BIOCHEMICAL CHANGES ACCOMPANYING THE INGESTION OF A CARBOXYLIC CATION EXCHANGER IN THE HYDROGEN, AMMONIUM, SODIUM, POTASSIUM, OR CALCIUM FORM

By L. GREENMAN, J. H. PETERS, F. M. MATEER, F. A. WEIGAND, D. WILKINS, R. TARAIL, G. RHODES, and T. S. DANOWSKI

(From the Department of Research Medicine, the Renziehausen Foundation, and the Children's and Presbyterian Hospitals of the University of Pittsburgh School of Medicine, Pittsburgh, Pa.)

(Submitted for publication April 23, 1951; accepted July 9, 1951)

Preceding studies from this laboratory have defined certain changes in body fluids in dogs (1) and, in preliminary form, in human subjects (2, 3) accompanying the ingestion of carboxylic cation exchangers in the hydrogen cycle. In general, hyperchloremia appeared in both groups, the serum bicarbonate was lowered, and the stool output of sodium and potassium increased whereas chloride and nitrogen excretion did not change. In this paper further studies of the resins in various forms in human subjects are reported as a basis for a more adequate understanding of factors contributing to or limiting the clinical utility of these compounds.

MATERIALS AND METHODS

Carboxylic cation exchangers in the hydrogen, ammonium, potassium, sodium, or calcium form have been tested in children and adults with a variety of diseases. Selection of the patients was based primarily on willingness and ability to cooperate in the study. Edema was present in some. The experimental procedures, analytical techniques, and statistical treatment have been detailed in the animal studies mentioned earlier (1). The patients were usually but not invariably maintained on a milk formula or on a diet not rigidly restricted as to sodium content. Again it should be emphasized that all stools included in the study were formed.

RESULTS

A. Effects of hydrogen or ammonium cycle resin ingestion

From Tables I and II and the summary of mean changes in Figure 1, it is evident that the alterations in serum constituents accompanying comparable average daily intakes of these two agents, 39.7 and 38.3 g. respectively, are essentially indistinguishable. Hyperchloremia, and lowered serum bicarbonate and potassium values developed in both groups of subjects without a statistically significant change in serum sodium. Other measured constituents of serum or blood were not affected. The mean output of sodium and of potassium per day, per unit of stool mass, and per gram of stool nitrogen (Tables III, IV, and Figure 2) rose without alteration in the excretion of chloride or nitrogen via this route.

Ingestion of the hydrogen form resin was accompanied by an increase in the average daily urine volumes without statistically significant variation in the total daily output of the various urinary constituents (Table V). In general the external balances of chloride and of sodium (Table VI) remained positive during resin therapy except in those periods in patients WK, CSc, and GDe, when edema was being delivered and in VG when the body weight was decreasing on a reducing diet. Usually simultaneous declines were recorded in both the chloride space and the extracellular sodium of these subjects. Cell nitrogen balances remained positive during resin therapy save for the obese patient, VG, who was on a limited caloric intake. With but few exceptions losses of potassium from cells coincided with and were induced by hydrogen form resin therapy. The most striking losses occurred in CSc. In the experiments with the ammonium form of the resin it is to be noted that cell potassium balances remained positive during resin therapy (Table VII). Since the stool excretion of this element had increased significantly it is obvious that the intake of this electrolyte had been more than adequate to prevent negative balances.

It is to be noted in addition that in patient SB who received cortisone as well as the ammonium form of the resin a decrease in serum carbon dioxide content and abnormally low serum potassium concentrations occurred (Table II) together with marked increases in stool sodium and potassium excretion (Table IV and Figure 2).

B. Changes during sodium or potassium cycle resin administration

Neither of these resins produced any statistically significant changes in the mean values for carbon dioxide content, chloride, sodium, potassium, calcium or water, although serum inorganic phosphorus rose slightly when the potassium form of the resin was ingested (Figure 1, Tables VIII and IX). On the other hand in subjects CSt and CSc (Table IX) the serum potassium rose to hyperkaliemic levels, 6.1 meq./1., during therapy with the cation exchanger in the potassium form. In addition in CSc the extracellular potassium increased. Comparable data are not available for the other patient.

 TABLE I

 Body weight and analyses of blood and serum in subjects receiving the cation exchanger in the H cycle

Subject	Time	Therapy	Body Wgt.	81	ood	· ·			Serum				
(Age-Sex)	(Days)	(g./d.)	(kg.)	Sugar (mgm5)	HPH (mgm%)	HCO, (meq./1.)	Cl (meq./l.)	Na (meq./l.)	K (meq./1.)	Ca (mgm%)	P (mgm5)	H,0 (6./1.)	Protein (g.%)
WW 12 N Diabetes	0 9 8 8 9 8 9 9 9 9	0 0 25 35	32.6 33.0 32.6 32.8 33.2	325 119 288 234	34 32 33 24 37 37 37 37 37 37 37 37 37 37 37 37 37 3	23.4 25.4 25.9 21.9 20.4	97.8 95.4 105.6 106.1 104.8	136 141 144 142 138	4.8 5.0 4.4 4.3 4.6	10.2 10.8 9.0 9.5	5.2 5.3 6.1 4.9	928 930 935 929 925	8.0 7.5 6.7 7.2 7.9
CAS 9 F Diabetes	6 9 6 0 16 9 6 0 16 9 6 0	0 0 25 35	41.6 41.6 40.8 40.6 41.1	166 - 131	35 31 34 31 32	25.0 25.8 25.0 22.6 20.7	103.4 102.8 104.5 108.3 108.9	145 143 147 144 141	4.5 4.7 3.9 5.3 4.1	9.8 9.2 9.6	5.7 5.2 4.8 5.2 5.6	% % % % % % % % % % % % % % % % % % %	7.4 7.9 7.7 7.3 8.1
VG 14 F Obesity	0 3 6 9 11 5 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8	0000xxx0000	144.0 145.1 144.6 143.1 141.5 141.0 139.8 138.2 136.8 135.5	28282828	29 32 72 4 25 25 33 30 33	19.7 21.8 22.9 22.6 18.7 17.5 19.5 22.8 23.7 21.6	105.2 105.6 102.1 100.8 106.9 110.2 107.7 103.5 101.0 98.5	147 156 142 139 135 141 139 145 142 142	4.5 4.8 4.3 4.5 4.5 3.9 3.7 4.7	10.3 10.1 9.9 10.8 - 10.3 10.3 10.8 11.0	3.8 3.5 3.9 3.3 - 3.9 4.1 4.8	••• •• •• • • • • • • • • •	7.5 7.3 7.9 7.9 7.2 8.2 8.1 8.1 7.8
JNc 15 M Diabetes	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 40 40	44.0 43.6	257 231 266 167 249	32 31 29 33 29	22.8 22.9 22.9 18.5 16.1	101.4 103.7 102.4 105.9 108.1	141 143 136 143 138	4.8 4.8 3.7 4.0		5.1 4.8	931 932 927 923	7.3 6.8 7.2
KHc 11 F Diabetes	0 m 6 9 14 14 6 7 6 14 6 7 1	04 04	42.0 42.0 42.0 42.0 42.2	171 150 207 166 209	36 35 31 31 31	25.9 21.7 24.1 18.2 16.9	104.7 108.9 105.4 111.8 109.2	141 145 145 143 143	4.4 4.5 5.0 3.7 3.7	9.4 9.5 9.7	4.6 4.5 4.5	932 929 924 931 929	7.1 6.8 7.9
MK 57 M Cong. Failure	0 0-2 2-4 4-6 6-8 8-9 9-13 13-15	00000000	62.9 61.3 59.0 58.3 57.5 57.3 58.2 59.3	70 80 84 93 83	40 49 51 48 46 47 44	28.3 23.2 22.4 20.1 19.3 20.2 25.9 24.7	100.5 106.7 104.3 104.8 106.4 101.8 102.4	142 139 138 141 142 141 143 143	4.6 4.4 3.7 4.0 4.4 3.9 4.1 4.7	11.0 10.6 9.8 - - 10.1 10.2	3.8 3.4 3.3 4.3 3.9 4.1 4.1	934 934 - 934 934 930 930 934	6.5 6.3 7.0 7.6 7.0 7.4 6.9
C8c 33 P C-V Die.	0 0-3 3-6 6-9 9-12 12-15 15-19	0 0 K K 0 0 0	48.9 49.3 50.9 49.8 49.1 48.5 47.9	87 88 - 75 -	33 32 31 29 29 31 -	22.2 25.4 26.4 20.5 23.6 23.4 27.0	110.4 104.8 104.4 107.8 106.5 101.9 103.6	142 137 144 141 142 139 142	5.2 5.0 4.7 4.4 4.1 4.9 5.4	11.2 9.7 9.6 - 9.6	4.8 5.4 5.8 6.2 5.2	939 941 941 938 939 939 928 939	6.3 5.9 6.2 6.6
GDe 34 M Chr. Nephritis	0 0-5 5-10 10-15 15-19 19-25	0 30 0 21 20 60	67.7 57.8 56.4 57.6 56.6 55.8	- - 87	81 87 80 76 73 62	21.5 12.2 14.4 13.7 13.7 13.2	100.6 112.3 108.6 115.9 113.8 116.3	145 139 135 142 145 140	5.2 6.8 5.4 4.3 4.0 3.5	9.2 9.0 - 9.5 8.7 7.8	6.3 9.1 7.3 6.2 6.3 5.8	938 930 931 937 936 941	5.5 6.3 6.2 5.9 6.4 5.9

