14.9	3.7 111.1 13.8 14.5	13.7	14.8	17.0	15.5	6.7
ine	'n.	Osm.*	µОsт. 1,640 1,660	1,580 1,090 930 855	\$80 80 80 80 80 80 80 80 80 80 80 80 80 8	1,110	1,335	1,145	1,320	1,340 1,555 1,560	1,685 1,470 970 1,100	988 985 970 1,250	1,420 1,195	960 1,245 1,530	1,130	1,125	1,375	1,405	1,570 1,065
Urine	rates/min	ΤA	μEq.				999	300	×~ ∞	20 9 0	⊣ 40/	చ్చక్	00	0 13 18	°='	· • •		325	1881
	_	NH,	μΕq. 17 42 34	\$4 \$4 \$4 \$4	38 38 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	37	5 25	446	\$44	3 €	4228	37.28	32	245455 545455		787	1222	33.5	34.8
	Excretion	ប	μΕq. 169 242 222	§ 3 442	94 194 311 372 372	385 371	328 361	124	388	300 300	477 379 151	28 28 28 28 28 28 28	138 138	167 75 61 61 85	585	177	425	385	368
		Ж	µEq. 78 147 146	104 828 104 104	844 33 33 34 34 34 34 34 34 34 34 34 34 3	120	163	222	282	122	205 89 55 55	31325	15	28 28 28 28	228	328	1788	383	321
		Na	μΕq. 188 414 457	415 261 215 160	132 227 308 334 334	328 324	257	388	304	347 346	435 358 105	3031250 30411260 30411260	332 279	174 171 166 237 275	503 503	336	332 513 513	452 452	317
		Ηď	Units 7.0 6.3 6.4											7.00.00.00.00.00.00.00.00.00.00.00.00.00					
		Time	Min. 117 119 115	38821	25.83.83 25.83.83	28	34	34°	84%	100	111 25 40 50 50 50 50 50 50 50 50 50 50 50 50 50	33.4.25 33.4.25 33.4.25 33.4.25	£ 3	23 17 19 19	305	÷	282	35.2	322
		Subject	Ki. Exp. 1				Re.	EXD. Z			R. Exp. 3			R. Exp. 4					

* Observed osmolarity—osmolar contribution of alcohol.
† PV = Plasma volume.
‡ Alcohol imbibed during first 10 minutes of this period.
] Period of infusion of hypertonic salt.

TABLE IIB Group IIb—Hypertonic salt and alcohol administration in subjects with low urine flows

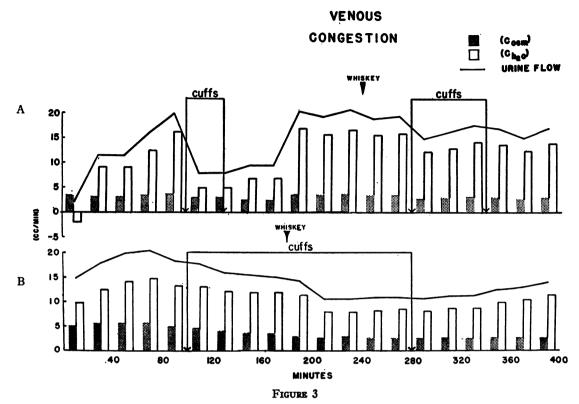
			C.	K	•	K	L	CE	M	A.	N,	•	M	•	E	١.
	5	space C	Liters	14.4	15.1	15.3	15.2	15.1	17.0	17.3	18.2	18.1	18.1	18.2		
	PV.†	PV	× %	1	+	+15	+10	+16		9 +	+14		+12			
	Osmolarity	Corr.*	mOsm./	į	298	300	314	310			290	274	275	274		
	Osmo	Obs.	mOsm./	į	298	328	325	322	268	278	311	530	295	288		
Blood		Hd	17 mite	7 40	7.47	7.27	7.33	7.42	7.41	7.45	7.34	7.43	7.41	7.43		
		Alc.	20 0#	? -	,0	100	128	62			8	8	7.	48		
		Š	"Fo II.	27.6	25.5	23.9	26.0	25.9	25.7	25.0	22.5	23.0	22.8	24.7		
		ប	## F.a /I.	102.6	104.9	109.7	109.5	100.1	101.5	105.2	105.5	105.0	104.2	103.0		
		M	"Fa.II.	4.18	4.18	3.90	4.46	4.49	3.98	4. 2.	3.98	4.16	4.30	4.30		
		Na	"Ea.11.	136.7	137.4	143.5	141.0	141.5	137.6	141.6	144.1	143.0	141.6	140.5		
	min.	Creat.	9	140	132	140	133	148	122	121	127	132	126	128		
	Clearances/min.	Free Creat	.99	-0.5	-0.8	-1.9	0.0	-1:9	-2.1	-2.7	-2.6	13.0	0.1	-2.0		
	Cle	Osm.	9	2.1	3.1	3.3	3.0	3.3	3.8	4.7	4.1	5.1	7.8	2.9		
		Vol.	9	1.0	2.3	1.4	7.1	1.4	1.7	2.0	1.5	2.1	0.0	6.0		
Urine	/min.	Osm.*	"O:m"	9	915	1,010	960	1,000	1,025	1,310	1,210	1,430	795	820		
ū		TA	"Fa	[→	•	71	74	21	0	0	7	12	2	31		
	on rat	NH,	F.	<u> </u>	18	23	78	74	20	75	74	33	50	52		
	Excretion rates	ប	"Ra	2	200	358	3 8	329	298	438	210	දු	281	241		
		M	R.	8	2	8	83	8	142	168	117	118	6	95		
		Ra	"Ra	1.	222	295	234	280	249	341	4 08	402	203	223		
		Hd	Truite	7.1	::	5.5	5.1	5.4	7.4	7.5	8.9	0.0	5.0	2.7		
		Time	Vis	7	\$	75	32	11	81	387	\$2 \	\$	င္ဆ	ಜ		
		Subject		¥	i	Exp. 1	ı		ų		Exp. 2					

Observed osmolarity—osmolar contribution of alcohol.
PV = Plasma volume.
Alcohol imbibed during first 10 minutes of this period.
Period of infusion of hypertonic salt.

functions returned to or toward control levels after the congestion was released. After a suitable period of recovery, during which the urine flow stabilized, alcohol was administered 30 minutes prior to the application of congesting cuffs for the second time, this time for 60 minutes. Despite a more prolonged period of venous congestion, only slight falls in urine flow and free water clearance were produced, although the decrease in solute excretion and Coom was comparable to that during the control period of cuffing. Under these circumstances, therefore, *prior* ingestion of alcohol minimized the anti-diuretic effect of venous congestion (Figure 3A).

In a third subject (No. 3, Table III), alcohol was imbibed 100 minutes *after* the cuffs had been inflated. Urine flow and CH₂O, which had diminished after the cuffs had been applied, did *not* increase after alcohol was administered, and started to rise only after the cuffs were released (Figure 3B).

DISCUSSION


In the present study, alcohol prevented or minimized the fall of urine flow and free water clearance (CH₂O) that characteristically follows the administration of hypertonic solutions of sodium chloride or venous congestion of the extremities. Alcohol will also prevent the antidiuresis of dehydration (6) or the administration of acetylcholine (7) and nicotine (6), and it has no effect on urine flow when it is given at the height of water diuresis or to dogs with diabetes insipidus (7). These observations constitute overwhelming evidence that it has an inhibitory action on the supraopticohypophyseal system.