EFFECTS OF VARIOUS RESIN FORMS

TABLE II

Body weight and analyses of blood and serum in subjects receiving cation exchanger in the NH, cycle

	1	1		1									
Subject	Time	Therapy	Body Wgt.	Blo	bod				Sei	rum			
(Age-Sex)	(Days)	(g./d.)	(kg.)	Sugar (mgm. %)	NPN (mgm. %)	HCOs (meq./l.)	Cl (meq./l.)	Na (<i>meq./l.</i>)	K (meq./l.)	Ca (mgm. %)	P (mgm. %)	H2O (g./l.)	Protein (g. %)
JF 29 M Diabetes	0 06 612 1218 1824	0 40 0 40 0	69.5 67.4 66.6 67.0 68.9	124 108 69	35 34 41 38 32	25.7 27.5 30.1 23.7 28.1	95.9 100.2 98.0 104.9 104.0	138 150 149 145 147	4.5 4.5 4.5 5.3 5.0	9.5 9.8 10.0 9.7 9.5	3.2 3.5 3.6 3.5 4.4	929 929 925 925 934	7.5 7.8 8.1 7.9 7.3
CS 54 M Arthritis	0 0-6 6-7 7-12	0 40 0 0	60.2 			26.3 14.4 23.0 27.6	108.8 114.5 110.4 101.7	144 144 144 145	4.3 4.1 3.7 4.4	8.4 8.8 	$\begin{array}{r} 2.6\\ 2.3\\ -\\ 2.1\end{array}$	935 931 938	6.6 7.2 —
CSc 33 F C-V dis.	0* 0-7 7-13 13-19	* 8 40 0	48.7 48.0 48.4 52.7	 90	38 39 41 35	29.4 24.4 22.8 26.6	90.8 97.0 101.2 94.5	142 140 153 136	6.1 4.4 3.8 4.3	8.8 — 8.8	5.0 — 3.8 4.5	939 944 933 941	6.3 6.1
SB† 7 F Rh. Fev.	0 0-3 3-6 6-9 9-12 12-15 15-18 18-21	† 40 40 40 40 40 40 40 40 40 40 40	28.0 28.3 27.9 28.1 28.0 28.5 —	70 76 78 59 61 92	36 29 30 32 29 36	23.7 28.7 30.2 28.1 30.1 	106.5 99.9 97.1 101.4 99.1 96.5 100.7 109.7	148 150 144 145 145 144 150 148	4.6 2.4 3.4 2.8 2.5 2.9 4.8 4.2			934 938 937 934 936 	
WY 45 M Diabetes	0 0–6 6–7 7–12	0 40 0 0	74.1 71.7 71.8		68 63 63 55	23.2 16.2 17.5 20.4	107.7 108.4 111.5 109.4	138 143 144 140	5.1 3.8 4.4 4.3	9.3 8.5 9.6	5.0 4.8 4.7	924 921 929	7.0 7.7
EMc 71 F Diabetes	0 0-6 6-7	0 40 0		203	42 46 42	27.2 11.8 15.2	107.4 117.2 115.5	144 144 145	4.5 4.0 4.0	9.1 8.9 —	3.3 3.0 —	926 927	7.3 8.0 —
DY 12 M Nephrosis	0‡ 0–4 4–10	35 0	30.4 31.4 31.4	67 	44 33 36	23.1 19.7 20.5	108.6 113.7 110.1	141 140 139	3.7 3.1 4.0	$\frac{6.7}{7.3}$	5.0 4.2 4.5	936 938 933	3.7 3.5 3.6
WG 12 M Gl. Neph. (healed)	0 0-5 5-10 10-15 15-20 20-26 26-31	0 0 0 0 38 0	32.4 30.4 28.8 30.1 30.1 30.0 29.8	62 80 75 	35 43 35 36 35 37 44	25.8 21.7 24.9 27.2 26.6 26.6 26.6	104.1 106.7 97.4 100.4 105.1 105.0 101.5	135 <u>140</u> 138 140 141 137	4.5 4.9 5.4 4.4 3.8 4.0	11.5 9.9 9.5 10.0	5.4 5.4 5.0 4.8 4.6 4.6	936 915 921 927 930 	6.8 — 8.3 7.7 — 7.8

* End of K resin period.

Patient receiving cortisone throughout study, 100 mgm./day for 40 days.
 End of K resin period.

Ingestion of the sodium cycle resin increased the stool output of potassium and of sodium (Table X and Figure 2). Similarly, on an intake of the potassium cycle resin, stool potassium and, to a lesser extent, stool sodium increased (Table XI and Figure 2). In each group of experiments, some of the cation, either sodium or potassium, ingested with the resin was released and entered the body fluids. Though daily urinary excretions of the particular cation under scrutiny were quite high, positive external balances were recorded (Tables XII and XIII). In the case of the sodium resin, the absorbed cation, sodium, remained primarily in the extracellular phase (Subjects EB, JV, and VB). Potassium released from the resin on the other hand was retained in the body and entered the cellular phase in patient RC (Table XIII). Patients WG and CSc, however, excreted this cation in both urine and stool and lost it from cells.