The antidiuresis that regularly follows venous congestion of the lower extremities or stationary standing has been ascribed in part to increased activity of the neurohypophysis as a result of diminished effective blood volume (8, 9). Facts in favor of this interpretation are: 1) a diminished or absent response in subjects with diabetes insipidus or in hydropenic subjects with maximal ADH activity who are undergoing a mannitol diuresis (10); 2) a fall in urine flow out of proportion to the changes in electrolyte excretion and glomerular filtration (8, 9); 3) the appearance of an antidiuretic substance in the blood of normal subjects after circulatory collapse induced by motionless standing (11). The ability of alcohol to inhibit the antidiuresis of venous congestion lends added weight to the concept that changes in urine flow following alterations in the volume and distribution of body fluids are to an important degree

TABLE III Group III—Venous congestion of the lower extremities with and without alcohol

	PVs†	PVi	δ%	0	+	+		∞ +	•	+17	+16	+	+11	0	ן מנ		_ 7		1 3
	arity	Corr.*	mOsm./ L.	280	275 272	263	260	267	280	270 273	258	260	500	292	285	287	288		302
	Osmolarity	Obs.	mOsm./ L.	280	275	274	282	286	280	270	276	285	284	292	285	289	309		312
đ		Hd	Units											7.38	7.38		7.16		7.41
Blood		Alc.	mg. %	0	00	88		88	•	00	8	25 26 27	4	•	0		104 118	8	\$
		6 00	mEa./L.											26.9	27.0		19.8		24.8
		ប		105.3	104.0 103.3	102.7	102.3	104.8	103.7	102.0 100.2	99.2	0.66	99.2	105.8	102.6		102.2		100.8
		¥	mEa./L.	4.10	4.21 4.05	4.00	4.20	4.20	3.70	4.45	4.00	3.82	3.50	3.96	4.30		4.00		3.90
		Na	m.Ra.II		140.6 138.0	132.8	131.8	138.6	139.4	134.8 134.5	130.8	130.8	132.5	145.6	138.7		140.5		141.4
	min.	Creat.	8	95	150 150 130 130 130	145	133	130 134 137	160	166 151 131 148	155 151 122	142 140	158 166		129 133 122 131 131				
	Clearances/min	Free	8	-2.1	12.5 16.3 5.0 17.0 17.0	15.0 15.0 15.0 15.0	14.4	13.8 12.4 14.1	2.2	4:11 4:07 4:05 6:05	7.7.9 6.0.9	0.2. 0.4.	6.2 6.7	0.5 9.8 8.6	41141	11.5	11.3 7.7 6.7	8 8 8	8.8 9.9 10.4 11.4
	Clea	Osm.	٤	. S. S.	20000000000000000000000000000000000000	. 0. 4. 10. 1	3.7	3.1 3.1 3.1	4.5	8.00 4.10 5.00 5.00	4.1 2.9 2.9	3.0	3.2 3.1	3.5 5.0 5.0	N.N.N.4.4. N.O.O.O.O.O	3.7	9,9,9,6 9,6,6,6	2225	2.5 2.6 2.6 2.6 2.6
		Vol.		₹. •	20.0 20.0 8.0 20.7 20.7	19.08	17.6	16.9 17.2 17.2	6.6	16.8 10.9 10.9 10.9 10.9	211.3 8.9 8.9	8.8 0.1.	9.4 9.8	1.2 8.1 14.8	20.3 20.3 17.6 17.6	15.4	10.5 10.5 8	1009	11.3 12.5 13.0
Je	ė	Osm.*	,	98	820 955 075 010 010	91.0 93.2 93.2 93.2	845 845	810 730 825	1,230	1,650 1,060 870 816	1,015 940 750	58	845 825	905 1,300 1,430	1,575 1,011 1,005 1,305 1,305	1,065	1,028 815 745	425	720 750 755 755
Urine	rates/min	TA	.F.o	į										98 178 178	337228	388	2883	888	3833
	ä	NH'S	Į a	ន្ត	322333	2228	2.73	2882	31	888	33 37	3 3	33	22 22 23 23	334855	388	7,78,8	3828	27,78
	Excreti	ರ	24.	72	153 153 183 141	152	121	114 88 91	314	222333	288 271 222	225 184	186 156	179 278 290	262 262 262 263 263 263	183	8224	\$ 4 4	84.25 84.25
		×	ä	1 8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	52528	33,33	222	8228	219	152 171 108 172 173 173 173 173 173 173 173 173 173 173	82 4	32 19	22 16	541 164	181 181 181 181 181	358	884°	2222	2228
		Ra	1 24	7 7 7	196 167 145 211	738 748 748 748	2 <u>8</u> 5	115 122 123	245	342 350 178 178	273 224 222	222 191	194 171	175 267 287	337 348 386 286 286	185	182 182 183 183 183 183 183 183 183 183 183 183	5582	122 122 133
		Hd	Traite	8.6	- 00 00 00 00 00 00 00 00 00 00 00 00 00	7.00.0	0 0 6.4	0,00 0,00 0,00	8.9	0000 02500		6.2 6.0	6.1 6.2	6.00 6.00 6.00	00000 8770	6.65 6.65 6.65 6.65 6.65 6.65 6.65 6.65	6 8 8 8 8 6 4 8 8 8	, ro, ro, ro	8.0.0 8.0.0
		Time	Min	92	28432283 284325	752 752 752 752 752 752 752 752 752 752	38	888	65	852 233 42 24 24 24 24 24 24 24 24 24 24 24 24	321 321 321	31 32	38 31	93 34 21	25 17 17 19 19	75 18 18	++ 8588	3245	18888
		Subject		ż	Exp. 1				w.	Exp. 2				S. Exp. 3					