C. Studies during calcium cycle resin

Insofar as can be determined by inspection of Table XIV or statistical comparison of mean values (Figure 2) this resin failed to influence either the stool output of chloride, or nitrogen but did raise to a slight extent the stool sodium in all categories and stool potassium in the per day and per gram of nitrogen groupings. It would appear, therefore, that attachment of this divalent cation to the carboxylic exchanger renders it less effective from the point of view of affecting stool excretion of sodium and potassium. Furthermore there is no evidence of any consistent and significant change in either the individual values or the means of most of the measured serum constituents, includ-

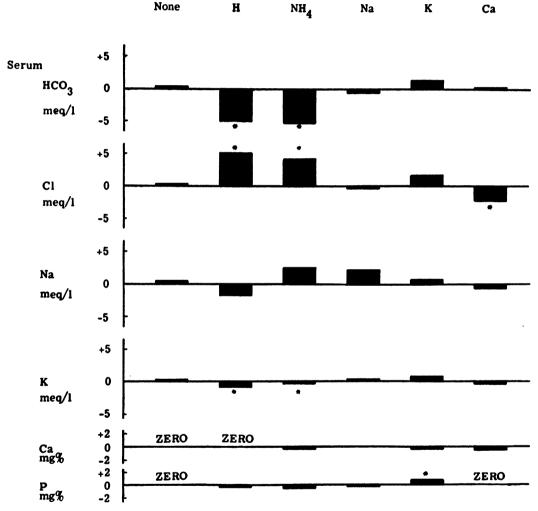


FIG. 1. SERUM ELECTROLYTE CONCENTRATIONS WITH AND WITHOUT RESIN THERAPY

The blocks represent mean alterations in serum constituents between the onset and the end of each of the regimens indicated at the head of the individual columns. The chemical abbreviations stand for the form of resin ingested. Asterisks identify statistically significant differences from the changes in the control values ("p" for the "t" test equals 0.05 or less). Without resin therapy serum constituents listed on the left varied but little. Treatment with H or NH₄ forms produced acidosis and hyperchloremia and lowered serum potassium levels. Ingestion of the Na form did not produce any significant changes. Serum inorganic phosphorus rose during administration of the K cycle, and serum chloride fell when the Ca form was ingested.

TABLE III

Subj.	Time	Therapy		1	intake				1	Urine					Stool		
	(days)	(g./d.)	Fluid (1.)	Cl (meq.)	Na (meq.)	Ж (meq.))(gm.)	Vol. (1.)	Cl (meq.)	Na (meq.)	K (meq.)	TH (gm.)	Wgt. (gm)	Cl (meq.)	Na (meq.)	K (meq.)) (gn.)
w	0-3 3-6 9-12	0 0 25 35	7.36 7.11 8.96 9.28	290 215 215 215	259 180 180 180	230 257 257 257	33.5 37.4 37.4 37.4	3.88 3.18 5.91 8.30	253 115 132 183	221 115 87 91	200 195 189 91	27.7 28.3 25.4 29.2	- 643 - 563	7 8	7	102 319	5.6 5.1
CAS	0-3 3-6 3-9 9-12	0 0 25 35	6.84 6.80 7.79 7.44	512 545 568 568	481 512 534 534	230 245 256 256	33.6 35.8 37.3 37.3	3.48 2.73 2.79 4.25	447 408 389 509	470 459 340 482	91 170 177 107 81	25.0 24.9 23.7 29.3	55 197	1 3	3 22	9 136	0.8 1.4
VG	0-3 3-6 9-12 12-15 15-18 18-21 18-21 21-24 24-27	000%%%000	5.55 4.58 3.58 4.42 4.46 6.12 4.40 3.40 3.40	246 271 216 205 225 250 50 41 47	231 254 203 193 192 235 2 3 2 3	111 122 97 93 101 113 120 99 115	16.2 17.8 14.2 13.5 14.8 16.5 14.2 11.7 13.5	1.10 0.50 1.00 1.49 1.65 4.58 2.60 3.25 2.80	215 136 233 204 240 551 225 107	188 139 244 187 104 280 98 36 57	50 28	16.2 5.6 11.9 13.1 14.9 22.7 16.2 19.4 15.1	371 - 89	3 0.4 0	140 149 28	87 104 26	5.0 1.0 1.0
Лнс	0-3 3-6 6-9 9-12	0 0 40 40		Full " "	diab. "	diet "		4.25 3.75 7.04 3.20	614 515 716 299	587 638 929 173	193 110 232 69	37.1 34.9 43.2 32.0	708 775	5 5	57 174	83 334	10.0 8.8
КИс	0-3 3-6 6-9 9-12	0 0 40		Full " "	diab.	diet "		3.76 1.85 5.62 4.22	458 249 516 353	508 249 337 146	94	38.5 22.4 42.9 37.0	- 494 90 5	5 4	11 351	44 283	7.9 6.6
WK	0-2 2-4 4-6 6-8 8-9 9-13 13-15	0 0 KKKKK	6.47 6.25 7.50 5.79 3.02 13.48 6.71	83 89 89 78 44 180 89	5 5 3 11	200 216 216 189 108 437 216	23.6 25.4 25.4 22.3 12.7 51.5 25.4	3.96 5.38 3.57 4.05 1.70 5.20 0.48	132 190 98 92 38 154 15	82 105 31 24 50 3	93 51	14.1 18.2 17.1 20.0 8.6 47.1 5.7	451 104	6 3	88 · 9	147 17	4.1 2.6
CSc	0-3 3-6 6-9 9-12 12-15 15-19	0 0 32 32 0 0	8.32 10.26 11.70 2.95 8.33 2.43	556 567 567 649 112 166	525 532 532 609	230 256 256 293 272	33.6 37.3 37.3 42.7 32.1 47.6	4.12 4.75 9.70 9.80 5.80 8.40	446 442 650 588 247 249	269 370 613 491 101 88	247 138 163	26.8 26.2 28.1 37.8 29.3 37.9	240 1.092 288	5 9 3	14 527 93	147 523 129	2.7 9.8 3.9
3De	0-5 5-10 10-15 15-19 19-25	30 0 21 20 60	18.63 16.76	309 304 Full		369 364 diet	53.9 53.1	5.35 4.90 9.25 9.50 17.40	262 192 377 346 870	324	126 365 137	22.1 22.5 36.7 53.6	2466 1443 428 317 548	13 5 1 1	92 18 12 8 63	94 42 122 98 230	5.6 4.8 4.9 3.8 6.8

Intake data and urine and stool output in subjects receiving the cation exchanger in the H cycle

ing calcium and phosphorus (Table XV and Figure 1). The chloride concentration, however, fell approximately 2 meq./l. in all patients without other change. Balance data, however, were not consistently altered in VB or JF (Table XVI).

D. Comparison of the efficiency of the various resin forms

Mean stool excretion of sodium and potassium per gram of resin was determined during administration of the hydrogen, ammonium, potassium, sodium, and calcium forms of the cation exchanger in the experiments in which sodium was not rigidly withheld. The few studies in which the diet was almost completely free of sodium are included in the tables, but excluded from the means, to illustrate the decrease in efficiency of the hydrogen and ammonium forms under such circumstances. For simplicity the calculations are omitted, but the findings can be summarized briefly.

The hydrogen, ammonium, and potassium forms of the resin removed equivalent amounts of sodium plus potassium in stools (1.5, 1.9, and 1.9 meq./g. respectively). Mean stool sodium averaged 0.4 to

Subj.	Time	Therapy			Intake					Urine					Stool		
	(Days)	(g./d.)	Fluid (l.)	Cl (meq.)	Na (meg.)	K (meq.)	N (g.)	Vol. (<i>l</i> .)	C1 (meg.)	Na (meq.)	K (meq.)	TN (g.)	Wgt. (g.)	Cl (meq.)	Na (meq.)	K (meq.)	N (g.)
JF	0-6	40		Ful	l diab.	diet		17.60	1442	1045	396	90.6	73	0.3	10	25	2.4
	6-12	0	23.23	521	436	622	90.6	12.15	401	343	274	75.6	286	0.3	30	122	2.6
	12–18 18–24	40 0	20.14	496 Ful	416 diab.	592 diet	86.3	8.60 9.24	156 1850	26 1862	218 191	86.1 74.1	611 495	4 13	45 44	214 102	3.4 3.3
CS	0-6 6-12	40 0]	Full di	et		7.00 2.50	735 285	367 152	189 54	46.6 36.8	70 <u>4</u> 782	18 51	398 88	130 67	4.6 8.5
CSc	0-7	8	14.92	281	234	336	49.0	8.60	0	0	305	63.0					
	7–13 13–19	40 0		''Sal	lt-free'	' diet	•	8.10 8.80	26 19	3 0	81 62	41.9	910 212	12 3	48 9	240 44	8.1 1.9
SB	0-3 3-6 6-9	40 40 40				<u>.</u>		4.00 4.97 4.13	408 434 369	185 240 224	81 55 103	40.3 34.6	}1228	21	181	266	9.4
	9-12	40		1	Full die	>t		4.52	460	256	39	33.1	1130	13	293	347	8.4
	12–15 15–18	40 40		-				4.26 5.82	466 506	318 640	57 54	45.7 46.0	642 } 670	3	195 192	162 232	6.2 6.9
	18–21 21–23	40 40						4.66 2.02	301 83	_		27.7	259	3 3	192 94	232 50	2.9
WY	06 612	40 0	11.89 13.02	261 267	219 224	311 318	45.4 46.4	6.40 7.00	95 298	85 186	160 161	41.4 48.4	2109 850	25 3	258 17	134 80	13.0 8.0
EMc	06	40		Ful	l diab.	diet							346	1	118	166	2.4
DY	0-4	35		I	Full die	et		4.10	163	94	189	50.0*	570	3	123	132	5.7
	4–10	0	11.03	146	9	354	65.0	7.05	338	197	270	58.0*	1171	11	26	48	6.3
	0-5 5-10 10-15 15-20	0 0 0 0	12.64 13.58 13.80 12.95	223 233 233 233 233	13 14 14 14	542 566 566 566	64.0 66.8 66.8 103.8	7.88 7.25 9.19 7.72	386 251 275 268	272 54 21 68	259 338 391 363	40.1 48.9 52.7 56.4	470 299 534 475	5 3 6 5	6 9 3 8	96 51 90 77	5.2 3.7 5.9 6.8
	20–26 26–31	38 0	16.72 14.79	251 221	15 13	608 538	111.6 98.6	12.15 6.24	359 204	85 67	101 106	96.6 57.7	766 782	6 5	28 31	240 288	6.7 7.2

TABLE IV Intake data and urine and stool output in subjects receiving cation exchanger in the NH₄ cycle

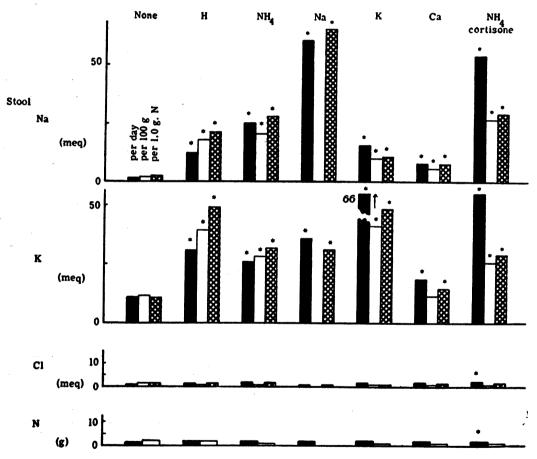
* TN values in this patient include 37.4 and 45.3 g., respectively, of NPN.

1.0 meq./g. for each of these forms. All of these exchangers were more effective in this respect than the calcium cycle. With regard to potassium the hydrogen, ammonium and sodium forms proved to be equally effective in augmenting the loss of this electrolyte via the gastrointestinal tract. They were again superior to the calcium form. More potassium was excreted in the stool during potassium cycle resin administration than during the ingestion of any other form of the exchanger. It does not seem likely that this represents increased removal of endogenous or dietary potassium, since the amounts of this cation recovered in the stools were less than that administered in the resin. The large amount of potassium found in the stool would appear to be best explained by

"unchanged resin" or the temporary release of potassium in the acid medium of the stomach and subsequent recovery of large amounts of the cation in the alkaline small intestine by the exchanger. The same reasoning regarding sodium may be applied to the sodium form of the carboxylic resin. Each gram of the potassium and sodium forms of the resin contained 3.8 meq. of their respective cations prior to administration.

E. Clinical concomitants of resin therapy

Ambulatory patients or those without discomfort tolerated the above cation exchangers quite well, whereas those with gastrointestinal symptoms or general malaise experienced varying degrees of difficulty in ingesting and retaining the larger dosage. In some, emesis was extensive enough to prevent administration of the exchangers; these subjects have been excluded from our studies.


Seven of the studies with the hydrogen or ammonium forms of the resin were conducted in patients with diabetes mellitus. Though the carbohydrate data have been omitted for purposes of brevity the results indicated that the development of acidosis as a result of resin ingestion was not accompanied by ketone bodies in the urine and did not exert any visibly deleterious effect on car-

Statistical expression of urine data during H resin therapy

		trol a t resi			1	Resin		
	Mean	No.	S. D.	Mean	No.	S. D.	"t"	"p"
Volume (ml.) Cl (meq./d.) Na (meq./d.) K (meq./d.) TN (g./d.)	1026.1 89.5 78.9 39.5 8.0	20 21 21 21 21 21 21	531.2 54.3 63.2 23.1 3.1	1873.9>† 104.4 67.9 35.8 9.2	22 21 20 21 21 21	775.9 54.6 45.6 19.2 2.6	3.99† 0.89 0.62 0.55 1.25	0.0025 0.38 0.52 0.62 0.22

* Control and post resin periods combined after statistical demonstration that they were indistinguishable. † Significantly greater than controls

FIG. 2. STOOL DATA

The columns represent stool excretion of Na, K, Cl, and N per day, per 100 g. of wet stool, and per 1.0 g. of nitrogen during therapy indicated at the head of each group of columns. Again the chemical abbreviations indicate the form of the resin ingested, and the asterisks stand for values significantly different from the control column entitled "none." The column headed "NH₄ cortisone" indicates the patient receiving the NH₄ form of the resin together with cortisone. Stool excretion of sodium and of potassium increased to a variable degree irrespective of the particular form of the resin administered, or of cortisone therapy. Mean stool chloride and nitrogen values were not changed during the ingestion of any of the exchangers, but did increase slightly when cortisone was given during NH₄ form therapy in one patient.