* Observed osmolarity—osmolar contribution of alcohol. † PV = Plasma volume. ‡ Alcohol imbiled during first 10 minutes of this period. † Period venous congestion.

Alcohol minimized the antidiuretic effect of venous congestion when given *prior* to the latter (Figure 3A). In contrast, alcohol had little effect when given *during* the period of venous congestion (Figure 3B).

secondary to variations in the activity of the neurohypophysis.⁶

Alcohol had little effect on urine flow and free water clearance in those experiments in which it was given after an infusion of hypertonic saline or venous congestion had been initiated. Once the neurohypophysis has been stimulated the resultant excess of circulating antidiuretic hormones might, until it is inactivated or destroyed, mask the temporary inhibition of the posterior pituitary by alcohol. These experiments suggest that alcohol diuresis may be blocked by a prior rise in circulating endogenous ADH as well as by the administration of exogenous Pitressin® (5, 6).

In the experiments of Group I, when the release of ADH was presumably completely inhibited by a positive water load in the semi-recumbent position, administration of alcohol caused no further rise in urine flow and free water clearance. The increase in CH2O which occurred in the waterloaded subjects of Group IIb, to whom alcohol was given simultaneously with an infusion of hypertonic saline, was therefore unexpected. The situation in these experiments is probably comparable to the rapid administration of large solute loads to patients with diabetes insipidus, in whom an increased volume of isosmotic fluid is suddenly delivered to a distal tubular segment in which water reabsorption is blocked but where further reabsorption of solute does occur. this case an increase in the calculated value of free water clearance (CH₂O) might be produced, not by diminished reabsorption of water in the distal tubule (Smith, 13), but by an increased distal reabsorption of solute. An increase in CH20 during mannitol or solute diuresis in subjects with diabetes insipidus can in fact be demonstrated by recalculating the data of Brodsky and Rapoport (14). Similar increases in CH2O, Cosm, and urine flow were shown by Welt, Young, Thorup, and Burnett (15) to follow the adminis-

⁶ In a study published since completion of this paper Newman (12) demonstrated that alcohol could effectively block the antidiuresis of quiet standing.

tration of a carbonic anhydrase inhibitor to waterloaded subjects who were in a state of "physiological diabetes insipidus." Although tubular secretion of water (14) could explain such changes, there seems little reason to invoke such a concept.

A relative or absolute increase in antidiuretic hormone has been implicated in the abnormal water metabolism of such clinical states as hyponatremia, cirrhosis of the liver, congestive heart failure, adrenal insufficiency, and panhypopituitarism. The results of the present and previous studies (1, 5) suggest that the effects of alcohol in states of abnormal water metabolism might be of value in interpreting their pathophysiology. Such investigations are now in progress.