TABLE VI

Subject	Time	Therapy		Ext.	Bal.		Ext	racell. B	al.		Cell Bal.		
	(Days)	(g./d.)	C1 (meq.)	Na (meq.)	K (meq.))) (gm.)	H,0 (1.)	Na (meq.)	К (meq.)	Na (gn.)	Na (meq.)	K (meq.)	Kee (meq.)
WW C	0-3 3-6 6-9 9-12	0 0 25 35	+ 31 + 94 + 77 + 25	+ 31 + 59 + 30 + 27	- 21 + 11 - 92 + 7	+ 2.7 + 6.0 + 9.1 + 5.3	+0.5 +0.1 +0.6 +0.3	+101 + 29 + 85 + 12	+ 4 - 4 + 2 + 5	+ 2.7 + 6.4 + 8.9 + 5.5	- 70 + 30 - 55 + 15	- 25 + 15 - 94 + 2	- 31 0 -115 - 11
CAS	0-3 3-6 6-9 9-12	0 0 25 35	+ 62 +133 +175 + 55	+ 6 + • 48 + 180 + 37	+ 55 + 64 + 81 +107	+ 7.9 +10.2 +12.6 + 7.0	+0.6 +1.0 +1.1 +0.3	+ 79 +182 +124 + 26	+ 5 - 4 +20 -12	+ 9.0 + 9.4 +13.4 + 6.7	- 73 -134 + 56 + 11	+ 50 + 68 + 61 +119	+ 29 + 46 + 29 +103
ΨG	0-3 3-6 6-9 9-12 12-15 15-18 18-21 21-24 24-27	0 0 0 33 32 0 0 0	+ 28 +132 - 20 - 1 - 17 -303 -177 - 68 - 5	- 7 + 66 - 91 - 46 + 76 - 19 -107 - 46 - 66	+ 50 + 74 - 28 + 13 + 83 + 80 + 85	- 1.9 +10.3 + 0.4 - 0.1 - 0.6 + 6.7 - 2.5 - 8.2 - 2.1	+0.1 +2.1 +0.2 -1.8 -1.0 -1.9 -0.3 -0.1 +0.6	+272 -116 - 65 -366 + 36 -318 +104 - 80 +117	+ 9 - 5 + 1 - 2 -13 -16 + 9 +13 -21	- 4.7 +15.0 + 3.2 - 0.1 - 1.5 + 6.7 - 9.8 - 5.5 - 4.8	-279 +182 - 26 +320 + 40 +299 -211 + 34 -183	+ 41 + 79 - 15 - 26 + 44 + 74 + 74 + 67	**********************
WK	0-2 2-4 4-6 6-8 8-9 9+13 13-15	NNNNN N 0 0	- 53 -105 - 12 - 20 + 2 + 22 + 71	-100 -123 - 48 - 44 - 15 - 48 - 5	+ 83 + 90 +133 +118 + 83 +354 +204	+ 8.3 + 6.0 + 7.2 + 0.9 + 3.3 + 2.6 +18.7	-0.9 +0.1 -0.2 -0.3 +0.7	-198 -145 + 51 - 16 - 41 +113 + 64	- 8 -12 + 5 + 3 - 6 + 5 + 9	+ 4.6 + 5.2 + 8.4 + 0.9 + 4.0 + 2.2 +19.8	+ 98 + 22 - 99 - 28 + 26 -161 - 69	 91 102 128 115 89 349 195 	+ 80 + 90 +108 +113 + 79 +344 +148
CSSc	0-3 3-6 6-9 9-12 12-15 15-19	002400	+105 +119 - 90 + 54 -139 - 87	+245 +152 -349 -149 -102 - 86	- 29 - 23 -254 -106 + 44 + 40	+ 5.1 + 9.5 + 4.0 - 0.3 + 0.5 + 7.5	+1.4 +1.1 -1.2 +0.6 -0.8 -0.8	+147 +237 -205 +103 -139 - 94	+ 6 + 2 - 9 - 1 + 7 - 1	+ 5.4 + 9.8 + 4.7 - 0.3 - 0.1 + 7.5	+ 98 - 85 -144 -252 + 37 + 8	- 35 - 25 -245 -105 + 37 + 41	- 48 - 48 -256 -104 + 37 + 23
GDe	0-5 5-10	30 0	+ 31 +10=	-153 + 83	+136 +195	+25.9	-1.3 +1.3	-249 +123	+15 -11	+23.3 +28.1	+ 96 +206	+121 +206	+ 65 +139

External, extracellular, and cell balances in subjects receiving the cation exchanger in the H cycle

* Value has been corrected for external balances of NPN ** K represents transfers of K in excess of protein metabolism

TABLE VII

External, extracellular, and cell balances in subjects receiving the cation exchanger in the NH4 cycle

Subject	Time	Therapy		Ext.	Bal.		Ex	tracell. B	al.		Cell Bal.		
	(devic)	(g./4.)	Cl (meq.)	Na. (meq.)	X (meq.)) (gn.)	H.O (1.)	Na (see.)	K (meq.)	је (gn.)	lia (meq.)	K (meq.)	Kee meq.
л	6-12 12-18	0 40	+117 +334	+ 59 +342	+226 +160	+12.1 - 3.5	+1.3 +1.8	+195 +208	+ 6 +22	+ 9.0 - 2.2	-136 +134	+220 +138	+199 +143
Clic	0-7	34	+279	+230	+ 31	-14.3	+1.9	+243	-12	-14.6	- 13	+ 43	+ 78
VT	0-6 6-12	4 0 0	+139 - 36	-128 + 17	+ 17 + 76	- 9.3	+1.0	+231 -103	-15 + 7	- 6.9 - 6.6	-359 +120	+ 32 - 69	+ 48
DI	4-10	0	-206	-217	+ 36	+ 0.5	-1.4	-201		- 0.1	- 16	+ 32	+ 32
WG	0-5 5-10 10-15 15-20 20-26 26-31	0 0 0 38	-171 - 24 - 51 - 42 -117 + 10	-269 - 52 - 13 - 65 -101 - 89	+188 +177 + 86 +126 +267 +144	+18.4 +13.9 + 7.9 +40.3 + 8.0 +33.4	-1.8 +0.6 -0.6 -0.7 -1.0 +0.3	-206 +100 -110 - 84 -135 + 20	- 6 + 5 0 -11 - 8	+16.7 +15.5 + 7.7 +40.5 + 7.6 +32.0	- 63 -152 + 97 - 19 + 34 -109	+194 +172 + 86 +137 +275 +142	+154 +135 + 68 + 41 +257 + 66

* Value has been corrected for external balance of NPN ** K represents transfers of K in excess of protein metabolism

EFFECTS OF VARIOUS RESIN FORMS

TABLE VIII

Body weight and analyses of blood and serum in subjects receiving the cation exchanger in the Na cycle

Subject	Time	Therapy	Body Wgt.	B1	boo				Serum				
(Age-Sex)	(Days)	(g./d.)	(kg.)	Sugar (mgm%)	NPN (mgm5)	HCO, (meq./l.)	Cl (meq./l.)	Na (meq./l.)	K (meq./l.)	Ca. (mgm%)	₽ (mgm\$)	H,0 (g./1.)	Protein (g.%)
EB 14 M Dieb.	0 0-3 3-6 6-7 7-10 10-13	660000	51.0 50.8 51.0 51.4 51.8 51.8	172 240 273 226	31 34 33 38 33 33	23.9 24.8 25.4 26.2 27.0 23.6	99.4 99.5 100.8 104.7 101.0 102.1	140 149 144 142 138 143	4.3 4.6 5.3 4.2 4.3 4.6	10.3 9.8 10.2	5.0 5.0 4.6	937 932 936	6.7 7.2 7.6 6.8
JV 15 M Dieb.	0 0-3 3-6 6-7 7-10 10-13	0 0 0 0 1 0	54.2 54.4 54.6 54.0 55.4 55.4	173 318 249 - 222	32 36 33 35 33 34	25.7 25.4 25.9 26.3 27.2 25.3	96.7 97.7 98.7 98.7 98.9 99.1	139 147 142 142 143	3.8 4.5 4.3 5.3 4.3 4.8	10.2 10.0 10.2	3.8 4.1 4.6 4.0	932 930 	6.5 6.8 7.0 6.7
VB 11 M Rh. Fev .	0 0-8	* 40	36.6 37.4	75 91	35 30	24.0 26.0	100.0 97.4	139. 144	3.5 4.3	-	4.9 4.9	923 931	8.0 7.3

* End of Ca cycle resin

TABLE IX

Body weight and analyses of blood and serum in subjects receiving cation exchanger in the K cycle