SUMMARY

- 1. Alcohol had no effect upon urine flow or solute excretion when given at the height of a water diuresis.
- 2. Alcohol blocked the antidiuretic response to hypertonic saline when both were simultaneously administered to water-loaded subjects.
- 3. Alcohol minimized the antidiuretic effect of venous congestion of the legs in water-loaded subjects, when imbibed before the legs were congested.
- 4. The characteristic diuretic response to alcohol was blocked by prior infusion of hypertonic saline or cuff congestion of the limbs.
- 5. When administered prior to the stimulus, alcohol will effectively block stimulation of the release of ADH.

ACKNOWLEDGMENT

The authors wish to thank Dr. John P. Peters for his advice and criticism and Drs. D. Lester and L. J. Greenberg of the Department of Applied Physiology, Yale University for their suggestions and assistance in setting up the technique for alcohol determination in the blood. The technical assistance of Mrs. M. Browning and Mrs. M. Kompare is gratefully acknowledged.

REFERENCES

1. Rubini, M. E., Kleeman, C. R., and Lamdin, E., Studies on alcohol diuresis. I. The effect of ethyl

- alcohol ingestion on water, electrolyte and acidbase metabolism. J. Clin. Invest., 1955, 34, 439.
- Stanbury, S. W., and Thomson, A. E., Diurnal variation in electrolyte excretion. Clin. Sc., 1951, 10, 267.
- Elkinton, J. R., and Taffel, M., Prolonged water deprivation in the dog. J. Clin. Invest., 1942, 21, 787
- Verney, E. B., The antidiuretic hormone and the factors which determine its release. Proc. Roy. Soc., London, s. B., 1947, 135, 25.
- Strauss, M. B., Rosenbaum, J. D., and Nelson, W. P., III, The effect of alcohol on the renal excretion of water and electrolyte. J. Clin. Invest., 1950, 29, 1053.
- Eggleton, M. G., The diuretic action of alcohol in man. J. Physiol., 1942, 101, 172.
- van Dyke, H. B., and Ames, R. G., Alcohol diuresis. Acta Endocrinol., 1951, 7, 110.
- Wilkins, R. W., Tinsley, C. M., Culbertson, J. W., Burrows, B. A., Judson, W. E., and Burnett, C. H., The effects of venous congestion of the limbs upon renal clearances and the excretion of water and salt. I. Studies in normal subjects and in hypertensive patients before and after splanchnicectomy. J. Clin. Invest., 1953, 32, 1101.
- Fitzhugh, F. W., Jr., McWhorter, R. L., Jr., Estes, E. H., Jr., Warren, J. V., and Merrill, A. J., The effect of application of tourniquets to the legs on cardiac output and renal function in normal human subjects. J. Clin. Invest., 1953, 32, 1163.
- Judson, W. E., Epstein, F. H., Tinsley, C. M., Burrows, B. A., and Wilkins, R. W., The hemodynamics and renal functional effects of venous congestion of the limbs in patients with diabetes insipidus. J. Clin. Invest., 1950, 29, 826.
- Brun, C., Knudsen, E. O. E., and Raaschou, F., On the cause of post-syncopal oliguria. Acta med. Scandinav., 1945, 122, 486.
- Newman, E. V., Metabolic adjustments to normal and disturbed circulation in man. New England J. Med., 1954, 250, 347.
- Smith, H. W., The Kidney, Structure and Function in Health and Disease. New York, Oxford University Press, 1951.
- Brodsky, W. A., and Rapoport, S., The mechanism of polyuria of diabetes insipidus in man. The effect of osmotic loading. J. Clin. Invest., 1951, 30, 282.
- Welt, L. G., Young, D. T., Thorup, O. A., Jr., and Burnett, C. H., Renal tubular phenomena under the influence of a carbonic anhydrase inhibitor. Am. J. Med., 1954, 16, 612.