Subject	Time	Therapy	Body Wgt.	B1	ood				Serum				
(Age-Sex)	(Days)	(g./d.)	(kg.)	Sugar (mgm%)	NPN (mgm%)	HCO, (meq./l.)	Cl (meq./l.)	Na (meq./l.)	K (meq./l.)	Ca (mgm%)	P (mgm5)	H,0 (8./1.)	Protein (g.%)
NC 13 N Diabetes	0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	ତ ତ ତ ତ ତ ତ ତ ତ	48.4 47.4 47.2 48.0 48.8	- 311 286 288	31 37 35 33 33	24.4 22.7 25.1 23.3 25.0	97.0 100.7 99.7 99.4 101.0	150 140 142 143 148	5.2 4.2 4.5 4.6	10.0 10.0 9.4 9.1	3.8 4.4 4.5 4.1	934 936 937 931	- 7.0 6.8
Dic 11 F Diabetes	0# 0-3	* 10	-	209 255	34 32	16.9 27.3	109.2 101.4	143 137	3.7 4.2	9.6 -	4.5 -	929 935	7.9 -
CBt 54 M Arthritis	0 0-6 6-12	00	60.2 -	-	31 34# 35	27.6 28.7 26.0	101.7 100.5 106.1	145 145 147	4.4 6.1 4.0	8.9 8.8 9.2	2.1 2.9 2.7	938 936 930	- 6.7 7.0
WC 12 M Gl.Hephr. (healed)	0=5 5-10	** 0.0 10	30.0 29.8 29.8	- - -	37 44 40	26.6 26.6 28.1	105.0 101.5 99.6	141 137 145	3.8 4.0 4.4	- 10.0 10.1	4.6 5.5	925 •	7.8 8.1
C8c 33 7 C-V d1s.	0 0-5	0 32	47.5 48.7	-	39 38	28.9 29.4	86.7 90.8	137 142	4.3 6.1	8.8 8.8	4.1 5.0	939	6.6 6.3

* End of H cycle resin

Drawn on seventh day

** End of NH₄ cycle

TABLE X

Intake data and	urine and sto	ol output in subje	cts receiving the cal	tion exchange	r in the Na cycle

Subj.	Time	Therapy			Intake					Urine					Stool		
	(days)	(g./d.)	Fluid (1.)	Cl (meq.)	Na (meq.)	K (meq.)	N (gm.)	Vol. (1.)	Cl (meq.)	Na (meq.)	K (meq.)	TN (gm.)	Wgt. (gm)	Cl (meq.)	Na (meq.)	K (meq.)	N (gm)
B	0-3 3-6 6-7 7-10 10-13	0 40 40	9.52 9.54 3.23 9.97 9.52	268 268 89 282 279	225 225 75 681 678	320 320 107 337 333	46.7 46.7 15.6 49.1 48.6	5.80 4.35 1.70 4.32 5.55	.312 157 64 169 264	330 167 49 332	212 224 81 130	35.4 36.1 13.1 33.1 42.7	1	11	19 466	103 236	6.6 4.9
ע ר .	0-3 3-6 6-7 7-10 10-13	0 0 40	10.56 10.05 3.23 9.83 9.71	268 279 89 272 274	225 234 75 672 674	320 333 107 325 327	46.7 48.6 15.6 47.4 47.7	5.60 3.76 1.51 2.99 4.61	303 123 74 84	213 77 54 344	261 184 83 144	34.6 27.9 11.0 27.0 32.0	- 774 	5	27 192	103 74	9.6 2.9
٧B	0-8	40	22.45	295	1201	716	123.5	16.70	233	411	180	106.2	2021	12	605	446	16.2

TABLE XI

Intake data and urine and stool output in subjects receiving cation exchanger in the K cycle

Bubj.	Time	Therapy			Intake					Urine					Stool		
	(days)	(g./4.)	Fluid (1.)	C1 (meq.)	Ha (meq.)	K (meq.)	. Ji (gm.)	Vol. (l.)	Cl (meq.)	Ha (meq.)	K (meq.)	TN (gm.)	Wgt. (gm)	Cl (meq.)	Na (meq.)	K (meq.)) (gn.)
RC	10 5 10	ଌଌଌ	13.72 6.96		297 154	1334 675	95.1 49.2		440 204	318 236	492 157	45.2	- 1248	12	5	546	12.7
	6-9 9-12	60 60		للبع	diab.	diet		7.72 8.50	473 777	563 1020	742 450	46.6 -	- 745	3	27	299	8.7
10k	0-3	40		Pull	dieb.	diet		4.24	512	36	394	38.4	745	4	165	189	6.7
CBL	0-6 6-12	40 0		۲	diet			8.00 6.40	873 705	980 752	864 284	52.9 41.6	460 386	1	105 28	260 108	3.6 4.6
WQ	0-5 5-10	0 140	12.75		13 14	538 552	98.6 101.2	6.25 5.75	204 227	67 71	106 504	57.7 46.3	782 799	5	31 10	288 133	7.2 8.7
CBc	0-5	32	11.26	225	189	877	39.2	2.45	0	7	515	33.0	1047	4	25	402	6.4

TABLE XII

External, extracellular, and cell balances in subjects receiving the cation exchanger in the Na cycle

Subject	Time (Days)	Therapy (g./d.)	Ι	Ext.	Bal.		Ext	racell. B	al.	Cell Bal.			
			Cl (meq.)	Na (meq.)	K (meq.))) (gm.)	H,0 (1.)	Ha (meq.)	K (meq.))# (gm.)	Na # (meq.)	K (meq.)	Kee .
B	0-3 3-6 6-7	0	- 51 +104 + 21	-117 + 46 + 20	+ 64 + 52 + 11	+ 8.3 + 7.6 + 1.0	-0.5 +0.8 -0.3	+ 18 + 69 - 58	+ 1 +10 -12	+ 7.3 + 7.9 - 0.7	-135 - 23 + 78	+ 63 + 42 + 23	+46 +23 +25
	7-10 10-13	40 40	+110 + 12	+112	+ 88	+13.2 + 3.2	+1.4 0	+153 + 59	+ 7	+14.9 + 3.2	- 41	+ 81	+45
J	0-3 3-6 6-7 7-10	0 0 0	- 40 +151 + 12 +183	- 3 +142 + 14 +314	+ 15 +105 + 9 +145	+ 7.6 +16.2 + 2.9 +18.6	-0.5 +1.2 +0.1 +1.6	+ 14 +123 + 15 +234	+ 5 + 3 +12 - 5	+ 6.2 +17.3 + 2.2 +19.3	- 17 + 19 - 1 + 80	+ 10 +102 - 3 +140	- 5 +61 - 8 +94
Vв	0-8	40	+ 48	∳18 2	+ 89	.+ 0.8	40.7	+134	+ 9	+ 2.0	+ 48	4 80	+75

* Corrected for balance of NPN

** Represents transfers of K in excess of the anabolism and catabolism of protein

TABLE XIII

External, extracellular, and cell balances in subjects receiving cation exchanger in the K cycle

Subject	Time (days)	Therapy	Ext. Bal.				Ezt	racell. B	al.				
		(g./d.)	Cl (meq.))la (meq.)	K (meq.))(gm.)	Н,0 (1.)	Ha (meq.)	K (meq.))#* (gn.)	Na (meq.)	K (meq.)	Kae (200
RC	0-4 4-6	60 60	- 99 - 27	- 28 - 87	+478 +336	- 0.5	-1.2 -0.1	-270 0	-14 - 1	- +0.1	+242 - 87	+492 +337	+337
WG	0-5 5-10	0 40	+ 10	- 89 - 71	+144 - 85	433.4 445.9	+0.3 +0.1	+ 20 + 68	+ 2 + 3	432.0 +46.7	-109 -139	+142 - 88	+ 66
CBc	0-5	32	+217	+152	- 40	- 0.8	+1.7	+2 8 8	428	- 0.5	-136	- 68	- 6

* Value has been corrected for external balance of NPN

** Represents transfers of K in excess of protein metabolism

bohydrate metabolism. In view of the inherent variations in carbohydrate utilization from day to day, even in well-regulated diabetic patients, only this general statement is justified. The possibility of some influence of the acidosis, such as that described in dogs receiving ammonium chloride (4), cannot therefore be excluded. Several of the studies were conducted in patients with edema. WK in Tables I, III, and VI is of particular interest in this respect because on a combination of marked sodium restriction and resin therapy his body weight dropped 5.6 kg. in nine days. The stool sodium excretion during this interval totaled 88 meq. It is obvious that this de-

TABLE XIV

Intake data and urine and stool output in subjects receiving the cation exchanger in the Ca cycle

Subj.	Time	Therapy	Intake						Urine						Stool				
	(days)	(g./d.)	Fluid (1.)	Cl (meq.)	Na (meq.)	K (meq.)) (gm.)	Vol. (1.)	C1 (meq.)	Na (meq.)	K (meq.)	TH (gm.)) P) (gm.)	Wgt. (gm)	Cl (meq.)	Ma (meq.)	K (meq.)) (gm.)	
٧B	0-2 2-8	o o	4.77 15.14	74 221	4 13	179 537	21.2 92.6			110	226	13.5 90.5		-1183	u	32	237	11.7	
л	0-5 5-11 11-17 17-23	စ်ဝင်ဝ	15.57 26.69	Pull 365 709	dieb. 306 595	diet 436 847	97.7 123.6	8.25 14.95 9.15 11.50	1809 380	1258 1742 345 309	349 468 390	63.2 72.5 97.3		1457 472 647	6 5 6	61 12 8	153 61 99	9.0 - 5.5	
CSt	0-6 6-12	0 40		Full	diet			7.40 6.50		907 681	335 246	45.1 38.2	•	291 463	2	105 46	83 81	2.0 4.4	
DY	0-6 6-11 11-16	50 60 60		("Salt-	free"	diet "		12.50 10.40 11.00	219	413 201 117	249 251 298	59.5 55.6 54.8	53.5 44.8 47.6	1003	11 14 7	108 58 46	54 82 94	6.8 8.8 9.0	
BP	0-5 5-10 10-16	40 40 33		("Balt-	 	diet		4.60 4.00 4.80		20 ' 84 115	116 92 93	28.2 32.4 40.3	26.9 30.5 35.5		11 8 4	56 55	121 96 183	7.7 5.4 11.5	

TABLE XV

Body weight and analyses of blood and serum in subjects receiving the cation exchanger in the Ca cycle

Subject	Time	Therapy	Body Wgt.	B1	ood				Serum		-		
(Age-Sez)	(Days)	(g./d.)	(kg.)	Sugar (mgm≸)	NPN (mgmar⊼)	HCO. (meq./1.)	Cl (meq./l.)	Na (meq./l.)	K (meq./l.)	Са (mgzr%)	P (mgm%)	H,0 (g./1.)	Protein (g.%)
VB 11 M Rh.Fev.	0 0-2 2-8	0 0 40	37.1 36.9 36.6	91 102 75	29 38 35	25.7 24.7 24.0	101.5 102.0 100.0	- 145 139	4.2 3.5	-	4.6 5.4 4.9	924 920 923	8.0 8.9 8.0
JF 29 M Diad.	0* 0-5 5-11 11-17 17-23	• 40 0 40	68.5 69.5 67.6 67.6 67.6	45 98 168 37	39 41 37 32 37	28.3 26.9 28.9 29.3 27.8	101.2 98.6 96.7 96.8 93.6	146 145 149 140 134	5.1 5.3 4.8 3.4 3.3	10.1 9.9 10.9 9.9	4.0 3.0 3.9	927 925 928 926 928	7.3 7.0 6.8 7.2
CSt 54 M Arthr.	0 ** 0-6 6-12	** 0 40	-	- 105 77	32 30 28	26.3 27.2 27.2	104.9 102.0 100.3	143 143 144	5.0 4.5 3.9	9.3 9.2 9.2	3.2 2.7 3.4	934 931 937	6.8 6.9 6.5
DY 12 M Nephro.	0 0 0-6 6-11 11-16	• 50 60 60	28.4 29.6 30.6	89 - -	45 39 38 38	17.3 21.5 21.3 23.1	108.0 104.6 104.1 101.7	135 136 143 141	3.9 4.1 4.1 3.9	7.8 8.2 8.4 7.6	4.5 4.5 4.8 4.6	921 925 933 929	4.3 4.3 3.8 3.8
BF 5 M Nephro.	0* 0-5 5-10 10-16	* 40 33	21.0	- - 87	28 36 32 31	24.1 22.6 20.9 20.7	102.3 99.8 103.7 102.7	139 135 138 134	3.8 4.1 4.4 4.0	8.6 7.•5	5.3 5.7 5.0	928 935 935	3.9 3.7 4.0 3.9

* End of H and K resin period

** End of NH4 and K resin period

TABLE XVI

External, extracellular, and cell balances in subjects receiving the cation exchanger in the Ca cycle

Subject	Time (Days)	Therapy (g./d.)	Ext. Bal.				Extracell. Bal.						
			C1 (meq.)	Na (meq.)	X (meq.)	N (gm)	Н,0 (1.)	Na (meq.)	K (meq.)	ул (gm.)	Na (meq.)	·K (meq.)	K## (meq.
VB	0-2 . 2-8	0 40	+ 24 - 31	-124	+133	+ 4.5 - 7.0	-0.1	- 69	- 6	- 6.3	55	+139	+154
Л	11-17 17-23	0 40	- 22 +271	- 55 +274	- 15 +327	+20.5	-0.2 +3.0	-150 +327	-21 + 7	+16.3	+ 95 +181	+ 6	+276

* Value has been corrected for external balance of NPN ** Represents transfers of K in excess of protein metabolism

crease in endogenous sodium as a result of stool losses could not by itself account for the extensive decrease of edema. The bulk of the sodium was lost in urine. It seems probable that the additive effect of the acidosis should be listed among other factors contributory to this diuresis.

On the other hand in patient CSc in the same tables much larger amounts of sodium were excreted in stools during the administration of the exchanger together with a milk diet unrestricted as to sodium. It is reasonable to suggest that without resin to interfere with the absorption of the ingested sodium this patient would not have lost edema fluid. Patient GDe demonstrates the degree to which the efficacy of the resin in augmenting stool sodium can vary not only from patient to patient, but also in the same subject. In the 10 to 15 day period he lost much less sodium per day in stool than in the somewhat longer 19 to 25 day interval. In this patient it is again worth pointing out that his initial huge diuresis with a body weight loss of 9.9 kg. cannot be attributed to stool losses of sodium, but that the marked acidosis which appeared during resin therapy may have hastened the delivery of the edema fluid.

Finally it should be pointed out that these exchangers have been administered to patients with renal failure. These can be most readily identified by the elevated blood nonprotein nitrogen values in the various tables of serum and blood data. The fact that in this series no complications developed such as clinical acidosis or potassium intoxication does not mean that these exchangers can be used with impunity in all forms of renal disease. The risks and benefits have been described in greater detail in another paper in this series (5). Insofar as the current studies are concerned it should be emphasized that they were of limited duration and interrupted short of undesirable or dangerous changes when certain trends had become well established, as with the acidosis in GDe, Table I. Incidentally, the ammonium released from the ammonium form of the resin apparently does not raise whole blood nonprotein nitrogen, but it may have, in some patients, as in WG, Table IV, raised the output of nitrogen in urine.

DISCUSSION

The data which have been presented indicate that the hydrogen and the ammonium forms of the resin produce effects which are indistinguishable, including essentially equal tendencies to induce acidosis and to increase the excretion of sodium and potassium in the stool. Furthermore, neither influences the output of nitrogen and chloride via this route. Although the efficiency of these resins is relatively low *in vivo*, it is clear that they may be useful in reducing the absorption of sodium from the diet so that a patient requiring low sodium therapy could ingest food seasoned with more of this cation. That he could not ingest much larger amounts of salt should be clear from the data indicating that each gram of the hydrogen or ammonium forms will remove only up to 1 meq. of sodium.

These studies also support an interpretation voiced elsewhere (1), *i.e.*, that the acidifying resins produce certain serum effects similar to those which follow the use of diuretics such as ammonium chloride, potassium nitrate, et cetera. This suggests that the diuresis accompanying hydrogen or ammonium cycle resin therapy of patients cannot be augmented by the use of acidifying diuretics. On the other hand it is reasonable to predict that mercurial diuretics used in conjunction with these two acidifying resins will exert their maximal effects without the aid of ammonium chloride. There is, however, probably an increased danger of producing potassium depletion under these circumstances which may be counteracted by administration of extra potassium.

Certain extrapolations seem justified with respect to possible clinical application of the sodium and potassium cycle resin findings. The relatively high efficiency of the sodium cycle resin in augmenting the stool output of potassium suggests its possible application in renal insufficiency of the salt-wastage and potassium accumulation type. This agent under such circumstances should augment the external losses of potassium and simultaneously cancel the negative balances of sodium which characterize this disorder (6–8).

The effects of the potassium cycle exchanger suggest that it may be beneficially employed in combination with the hydrogen or ammonium cycle congeners. It is obvious that upon exchange with sodium and hydrogen present in the intestinal tract the released potassium becomes available for absorption and is, as the data indicate, in great measure retained. This effect should serve to cancel the deficits of potassium accompanying prolonged use of the hydrogen or ammonium cycle resins without adding to their acidifying effects; although the same purpose may more efficiently be served by increasing dietary potassium intake by means of a salt such as $\rm KHCO_8$ or KCl. The clinical practicality of such combinations has been evaluated elsewhere (9). In addition, the danger of producing potassium intoxication in patients with oliguria and renal disease must be recognized (10–12).

It is possible that certain features of these resins may be utilized in cancelling some of the side effects of prolonged cortisone or ACTH therapy such as alkalosis, sodium retention, and potassium depletion (13–16). For example, combinations of hydrogen and potassium exchangers may be effective in this regard. Potassium depletion, however, may be enhanced under these circumstances unless the intake of potassium is large enough to counteract the combined effects of the resin and ACTH or cortisone on this ion. This problem has been studied in some detail in a subsequent paper (17).

Finally, the lack of any marked effects upon ingestion of the calcium cycle resin is both a disappointment and a reassurance. From the theoretical point of view the resin in this cycle should be useful in far-advanced renal insufficiency: release of the calcium ion from the exchanger should a) increase stool losses of sodium and of potassium which accumulate in kidney failure, and b) provide calcium to accelerate phosphate losses as insoluble salts via the bowel and alternatively replace the deficits characteristically present in serum and extracellular fluid of such patients. Unfortunately, neither of these predictions is substantiated by our data. These studies, however, provide a highly satisfactory control for a number of the other reports in this series. The following conclusion is inescapable, if such support be needed: the effects of the ammonium, hydrogen, sodium, and potassium forms of the carboxylic cation exchanger under investigation in this series of studies are attributable to the attached cation and not to the resin itself. If the cation with which the resin is charged is not displaced in sufficient quantity the resin has no detectable effect.

SUMMARY

1. The ammonium cycle resin produces effects quite comparable to those seen with hydrogen cycle resin ingestion, *i.e.*, hyperchloremia develops, and serum carbon dioxide content falls while the stool sodium and potassium excretion rises.

2. The stool changes seen with either the ammonium or the hydrogen cycle resins are also observed in subjects receiving the exchanger in either the potassium or sodium cycle. In the use of the latter the efficiency in removing potassium is less. Neither consistently affects the serum constituents but occasionally hyperkaliemia appears during potassium resin therapy. With the sodium form of the resin, sodium balances become positive with extracellular retention of this cation. With potassium resin, the intracellular stores of potassium may rise during therapy.

3. In a series of studies on one patient concomitant administration of cortisone did not interfere with the ability of the ammonium resin to raise stool sodium and potassium but hypokaliemia appeared.

4. The calcium cycle of the carboxylic cation exchanger in the form used was relatively inert and produced much smaller changes in stool sodium and potassium. These findings, however, do add support to the view that the cycle of the resin and not the resin *per se* is the determinative factor in the observed results.

REFERENCES

- Danowski, T. S., Greenman, L., Mateer, F. M., Parsons, W. B., Weigand, F. A., Mermelstein, H., and Peters, J. H., Carboxylic cation exchange resin effects in dogs. J. Clin. Invest., 1951, 30, 984.
- Danowski, T. S., Greenman, L., Mateer, F. M., Peters, J. H., Weigand, F. A., Mermelstein, H., and Clarke, C. E., Carboxylic cation exchange resin studies in animals and humans. J. Clin. Invest., 1950, 29, 807.
- Danowski, T. S., Cation exchange resins in experimental and clinical situations with special emphasis on edema. Proc. 18th International Physiological Congress, 1950, p. 173.
- Mackler, B., Lichtenstein, H., and Guest, G. M., Effects of ammonium chloride acidosis on the action of insulin in dogs. Am. J. Physiol., in press.
- Mateer, F. M., Erhard, L. H., Price, M., Weigand, F. A., Peters, J. H., Danowski, T. S., Tarail, R., and Greenman, L., Sodium restriction and cation exchange resin therapy in nephrotic children. J. Clin. Invest., 1951, 30, 1018.

- Thorn, G. W., Koepf, G. F., and Clinton, M., Jr., Renal failure simulating adrenocortical insufficiency. New England J. Med., 1944, 231, 76.
- Sawyer, W. H., and Solez, C., Salt-losing nephritis simulating adrenocortical insufficiency. New England J. Med., 1949, 240, 210.
- 8. Borst, J. R., Disturbances in water and salt metabolism in the final stage of chronic renal insufficiency. Acta med. Scandinav., 1949-50, 136, 1.
- Greenman, L., Peters, J. H., Mateer, F. M., and Danowski, T. S., Probable clinical utility of cation exchange resins. J. Clin. Invest., 1951, 30, 1027.
- Keith, N. M., and Burchell, H. B., Clinical intoxication with potassium: its occurrence in severe renal insufficiency. Am. J. M. Sc., 1949, 217, 1.
- Elkinton, J. R., Tarail, R., and Peters, J. P., Transfers of potassium in renal insufficiency. J. Clin. Invest., 1949, 28, 378.
- Danowski, T. S., and Elkinton, J. R., Exchanges of potassium related to organs and systems. Pharmacol. Rev., 1951, 3, 42.

- Elkinton, J. R., Hunt, A. D., Jr., Godfrey, L., Mc-Crory, W. W., Rogerson, A. G., and Stokes, J., Jr., Effects of pituitary adrenocorticotropic hormone (ACTH) therapy. J.A.M.A., 1949, 141, 1273.
- Ingle, D. J., The biologic properties of cortisone: a review. J. Clin. Endocrinol., 1950, 10, 1312.
- Sprague, R. G., Power, M. H., Mason, H. L., Albert, A., Mathieson, D. R., Hench, P. S., Kendall, E. C., Slocumb, C. H., and Polley, H. F., Observations on the physiologic effects of cortisone and ACTH in man. Arch. Int. Med., 1950, 85, 199.
- 16. Greenman, L., Danowski, T. S., Tarail, R., Peters, J. H., Weigand, F. A., and Mateer, F. M., Studies of prevention of some of the toxic effects of prolonged cortisone and ACTH therapy. J. Clin. Invest., 1951, 30, 644.
- Peters, J. H., Danowski, T. S., Greenman, L., Weigand, F. A., Clarke, C. E., Garver, K., Mateer, F. M., and Tarail, R., Acidifying and non-acidifying carboxylic resin mixtures used alone and with ACTH or cortisone. J. Clin. Invest., 1951, 30, 1009.